

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f046

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1.	System Overview	
	Figure 1.1. C8051F040/2 Block Diagram	21
	Figure 1.2. C8051F041/3 Block Diagram	22
	Figure 1.3. C8051F044/6 Block Diagram	23
	Figure 1.4. C8051F045/7 Block Diagram	24
	Figure 1.5. Comparison of Peak MCU Execution Speeds	25
	Figure 1.6. On-Board Clock and Reset	26
	Figure 1.7. On-Chip Memory Map	27
	Figure 1.8. Development/In-System Debug Diagram	28
	Figure 1.9. Digital Crossbar Diagram	29
	Figure 1.10. PCA Block Diagram	30
	Figure 1.11. CAN Controller Diagram	31
	Figure 1.12. 10/12-Bit ADC Block Diagram	32
	Figure 1.13. 8-Bit ADC Diagram	33
	Figure 1.14. Comparator and DAC Diagram	34
2.	Absolute Maximum Ratings	
3.	Global DC Electrical Characteristic	
4.	Pinout and Package Definitions	
	Figure 4.1. TQFP-100 Pinout Diagram	43
	Figure 4.2. TQFP-100 Package Drawing	44
	Figure 4.3. TQFP-64 Pinout Diagram	45
	Figure 4.4. TQFP-64 Package Drawing	46
5.	12-Bit ADC (ADC0, C8051F040/1 Only)	
	Figure 5.1. 12-Bit ADC0 Functional Block Diagram	47
	Figure 5.2. Analog Input Diagram	48
	Figure 5.3. High Voltage Difference Amplifier Functional Diagram	52
	Figure 5.4. 12-Bit ADC Track and Conversion Example Timing	55
	Figure 5.5. ADC0 Equivalent Input Circuits	56
	Figure 5.6. Temperature Sensor Transfer Function	57
	Figure 5.7. ADC0 Data Word Example	61
	Figure 5.8. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Single-Ended Data	63
	Figure 5.9. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Differential Data	64
	Figure 5.10. 12-Bit ADC0 Window Interrupt Example:	
	Left Justified Single-Ended Data	65
	Figure 5.11. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Dat 66	a.
6.	10-Bit ADC (ADC0, C8051F042/3/4/5/6/7 Only)	• •
	Figure 6.1. 10-Bit ADC0 Functional Block Diagram	69
	Figure 6.2. Analog Input Diagram	70
	Figure 6.3. High Voltage Difference Amplifier Functional Diagram	74
	Figure 6.4. 10-Bit ADC Track and Conversion Example Timing	77

SFR Definition 5.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
							SFR Address SFR Page	: 0xE8 : 0				
Bit7:	AD0EN: AD 0: ADC0 Di	C0 Enable sabled. AD	e Bit. IC0 is in low	-power shu	tdown.							
Bit6:	1: ADC0 Er AD0TM: AE	1: ADC0 Enabled. ADC0 is active and ready for data conversions. AD0TM: ADC Track Mode Bit										
Bit5:	1: Tracking AD0INT: AE This flag m	Defined by DC0 Conve ust be clea	AD0CM1-0 rsion Comp red by softw) bits lete Interrup vare.	ot Flag.							
Bit4:	0: ADC0 ha 1: ADC0 ha AD0BUSY: Read:	as not comp as complete ADC0 Bus	oleted a data ed a data co y Bit.	a conversio nversion.	n since the I	last time this	flag was cle	eared.				
	0: ADC0 Co to logic 1 of 1: ADC0 Co Write:	onversion i n the falling onversion i	s complete o g edge of AE s in progress	or a convers 00BUSY. s.	sion is not c	urrently in pr	ogress. AD()INT is set				
	0: No Effec 1: Initiates	t. ADC0 Con	version if AE	00CM1-0 =	00b							
Bit3-2:	AD0CM1-0	: ADC0 Sta : 0:	art of Convei	sion Mode	Select.							
	00: ADC0 c	conversion	initiated on	every write	of '1' to ADC	BUSY.						
	10: ADC0 c	conversion	initiated on	rising edge	of external (CNVSTR0.						
	11: ADC0 c If AD0TM =	onversion	initiated on o	overflow of	Timer 2.							
	00: Trackin	g starts wit	h the write c	of '1' to ADO	BUSY and I	asts for 3 SA	AR clocks, fo	blowed by				
	01: Trackin	g started b	y the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks, followe	d by con-				
	10: ADC0 t	racks only	when CNVS	TR0 input i	s logic low;	conversion s	tarts on risi	ng				
	11: Tracking	g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR cloo	cks, followe	d by con-				
Bit1:	ADOWINT:	ADC0 Win	dow Compa	re Interrupt	Flag.							
D:+0-	0: ADC0 W 1: ADC0 W	indow Con	parison Dat	a match ha a match ha	as not occuri as occurred.	red since this	s flag was la	st cleared.				
DILU.	0: Data in A 1: Data in A	ADC0Left ADC0H:AD ADC0H:AD	COL register	s are right- s are left-ju	justified. Istified.							

SFR Definition 6.5.	ADC0CF: ADC0	Configuration
---------------------	--------------	---------------

DAA	DAA	D 44/		D 44/			DAA	DesetValue
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset value
AD0SC4	AD0SC3	AD0SC2	AD0SC1	AD0SC0	AMP0GN2	AMP0GN1	AMP0GN0	11111000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address: SFR Page:	0xBC 0
SFR Page: 0Bits7-3:AD0SC4-0: ADC0 SAR Conversion Clock Period Bits SAR Conversion clock is derived from system clock by the following equation, when AD0SC refers to the 5-bit value held in AD0SC4-0, and CLK_{SAR0} refers to the desire SAR clock. See Table 6.2 on page 89 for SAR clock setting requirements. $AD0SC \ge \frac{SYSCLK}{CLK_{SAR0}} - 1 *$ or $CLK_{SAR0} = \frac{SYSCLK}{AD0SC+1}$							here sired ADC0	
	*Note: AD0S0	C is the roun	ded-up resul	t.				
Bits2-0:	AMP0GN2-0 000: Gain = 001: Gain = 010: Gain = 011: Gain = 10x: Gain = 11x: Gain = 0	1: ADC0 Inte 2 4 8 16 0.5	ernal Amplif	ier Gain (P	GA)			

SFR Definition 6.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
							SFR Address SFR Page	: 0xE8 : 0				
Bit7:	AD0EN: ADC0 Enable Bit. 0: ADC0 Disabled. ADC0 is in low-power shutdown.											
Bit6:	AD0TM: AD 0: When the	1: ADC0 Enabled. ADC0 is active and ready for data conversions. AD0TM: ADC Track Mode Bit 0: When the ADC is enabled, tracking is continuous unless a conversion is in process										
Bit5:	1: Tracking AD0INT: AE This flag m 0: ADC0 ha	Defined by DC0 Conve ust be clea as not com	y AD0CM1-0 ersion Compl red by softwored by softwored a data) bits lete Interruj vare. a conversio pversion	ot Flag. n since the l	last time this	flag was cle	eared.				
Bit4:	AD0BUSY: Read:	ADC0 Bus	s complete o	nversion.	sion is not c	urrently in pr	oaress AD()INT is set				
	to logic 1 of 1: ADC0 Co Write: 0: No Effec	n the falling onversion i .t.	g edge of AE s in progress	00BUSY. s.								
Bit3-2:	1: Initiates / AD0CM1-0 If AD0TM = 00: ADC0 c 01: ADC0 c	ADC0 Con : ADC0 Sta : 0: conversion conversion	version if AE art of Conver initiated on o initiated on o	00CM1-0 = rsion Mode every write overflow of	00b Select. of '1' to AD(Timer 3.)BUSY.						
	10: ADC0 c 11: ADC0 c If AD0TM =	conversion conversion = 1:	initiated on i initiated on o	rising edge overflow of	of external (Timer 2.	CNVSTR0.						
	00: Trackin conversion	g starts wit	h the write c	of '1' to ADO	BUSY and I	lasts for 3 SA	AR clocks, fo	ollowed by				
	01: Trackin version.	g started b	y the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks, followe	d by con-				
	10: ADC0 ti CNVSTR0	racks only edge.	when CNVS	TR0 input i	s logic low;	conversion s	tarts on risi	ng				
	11: Tracking	g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR cloo	cks, followe	d by con-				
Bit1:	ADOWINT: A	ADC0 Wind st be clear	dow Compared by software	re Interrupt ire.	Flag.	rad aince this	flog woo lo	at algorid				
Bit0:	1: ADC0 W AD0LJST: A 0: Data in A 1: Data in A	indow Con ADC0 Left ADC0H:AD ADC0H:AD	nparison Dat nparison Dat Justify Selec COL register COL register	a match ha a match ha s are right- s are left-iu	is for occurred. justified. istified.		anay was la					

8.1. DAC Output Scheduling

Each DAC features a flexible output update mechanism which allows for seamless full-scale changes and supports jitter-free updates for waveform generation. The following examples are written in terms of DAC0, but DAC1 operation is identical.

8.1.1. Update Output On-Demand

In its default mode (DAC0CN.[4:3] = '00') the DAC0 output is updated "on-demand" on a write to the highbyte of the DAC0 data register (DAC0H). It is important to note that writes to DAC0L are held, and have no effect on the DAC0 output until a write to DAC0H takes place. If writing a full 12-bit word to the DAC data registers, the 12-bit data word is written to the low byte (DAC0L) and high byte (DAC0H) data registers. Data is latched into DAC0 after a write to the corresponding DAC0H register, **so the write sequence should be DAC0L followed by DAC0H** if the full 12-bit resolution is required. The DAC can be used in 8bit mode by initializing DAC0L to the desired value (typically 0x00), and writing data to only DAC0H (also see **Section 8.2** for information on formatting the 12-bit DAC data word within the 16-bit SFR space).

8.1.2. Update Output Based on Timer Overflow

Similar to the ADC operation, in which an ADC conversion can be initiated by a timer overflow independently of the processor, the DAC outputs can use a Timer overflow to schedule an output update event. This feature is useful in systems where the DAC is used to generate a waveform of a defined sampling rate by eliminating the effects of variable interrupt latency and instruction execution on the timing of the DAC output. When the DACOMD bits (DACOCN.[4:3]) are set to '01', '10', or '11', writes to both DAC data registers (DACOL and DACOH) are held until an associated Timer overflow event (Timer 3, Timer 4, or Timer 2, respectively) occurs, at which time the DACOH:DACOL contents are copied to the DAC input latches allowing the DAC output to change to the new value.

8.2. DAC Output Scaling/Justification

In some instances, input data should be shifted prior to a DAC0 write operation to properly justify data within the DAC input registers. This action would typically require one or more load and shift operations, adding software overhead and slowing DAC throughput. To alleviate this problem, the data-formatting feature provides a means for the user to program the orientation of the DAC0 data word within data registers DAC0H and DAC0L. The three DAC0DF bits (DAC0CN.[2:0]) allow the user to specify one of five data word orientations as shown in the DAC0CN register definition.

DAC1 is functionally the same as DAC0 described above. The electrical specifications for both DAC0 and DAC1 are given in Table 8.1.

Table 8.1. DAC Electrical Characteristics

 V_{DD} = 3.0 V, AV+ = 3.0 V, V_{REF} = 2.40 V (REFBE = 0), No Output Load unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Static Performance					
Resolution			12		bits
Integral Nonlinearity		-	±2	—	LSB
Differential Nonlinearity		-		±1	LSB
Output Noise	No Output Filter 100 kHz Output Filter 10 kHz Output Filter		250 128 41	_ _ _	µVrms
Offset Error	Data Word = 0x014	-	±3	±30	mV
Offset Tempco		-	6	-	ppm/°C
Full-Scale Error		-	±20	±60	mV
Full-Scale Error Tempco		-	10	-	ppm/°C
V _{DD} Power Supply Rejection Ratio		_	-60	—	dB
Output Impedance in Shutdown Mode	DACnEN = 0	_	100	—	kΩ
Output Sink Current			300	—	μA
Output Short-Circuit Current	Data Word = 0xFFF		15	—	mA
Dynamic Performance					
Voltage Output Slew Rate	Load = 40 pF	-	0.44	—	V/µs
Output Settling Time to 1/2 LSB	Load = 40 pF, Output swing from code 0xFFF to 0x014	-	10	—	μs
Output Voltage Swing		0	—	VREF – LSB	V
Startup Time		—	10	—	μs
Analog Outputs	1	1			
Load Regulation	$I_L = 0.01 \text{ mA to } 0.3 \text{ mA at code}$ 0xFFF	_	60	-	ppm
Power Consumption (each DA	(C)				
Power Supply Current (AV+ supplied to DAC)	Data Word = 0x7FF	_	110	400	μA

Figure 11.2. Comparator Hysteresis Plot

The hysteresis of the Comparator is software-programmable via its Comparator Control register (CPTnCN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown in SFR Definition 11.1). The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Table 11.1, settings of approximately 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on either rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see **Section "12.3. Interrupt Handler" on page 153**). The rising and/ or falling -edge interrupts are enabled using the comparator's Rising/Falling Edge Interrupt Enable Bits (CPnRIE and CPnFIE) in their respective Comparator Mode Selection Register (CPTnMD), shown in SFR Definition 11.2. These bits allow the user to control which edge (or both) will cause a comparator interrupt. However, the comparator interrupt must also be enabled in the Extended Interrupt Enable Register (EIE1). The CPnFIF flag is set to logic 1 upon a Comparator falling-edge interrupt, and the CPnRIF flag is set to logic 1 upon the Comparator can be obtained at any time by reading the CPnOUT bit. A Comparator is enabled by setting its respective CPnEN bit to logic 1, and is disabled by clearing this bit to logic 0.Upon enabling a comparator, the output of the comparator is not immediately valid. Before using a comparator as an interrupt or reset source, software should wait for a minimum of the specified "Power-up time" as specified in Table 11.1, "Comparator Electrical Characteristics," on page 126.

SFR Definition 12.9. ACC: Accumulator

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address SFR Page	s: 0xE0 e: All Pages
Bits7-0:	ACC: Accum This register	ulator. is the accu	mulator for	arithmetic o	operations.			

SFR Definition 12.10. B: B Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
	CP2IE	CP1IE	CP0IE	EPCA0	EWADC0	ESMB0	ESPI0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
	SFR Address: 0xE6											
	SFR Page: All Pages											
Bit7.	Reserved R	ead = 0b	Vrite = don'	t care								
Bit6:	CP2IE: Enal	ole Compar	ator (CP2)	Interrupt.								
	This bit sets	the maskin	g of the CP	2 interrupt.								
	0: Disable C	P2 interrup	ts.	•								
	1: Enable inf	errupt requ	ests genera	ated by the	CP2IF flag.							
Bit6:	CP1IE: Enal	ole Compar	ator (CP1)	Interrupt.								
	This bit sets	the maskin	g of the CP	1 interrupt.								
	U: Disable C	P1 Interrup	IS. osta gonor	atod by the								
Bit6 [.]	CP0IE: Enab	ole Compar	ator (CP0)	Interrupt	or ni nay.							
Dito.	This bit sets	the maskin	g of the CP	0 interrupt.								
	0: Disable C	P0 interrup	ts.	•								
	1: Enable int	errupt requ	ests genera	ated by the	CP0IF flag.							
Bit3:	EPCA0: Ena	ble Program	nmable Co	unter Array	(PCA0) Inte	errupt.						
	This bit sets	the maskin	g of the PC	A0 interrup	ts.							
	0: Disable al	I PCAU inte	rrupts.	ated by DC	• •							
Bit2.		nable Wind	ow Compa	rison ADCO	NU. Interrunt							
DILZ.	This bit sets	the maskin	a of ADC0	Window Co	mparison in	terrupt.						
	0: Disable A	DC0 Windo	w Comparis	son Interrup	ot.							
	1: Enable Int	terrupt requ	ests genera	ated by AD	C0 Window	Compariso	ns.					
Bit1:	ESMB0: Ena	able System	n Managem	ent Bus (SI	MBus0) Inte	rrupt.						
	This bit sets	the maskin	g of the SN	IBus interru	pt.							
	0: Disable al	I SMBus int	terrupts.	ted by the	Clflor							
RitO	ESPIO: Enable	errupt requ	esis genera arinharal In	terface (SP	SI IIAG. 10) Interrunt							
Dito.	This bit sets	the maskin	a of SPI0 ir	terrunt	io) interiupt	•						
	0: Disable al	I SPI0 inter	rupts.	non apt.								
	1: Enable Int	terrupt requ	ests genera	ated by the	SPI0 flag.							

13. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack are not altered.

The I/O port latches are reset to 0xFF (all logic 1s), activating internal weak pullups which take the external I/O pins to a high state. For V_{DD} Monitor resets, the /RST pin is driven low until the end of the V_{DD} reset timeout.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator running at its lowest frequency. Refer to Section "**14. Oscillators**" on page **173** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled using its longest timeout interval (see Section "**13.7. Watchdog Timer Reset**" on page **167**). Once the system clock source is stable, program execution begins at location 0x0000.

There are seven sources for putting the MCU into the reset state: power-on, power-fail, external /RST pin, external CNVSTR0 signal, software command, Comparator0, Missing Clock Detector, and Watchdog Timer. Each reset source is described in the following sections.

Figure 13.1. Reset Sources

lup and/or decoupling of the /RST pin to avoid erroneous noise-induced resets. The MCU will remain in reset until at least 12 clock cycles after the active-low /RST signal is removed. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

13.4. Missing Clock Detector Reset

The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If the system clock goes away for more than 100 μ s, the one-shot will time out and generate a reset. After a Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MCD as the reset source; otherwise, this bit reads '0'. The state of the /RST pin is unaffected by this reset. Setting the MCDRSF bit, RSTSRC.2 (see Section "14. Oscillators" on page 173) enables the Missing Clock Detector.

13.5. Comparator0 Reset

Comparator0 can be configured as a reset input by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled using CPT0CN.7 (see Section "11. Comparators" on page 121) prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (CP0+ pin) is less than the inverting input voltage (CP0- pin), the MCU is put into the reset state. After a Comparator0 Reset, the CORSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the /RST pin is unaffected by this reset.

13.6. External CNVSTR0 Pin Reset

The external CNVSTR0 signal can be configured as a reset input by writing a '1' to the CNVRSEF flag (RSTSRC.6). The CNVSTR0 signal can appear on any of the P0, P1, P2 or P3 I/O pins as described in Section "**17.1. Ports 0 through 3 and the Priority Crossbar Decoder**" on page **204**. Note that the Crossbar must be configured for the CNVSTR0 signal to be routed to the appropriate Port I/O. The Crossbar should be configured and enabled before the CNVRSEF is set. When configured as a reset, CNVSTR0 is active-low and level sensitive. After a CNVSTR0 reset, the CNVRSEF flag (RSTSRC.6) will read '1' signifying CNVSTR0 as the reset source; otherwise, this bit reads '0'. The state of the /RST pin is unaffected by this reset.

13.7. Watchdog Timer Reset

The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. A WDT overflow will force the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system from running out of control.

Following a reset the WDT is automatically enabled and running with the default maximum time interval. If desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the /RST pin is unaffected by this reset.

The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the period between specific writes to its control register. If this period exceeds the programmed limit, a WDT reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN) shown in SFR Definition 13.1.

SFR Definition	13.2. RSTSRC:	Reset Source
----------------	---------------	---------------------

R	R/W	R/W	R/W	R	R/W	R	R/W	Reset Value			
-	CNVRSEF	CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
							SFR Address SFR Page	:: 0xEF :: 0			
Bit7:	Reserved.										
Bit6:	CNVRSEF: Convert Start Reset Source Enable and Flag										
	 WITE: U: UNVSTRU IS NOT A RESET SOURCE. 1: CNIVSTRU is a reset source (active low) 										
	Read: 0: Source of prior reset was not CNVSTR0.										
	Read: U: Source of prior reset was not CNVSTR0.										
Bit5:	CORSEF: Co	mparator0	Reset Enable	e and Flag.							
	Write: 0: C	omparator0	is not a rese	et source.							
	1: C	omparator0	is a reset so	ource (active	low).						
	Read: 0: S	ource of last	t reset was r	not Compara	tor0.						
D:44	1: S	ource of las	t reset was (Comparator().						
BIt4:	SVVRSF: SO	tware Reset	Force and	Flag.							
	1. F	orces an inte	ernal reset /	'RST nin is r	not effected						
	Read: 0: S	ource of last	t reset was r	not a write to	the SWRSF	- bit.					
	1: S	ource of last	t reset was a	a write to the	SWRSF bit						
Bit3:	WDTRSF: W	atchdog Tin	ner Reset Fl	ag.							
	0: S	ource of last	t reset was r	not WDT tim	eout.						
D:40	1: S	ource of last	t reset was \	NDT timeou	t.						
BIt2:	MCDRSF: N	lissing Clock	Detector FI	ag. sabled							
	1 M	lissing Clock	Detector er	sabled: trigg	ers a reset if	a missing (clock conditi	on is			
	detected.	libeling clock		labioa, ingg		a moonig .					
	Read: 0: S	ource of last	t reset was r	not a Missing	Clock Dete	ctor timeou	t.				
	1: S	ource of last	t reset was a	a Missing Clo	ock Detector	timeout.					
Bit1:	PORSF: Pov	ver-On Rese	et Flag.								
	Write: If the	V _{DD} monitor	circuitry is e	enabled (by	tying the MC	NEN pin to	a logic high	state), this			
	bit can be wi	itten to sele	ct or de-sele	ect the V _{DD} r	nonitor as a	reset sourc	e.				
	0: De-select	the V _{DD} mo	nitor as a re	set source.							
	1: Select the	V _{DD} monito	or as a reset	source.							
	Important:	At power-on	i, the V _{DD} m	onitor is er	abled/disat	oled using	the externa	l V _{DD} moni-			
	tor enable p	in (MONEN). The POR	SF bit does	not disable	or enable	the V _{DD} mo	nitor cir-			
	cuit. It simp	ly selects tl	he V _{DD} mon	itor as a re	set source.						
	Read: This b	it is set whe	never a pow	ver-on reset	occurs. This	may be du	e to a true po	ower-on			
	reset or a V _E	_{DD} monitor re	eset. In eithe	er case, data	memory sho	ould be con	sidered inde	terminate			
	following the	reset.		.,,	.,						
	0: Source of	last reset wa	as not a pow	/er-on or V _D	D monitor res	set.					
	1: Source of	last reset wa	as a power-o	on or v _{DD} m	onitor reset.						
D:+0.	Note: When	this flag is	read as '1',	all other re	set flags ar	e indeterm	inate.				
DILU.		n effect	riay.								
	1: F	orces a Pow	er-On Rese	t. /RST is dr	iven low						
	Read: 0: S	ource of pric	or reset was	not /RST pi	ו. ו.						
	1: S	ource of pric	or reset was	/RST pin.							

Parameter	Description	Min	Мах	Units
T _{SYSCLK}	System Clock Period	40		ns
T _{ACS}	Address/Control Setup Time	0	3 x T _{SYSCLK}	ns
T _{ACW}	Address/Control Pulse Width	1 x T _{SYSCLK}	16 x T _{SYSCLK}	ns
T _{ACH}	Address/Control Hold Time	0	3 x T _{SYSCLK}	ns
T _{ALEH}	Address Latch Enable High Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{ALEL}	Address Latch Enable Low Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{WDS}	Write Data Setup Time	1 x T _{SYSCLK}	19 x T _{SYSCLK}	ns
T _{WDH}	Write Data Hold Time	0	3 x T _{SYSCLK}	ns
T _{RDS}	Read Data Setup Time	20		ns
T _{RDH}	Read Data Hold Time	0		ns

 Table 16.1. AC Parameters for External Memory Interface

SFR Definition 17.7, SFR Definition 17.10, and SFR Definition 17.13), a set of SFRs which are both byteand bit-addressable. The output states of Port pins that are allocated by the Crossbar are controlled by the digital peripheral that is mapped to those pins. Writes to the Port Data registers (or associated Port bits) will have no effect on the states of these pins.

A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regardless of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs during the execution of a *read-modify-write* instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC, CLR, SET, and the bitwise MOV operation). During the *read* cycle of the *read-modify-write* instruction, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.

Because the Crossbar registers affect the pinout of the peripherals of the device, they are typically configured in the initialization code of the system before the peripherals themselves are configured. Once configured, the Crossbar registers are typically left alone.

Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1. Until XBARE is set to a logic 1, the output drivers on Ports 0 through 3 are explicitly disabled in order to prevent possible contention on the Port pins while the Crossbar registers and other registers which can affect the device pinout are being written.

The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled; thus the values of the Port Data registers and the PnMDOUT registers have no effect on the states of these pins.

17.1.2. Configuring the Output Modes of the Port Pins

The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1.

The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and writing a logic 1 will cause the Port pin to be driven to V_{DD} . In the Open-Drain configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent contention between devices in systems where the Port pin participates in a shared interconnection in which multiple outputs are connected to the same physical wire (like the SDA signal on an SMBus connection).

The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated PnMDOUT registers (See SFR Definition 17.6, SFR Definition 17.9, SFR Definition 17.12, and SFR Definition 17.15). For example, a logic 1 in P3MDOUT.7 will configure the output mode of P3.7 to Push-Pull; a logic 0 in P3MDOUT.7 will configure the output mode of P3.7 to Open-Drain. All Port pins default to Open-Drain output.

The PnMDOUT registers control the output modes of the port pins regardless of whether the Crossbar has allocated the Port pin for a digital peripheral or not. The exceptions to this rule are: the Port pins connected to SDA, SCL, RX0 (if UART0 is in Mode 0), and RX1 (if UART1 is in Mode 0) are always configured as Open-Drain outputs, regardless of the settings of the associated bits in the PnMDOUT registers.

17.1.3. Configuring Port Pins as Digital Inputs

A Port pin is configured as a digital input by setting its output mode to "Open-Drain" in the PnMDOUT register and writing a logic 1 to the associated bit in the Port Data register. For example, P3.7 is configured as

18.1.1. CAN Controller Timing

The CAN controller's system clock (f_{sys}) is derived from the CIP-51 system clock (SYSCLK). Note that an external oscillator (such as a quartz crystal) is typically required due to the high accuracy requirements for CAN communication. Refer to Section "4.10.4 Oscillator Tolerance Range" in the Bosch CAN User's Guide for further information regarding this topic.

18.1.2. Example Timing Calculation for 1 Mbit/Sec Communication

This example shows how to configure the CAN contoller timing parameters for a 1 Mbit/Sec bit rate. Table 18.1 shows timing-related system parameters needed for the calculation.

Parameter	Value	Description External oscillator in 'Crystal Oscillator Mode'. A 22.1184 MHz quartz crystal is connected betwee XTAL1 and XTAL2. Derived from SYSCLK.			
CIP-51 system clock (SYSCLK)	22.1184 MHz	External oscillator in 'Crystal Oscillator Mode'. A 22.1184 MHz quartz crystal is connected between XTAL1 and XTAL2.			
CAN Controller system clock (f _{sys})	22.1184 MHz	Derived from SYSCLK.			
CAN clock period (t _{sys})	45.211 ns	Derived from 1/f _{sys} .			
CAN time quantum (t _q)	45.211 ns	Derived from t _{sys} x BRP ^{1,2}			
CAN bus length	10 m	5 ns/m signal delay between CAN nodes.			
Propagation delay time ³	400 ns	2 x (transceiver loop delay + bus line delay)			

Table 18.1. Background System Information

Notes:

1. The CAN time quantum (t_q) is the smallest unit of time recognized by the CAN contoller. Bit timing parameters are often specified in integer multiples of the time quantum.

2. The Baud Rate Prescaler (BRP) is defined as the value of the BRP Extension Register plus 1. The BRP Extension Register has a reset value of 0x0000; the Baud Rate Prescaler has a reset value of 1.

3. Based on an ISO-11898 compliant transceiver. CAN does not specify a physical layer.

Each bit transmitted on a CAN network has 4 segments (Sync_Seg, Prop_Seg, Phase_Seg1, and Phase_Seg2), as shown in Figure 18.3. The sum of these segments determines the CAN bit time (1/bit rate). In this example, the desired bit rate is 1 Mbit/sec; therefore, the desired bit time is 1000 ns.

Figure 18.3. Four Segments of a CAN Bit Time

19. System Management BUS/I²C BUS (SMBUS0)

The SMBus0 I/O interface is a two-wire, bi-directional serial bus. SMBus0 is compliant with the System Management Bus Specification, version 2, and compatible with the I²C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus0 interface autonomously controlling the serial transfer of the data. A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

SMBus0 may operate as a master and/or slave, and may function on a bus with multiple masters. SMBus0 provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. SMBus0 is controlled by SFRs as described in **Section 19.4 on page 245**.

Figure 19.1. SMBus0 Block Diagram

SFR Definition 23.9. TMRnCF: Timer n Configuration

			R/W	R/W	R/W	R/W	RW	Reset Value
-	-	-	TnM1	TnM0	TOGn	TnOE	DCEN	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
SFR Address: TMR2CF:0xC9;TMR3CF:0xC9;TMR4CF:0xC9 SFR Page TMR2CF: page 0;TMR3CF: page 1;TMR4CF: page 2								
Bit7-5: Bit4-3:	 Bit7-5: Reserved. Bit4-3: TnM1 and TnM0: Timer Clock Mode Select Bits. Bits used to select the Timer clock source. The sources can be the System Clock (SYSCLK), SYSCLK divided by 2 or 12, or an external clock signal routed to Tn (port pin) divided by 8. Clock source is selected as follows: 00: SYSCLK/12 01: SYSCLK 10: EXTERNAL CLOCK/8 							
Bit2:	TOGn: Toggle output state bit. When timer is used to toggle a port pin, this bit can be used to read the state of the output, or							
 Bit1: TnOE: Timer output enable bit. This bit enables the timer to output a 50% duty cycle output to the timer's assigned external port pin. <u>NOTE</u>: A timer is configured for Square Wave Output as follows: CP/RLn = 0 C/Tn = 0 TnOE = 1 Load RCAPnH:RCAPnL (See Section "Equation 23.1. Square Wave Frequency" on page 300). 								
Bit0:	 Configure Port Pin for output (See Section "17. Port Input/Output" on page 203). 0: Output of toggle mode not available at Timers' assigned port pin. 1: Output of toggle mode available at Timers' assigned port pin. DCEN: Decrement Enable Bit. This bit enables the timer to count up or down as determined by the state of TnEX. 0: Timer will count up, regardless of the state of TnEX. 1: Timer will count up or down depending on the state of TnEX as follows: if TnEX = 0, the timer counts DOWN if TnEX = 1, the timer counts UP. 							

24.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value of the PCA0 counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.

Note: The signal at the CEXn pin must be logic high or low for at least two system clock cycles in order for it to be recognized as valid by the hardware.

Figure 24.4. PCA Capture Mode Diagram

24.3. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of PCA0.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0]
							SFR Addres	s: 0xD8
	SFR Page: 0						je: 0	
				_,				
Bit/:	CF: PCA Counter/Timer Overflow Flag.							
	Set by hardware when the PCA0 Counter/Timer overflows from 0xFFFF to 0x0000. When							CPL to yoo
	tor to the CE	interrunt s	nuw (CF) In ervice routir	ne This hit i	is not auton	ng this bit t	ared by ha	CFU lu vec-
	must be clea	ared by soft	ware		is not auton	natically cie	areu by na	
Bit6:	CR: PCA0 C	Counter/Tim	er Run Con	trol.				
2.001	This bit enab	oles/disable	s the PCA0	Counter/Ti	mer.			
	0: PCA0 Co	unter/Timer	disabled.					
	1: PCA0 Co	unter/Timer	enabled.					
Bit5:	CCF5: PCA	0 Module 5	Capture/Co	mpare Flag].			
	This bit is se	t by hardwa	are when a	match or ca	pture occu	rs. When th	e CCF inte	rrupt is
	enabled, set	ting this bit	causes the	CPU to veo	ctor to the C	CF interrup	ot service r	outine. This
D:#4.	bit is not aut	omatically of	Centure (Ce	ardware an	id must be (cleared by s	software.	
BII4.	This bit is so	t by bardwr	Caplure/Co	mpare Flag). Inturo occui	re Whon th	o CCE into	vrupt ic
	enabled set	ting this hit	causes the	CPU to ver	ntor to the C	CF interrur	t service r	outine This
	bit is not aut	omatically o	cleared by h	ardware an	id must be o	cleared by s	software.	
Bit3:	CCF3: PCA0 Module 3 Capture/Compare Flag.							
	This bit is se	t by hardwa	are when a	match or ca	, apture occu	rs. When th	e CCF inte	errupt is
	 enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software. CCF2: PCA0 Module 2 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by berdware and must be cleared by software. 						outine. This	
Bit2:								
							rrupt is	
							buune. mis	
Bit1.	CCF1: PCA) Module 1	Canture/Co	mpare Flac	1	cicaled by a	Sontware.	
Bitt.	This bit is set by hardware when a match or canture occurs. When the CCF interrupt is							errupt is
	enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. Thi						outine. This	
	bit is not aut	omatically o	cleared by h	ardware an	d must be o	cleared by s	software.	
Bit0:	CCF0: PCA	0 Module 0	Capture/Co	mpare Flag].			
	This bit is se	t by hardwa	are when a	match or ca	pture occu	rs. When th	e CCF inte	rrupt is
	enabled, set	ting this bit	causes the	CPU to veo	ctor to the C	CF Interrup	ot service r	outine. This
	bit is not aut	omatically o	heared by h	laroware an	iu must de (cleared by s	sonware.	

SFR Definition 24.1. PCA0CN: PCA Control

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories products shall under no circumstances be used in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com