

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f047-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings*

Parameter	Conditions	Min	Тур	Мах	Units				
Ambient temperature under bias		-55	—	125	°C				
Storage Temperature		-65	—	150	°C				
Voltage on any Pin (except V _{DD} , Port I/O, and JTAG pins) with respect to DGND		-0.3	—	V _{DD} + 0.3	V				
Voltage on any Port I/O Pin, /RST, and JTAG pins with respect to DGND		-0.3		5.8	V				
Voltage on V _{DD} with respect to DGND		-0.3	—	4.2	V				
Maximum Total current through V _{DD} , AV+, DGND, and AGND		—	—	800	mA				
Maximum output current sunk by any Port pin		—	—	100	mA				
Maximum output current sunk by any other I/O pin		—	—	50	mA				
Maximum output current sourced by any Port pin		_	—	100	mA				
Maximum output current sourced by any other I/O pin		—	—	50	mA				
Inviaximum output current sourced by any other I/O pin — 50 mA *Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Due to special I/O design requirements of the High Voltage Difference Amplifier, undue electrical over-voltage stress (i.e., ESD) experienced by these pads may result in impedance degradation of these inputs (HVAIN+ and HVAIN–). For this reason, care should be taken to ensure proper handling and use as typically required to									

grounding straps, over-voltage protection in end-applications, etc.)

SFR Definition 5.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
							SFR Address SFR Page	: 0xE8 : 0			
Bit7:	AD0EN: AD 0: ADC0 Di	DC0 Enable isabled. AD	e Bit. IC0 is in low	-power shu	tdown.						
Bit6:	1: ADC0 Enabled. ADC0 is active and ready for data conversions. AD0TM: ADC Track Mode Bit 0: When the ADC is enabled, tracking is continuous unless a conversion is in process.										
Bit5:	0: vvnen the ADC is enabled, tracking is continuous unless a conversion is in process 1: Tracking Defined by AD0CM1-0 bits AD0INT: ADC0 Conversion Complete Interrupt Flag.										
	0: ADC0 ha 1: ADC0 ha	as not complete	pleted a data	a conversio nversion.	n since the	ast time this	flag was cle	eared.			
Bit4:	AD0BUSY: Read:	ADC0 Bus	y Bit.								
	0: ADC0 Co to logic 1 o	onversion i n the falling	s complete o g edge of AE	or a convers 00BUSY.	sion is not c	urrently in pro	ogress. AD(INT is set			
	1: ADC0 Co Write:	onversion i	s in progres	S.							
	0: No Effec	:t. ADC0 Con	version if AD	00CM1-0 =	00b						
Bit3-2:	AD0CM1-0	: ADC0 Sta	art of Conve	rsion Mode	Select.						
	00: ADC0 c	conversion	initiated on	every write	of '1' to ADO	BUSY.					
	01: ADC0 c 10: ADC0 c	conversion conversion	initiated on initiated on	overflow of risina edae	Timer 3. of external	CNVSTR0.					
	11: ADC0 c	onversion	initiated on o	overflow of	Timer 2.						
	00: Trackin	g starts wit	h the write c	of '1' to AD0	BUSY and I	asts for 3 SA	AR clocks, fo	ollowed by			
	01: Trackin	g started b	y the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks, followe	d by con-			
	10: ADC0 t CNVSTR0	racks only edge.	when CNVS	TR0 input i	s logic low;	conversion s	tarts on risi	ng			
	11: Trackin version.	g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR cloo	cks, followe	d by con-			
Bit1:	AD0WINT: . This bit mu	ADC0 Wind	dow Compa ed by softwa	re Interrupt are.	Flag.						
	0: ADC0 W 1: ADC0 W	′indow Con ′indow Con	nparison Dat nparison Dat	ta match ha ta match ha	as not occur as occurred.	red since this	s flag was la	st cleared.			
Bit0:	AD0LJST: A 0: Data in A	ADC0 Left ADC0H:AD	Justify Selec C0L register	ot. Ts are right-	justified.						
	1: Data in A	ADC0H:AD	C0L register	s are left-ju	istified.						

5.4. ADC0 Programmable Window Detector

The ADC0 Programmable Window Detector continuously compares the ADC0 output to user-programmed limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in ADC0CN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC0 Greater-Than and ADC0 Less-Than registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Reference comparisons are shown starting on page 63. Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.

SFR Definition 5.10. ADC0GTL: ADC0 Greater-Than Data Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
								11111111		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	SFR Address: 0xC4 SFR Page: 0									
Bits7-0:	Low byte of ADC0 Greater-Than Data Word.									

SFR Definition 5.11. ADC0LTH: ADC0 Less-Than Data High Byte

Table 5.2. 12-Bit ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units						
DC Accuracy											
Resolution			12		bits						
Integral Nonlinearity		—	—	±1	LSB						
Differential Nonlinearity	Guaranteed Monotonic	—	—	±1	LSB						
Offset Error	Note 1	—	0.5±3	—	LSB						
Full Scale Error	Differential mode; See Note 1	—	0.4±3	—	LSB						
Offset Temperature Coefficient		<u> </u>	±0.25	—	ppm/°C						
Dynamic Performance (10 kHz sine-wave input, 0 to 1 dB below Full Scale, 100 ksps)											
Signal-to-Noise Plus Distortion		66	_	—	dB						
Total Harmonic Distortion	Up to the 5 th harmonic	_	-75	_	dB						
Spurious-Free Dynamic Range		<u> </u>	80	—	dB						
Conversion Rate											
Maximum SAR Clock Frequency			_	2.5	MHz						
Conversion Time in SAR Clocks		16			clocks						
Track/Hold Acquisition Time		1.5	—	—	μs						
Throughput Rate	-	—	_	100	ksps						
Analog Inputs		1	1								
Input Voltage Range	Single-ended operation	0	_	VREF	V						
Common-mode Voltage Range	Differential operation	AGND		AV+	V						
Input Capacitance		_	10	—	pF						
Temperature Sensor	1	-!									
Nonlinearity	Notes 1, 2	—	±1	—	°C						
Absolute Accuracy	Notes 1, 2	_	±3	—	°C						
Gain	Notes 1, 2	_	2.86 ±0.034	_	mV/°C						
Offset	Notes 1, 2 (Temp = 0 °C)	_	0.776 ±0.009	_	V						
Power Specifications		-									
Power Supply Current (AV+ sup- plied to ADC)	Operating Mode, 100 ksps	_	450	900	μΑ						
Power Supply Rejection		—	±0.3	—	mV/V						
 Notes: 1. Represents one standard devi 2. Includes ADC offset, gain, and 	ation from the mean. I linearity variations.										

Table 5.3. High-Voltage Difference Amplifier Electrical Characteristics V_{DD} = 3.0 V, AV+ = 3.0 V, V_{REF} = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units	
Analog Inputs	1					
Differential range	peak-to-peak			60	V	
Common Mode Range	(HVAIN+) - (HVAIN-) = 0 V	-60		+60	V	
Analog Output						
Output Voltage Range		0.1		2.9	V	
DC Performance						
Common Mode Rejection Ratio	Vcm= -10 V to +10 V, Rs=0	44	52	—	dB	
Offset Voltage		—	±3	—	mV	
Noise	HVCAP floating	—	500	—	nV/rtHz	
Nonlinearity	G = 1	—	72	—	dB	
Dynamic Performance						
Small Signal Bandwidth	G = 0.05	_	3	—	MHz	
Small Signal Bandwidth	G = 1	—	150	—	kHz	
Slew Rate		—	2	—	V/µs	
Settling Time	0.01%, G = 0.05, 10 V step	—	10	—	μs	
Input/Output Impedance						
Differential (HVAIN+) input		_	105	—	kΩ	
Differential (HVAIN-) input		—	98	—	kΩ	
Common Mode input		_	51	—	kΩ	
HVCAP		—	5	—	kΩ	
Power Specification						
Quiescent Current		—	450	1000	μA	

					AMX2	AD2-0			
		000	001	010	011	100	101	110	111
	0000	P1.0	P1.1	P1.2	P1.3	P1.4	P1.5	P1.6	P1.7
	0001	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	P1.2	P1.3	P1.4	P1.5	P1.6	P1.7
	0010	P1.0	P1.1	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	P1.4	P1.5	P1.6	P1.7
	0011	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	P1.4	P1.5	P1.6	P1.7
	0100	P1.0	P1.1	P1.2	P1.3	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	P1.6	P1.7
	0101	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	P1.2	P1.3	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	P1.6	P1.7
-0-	0110	P1.0	P1.1	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	P1.6	P1.7
Bits (0111	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	P1.6	P1.7
2CF	1000	P1.0	P1.1	P1.2	P1.3	P1.4	P1.5	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)
AMX	1001	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	P1.2	P1.3	P1.4	P1.5	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)
	1010	P1.0	P1.1	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	P1.4	P1.5	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)
	1011	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	P1.4	P1.5	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)
	1100	P1.0	P1.1	P1.2	P1.3	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)
	1101	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	P1.2	P1.3	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)
	1110	P1.0	P1.1	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)
	1111	+(P1.0) -(P1.1)	-(P1.0) +(P1.1)	+(P1.2) -(P1.3)	-(P1.2) +(P1.3)	+(P1.4) -(P1.5)	-(P1.4) +(P1.5)	+(P1.6) -(P1.7)	-(P1.6) +(P1.7)

Table 7.1. AMUX Selection Chart (AMX2AD2-0 and AMX2CF3-0 bits)

7.3. ADC2 Programmable Window Detector

The ADC2 Programmable Window Detector continuously compares the ADC2 output to user-programmed limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD2WINT in ADC2CN) can also be used in polled mode. The reference words are loaded into the ADC2 Greater-Than and ADC2 Less-Than registers (ADC2GT and ADC2LT). Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC2GT and ADC2LT registers.

SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data

SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data

7.3.1. Window Detector in Single-Ended Mode

Figure 7.5 shows two example window comparisons for Single-ended mode, with ADC2LT = 0x20 and ADC2GT = 0x10. In Single-ended mode, the codes vary from 0 to VREF x (255/256) and are represented as 8-bit unsigned integers. In the left example, an AD2WINT interrupt will be generated if the ADC2 conversion word (ADC2) is within the range defined by ADC2GT and ADC2LT (if 0x10 < ADC2 < 0x20). In the right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0x20). In the right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0x10 or ADC2 > 0x20).

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
-	-	-	AD0VRS	AD2VRS	TEMPE	BIASE	REFBE	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
	SFR Address: 0xD1 SFR Page: 0											
Bits7-5:	UNUSED. Read = 000b; Write = don't care.											
Bit4:	AD0VRS: AD	OC0 Voltage	e Reference	e Select								
	0: ADC0 volt	0: ADC0 voltage reference from VREF0 pin.										
D'10	1: ADC0 volt	age referer	nce from DA	C0 output (C8051F04	0/2 only).						
Bit3:	AD2VRS: AL	JC2 Voltage	e Reference	e Select (C8	051F040/2	oniy).						
	1: ADC2 Volt	aye referer	1CE II OIII VF	κ⊑r∠ μm. ′+								
Bit2:	TEMPE: Ten	nperature S	ensor Enat	ble Bit.								
	0: Internal Te	emperature	Sensor Off									
	1: Internal Te	emperature	Sensor On									
Bit1:	BIASE: ADC	/DAC Bias	Generator I	Enable Bit. ((Must be '1'	if using AD	C or DAC).					
	0: Internal B	ias Genera	tor Off.									
D ''(0	1: Internal Bi	ias Generai	tor On.									
BItU:	REFBE: Inte	rnal Refere	nce Buffer	Enable Bit.								
	1: Internal R	elerence B	ullei Oll. uffer On Int	tornal voltar	o reference	a is drivon c	n the V/DEE	- nin				
								pin.				

SFR Definition 9.1. REF0CN: Reference Control

Figure 12.4. SFR Page Stack While Using SFR Page 0x0F To Access Port 5

While CIP-51 executes in-line code (writing values to Port 5 in this example), an ADC2 Window Comparator Interrupt occurs. The CIP-51 vectors to the ADC2 Window Comparator ISR and pushes the current SFR Page value (SFR Page 0x0F) into SFRNEXT in the SFR Page Stack. The SFR page needed to access ADC2's SFR's is then automatically placed in the SFRPAGE register (SFR Page 0x02). SFRPAGE is considered the "top" of the SFR Page Stack. Software can now access the ADC2 SFR's. Software may switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the ADC2 ISR to access SFR's that are not on SFR Page 0x02. See Figure 12.5.

A D D R E S S	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)	SFR P A G E
F8	SPIOCN CANOCN P7	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	PCA0CPL1	PCA0CPH1	WDTCN (ALL PAGES)	0 1 2 3 F
F0	B (ALL PAGES)						EIP1 (ALL PAGES)	EIP2 (ALL PAGES)	0 1 2 3 F
E8	ADC0CN ADC2CN P6	PCA0CPL2	PCA0CPH2	PCA0CPL3	PCA0CPH3	PCA0CPL4	PCA0CPH4	RSTSRC	0 1 2 3 F
E0	ACC (ALL PAGES)	PCA0CPL5	PCA0CPH5	XBR2	XBR3		EIE1 (ALL PAGES)	EIE2 (ALL PAGES)	0 1 2 3 F
D8	PCA0CN CAN0DATL P5	PCA0MD CAN0DATH	PCA0CPM0 CAN0ADR	PCA0CPM1 CAN0TST	PCA0CPM2	PCA0CPM3	PCA0CPM4	PCA0CPM5	0 1 2 3 F
D0	PSW (ALL PAGES)	REF0CN	DAC0L DAC1L	DAC0H DAC1H	DAC0CN DAC1CN		HVA0CN		0 1 2 3 F
C8	TMR2CN TMR3CN TMR4CN P4	TMR2CF TMR3CF TMR4CF	RCAP2L RCAP3L RCAP4L	RCAP2H RCAP3H RCAP4H	TMR2L TMR3L TMR4L	TMR2H TMR3H TMR4H		SMB0CR	0 1 2 3 F
C0	SMB0CN CAN0STA	SMB0STA	SMB0DAT	SMB0ADR	ADC0GTL ADC2GT	ADC0GTH	ADC0LTL ADC2LT	ADC0LTH	0 1 2 3 F
B8	IP (ALL PAGES)	SADEN0	AMX0CF AMX2CF	AMX0SL AMX2SL	ADC0CF ADC2CF	AMX0PRT	ADC0L ADC2	ADC0H	0 1 2 3 F
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)	

Table 12.2. Special Function Register (SFR) Memory Map

12.17. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped. Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. SFR Definition 12.18 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and put into low power mode. Digital peripherals, such as timers or serial buses, draw little power whenever they are not in use. Turning off the oscillator saves even more power, but requires a reset to restart the MCU.

12.17.1.Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt or /RST is asserted. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the WDT will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to **Section 13.7** for more information on the use and configuration of the WDT.

Note: Any instruction that sets the IDLE bit should be immediately followed by an instruction that has 2 or more opcode bytes. For example:

```
// in 'C':
PCON |= 0x01;  // set IDLE bit
PCON = PCON;  // ... followed by a 3-cycle dummy instruction
; in assembly:
ORL PCON, #01h ; set IDLE bit
MOV PCON, PCON ; ... followed by a 3-cycle dummy instruction
```

If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from IDLE mode when a future interrupt occurs.

C8051F040/1/2/3/4/5/6/7

SFR Definition 14.1. OSCICL: Internal Oscillator Calibration

SFR Definition 14.2. OSCICN: Internal Oscillator Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	Reset Value			
IOSCEN	I IFRDY	RDY IFCN1		IFCN1	IFCN0	11000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Address SFR Page	s: 0x8A e: F			
Bit7: IOSCEN: Internal Oscillator Enable Bit. 0: Internal Oscillator Disabled 1: Internal Oscillator Enabled Bit6: IFRDY: Internal Oscillator Frequency Ready Flag.											
	0: Internal O 1: Internal O	scillator is r scillator is r	not running unning at p	at programi rogrammed	ned freque frequency.	ncy.					
Bits5-2:	Reserved.		5 - F	- 0							
Bits1-0:	IFCN1-0: Inte	ernal Oscill	ator Freque	ency Control	Bits.						
	00: SYSCLK	derived fro	m Internal	Oscillator di	vided by 8.						
	01: SYSCLK	derived fro	m Internal	Oscillator di	vided by 4.						
	10: SYSCLK	derived fro	m Internal	Oscillator di	vided by 2.						
	11: SYSCLK	derived fro	m Internal (Oscillator di	vided by 1.						

16.2. Configuring the External Memory Interface

Configuring the External Memory Interface consists of five steps:

- 1. Select EMIF on Low Ports (P3, P2, P1, and P0) or High Ports (P7, P6, P5, and P4).
- 2. Configure the Output Modes of the port pins as either push-pull or open-drain.
- 3. Select Multiplexed mode or Non-multiplexed mode.
- 4. Select the memory mode (on-chip only, split mode without bank select, split mode with bank select, or off-chip only).
- 5. Set up timing to interface with off-chip memory or peripherals.

Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition 16.2.

16.3. Port Selection and Configuration

The External Memory Interface can appear on Ports 3, 2, 1, and 0 (C8051F04x devices) or on Ports 7, 6, 5, and 4 (C8051F040/2/4/6 devices only), depending on the state of the PRTSEL bit (EMI0CF.5). If the lower Ports are selected, the EMIFLE bit (XBR2.1) must be set to a '1' so that the Crossbar will skip over P0.7 (/WR), P0.6 (/RD), and, if multiplexed mode is selected, P0.5 (ALE). For more information about the configuring the Crossbar, see Section "17.1. Ports 0 through 3 and the Priority Crossbar Decoder" on page 204.

The External Memory Interface claims the associated Port pins for memory operations ONLY during the execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port pins reverts to the Port latches or to the Crossbar (on Ports 3, 2, 1, and 0). See Section "17. Port Input/ Output" on page 203 for more information about the Crossbar and Port operation and configuration. The Port latches should be explicitly configured as push-pull to 'park' the External Memory Interface pins in a dormant state, most commonly by setting them to a logic 1.

During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the drivers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases, the output modes of all EMIF pins should be configured for push-pull mode. See Section "17.1.2. Configuring the Output Modes of the Port Pins" on page 206.

16.4.2. Non-multiplexed Configuration

In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Nonmultiplexed Configuration is shown in Figure 16.2. See **Section "16.6.1. Non-multiplexed Mode" on page 196** for more information about Non-multiplexed operation.

Figure 16.2. Non-multiplexed Configuration Example

16.5.3. Split Mode with Bank Select

When EMI0CF.[3:2] are set to '10', the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the 4k boundary will access on-chip XRAM space.
- Effective addresses above the 4k boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is onchip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower 8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are driven in "Bank Select" mode.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is onchip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

16.5.4. External Only

When EMI0CF[3:2] are set to '11', all MOVX operations are directed to off-chip space. On-chip XRAM is not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the 4k boundary.

- 8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven (identical behavior to an off-chip access in "Split Mode without Bank Select" described above). This allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower 8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

16.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, / RD and

/WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in SFR Definition 16.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for /RD or /WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time of an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 SYSCLKs for /ALE, 1 for /RD or /WR + 4 SYSCLKs). The programmable setup and hold times default to the maximum delay settings after a reset.

Table 16.1 lists the AC parameters for the External Memory Interface, and Figure 16.4 through Figure 16.9 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

16.6.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '101' or '111'.

Nonmuxed 8-bit WRITE without Bank Select

/WR

P0.7/P4.7

P0.7/P4.7

20.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will wait until the byte is transferred before loading it with the transmit buffer's contents.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 20.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in this mode, and does not get mapped to an external port pin through the crossbar. Since there is no way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. Figure 20.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

20.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

Note: All of the following interrupt bits must be cleared by software.

- 1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- 2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- 3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- 4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

21.1.4. Mode 3: 9-Bit UART, Variable Baud Rate

Mode 3 uses the Mode 2 transmission protocol with the Mode 1 baud rate generation. Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The baud rate is derived from Timer 1 or Timer 2, 3, or 4 overflows, as defined by Equation 21.1 and Equation 21.3. Multiprocessor communications and hardware address recognition are supported, as described in **Section 21.2**.

21.2. Multiprocessor Communications

Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit and the built-in UART0 address recognition hardware. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0. UART0 will recognize as "valid" (i.e., capable of causing an interrupt) **two** types of addresses: (1) a *masked* address and (2) a *broadcast* address **at any given time**. Both are described below.

22.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB81 (SCON1.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB81 (SCON1.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to '1'. After the stop bit is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met: (1) RI1 must be logic 0, and (2) if MCE1 is logic 1, the 9th bit must be logic 1 (when MCE1 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF1, the ninth bit is stored in RB81, and the RI1 flag is set to '1'. A UART1 interrupt will occur if enabled when either TI1 or RI1 is set to '1'.

Figure 22.5. 9-Bit UART Timing Diagram

280

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
S1MOD	E -	MCE1	REN1	TB81	RB81	TI1	RI1	01000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
							SFR Addres SFR Pag	s: 0x98 e: 1				
Bit7:	S1MODE: S	erial Port 1	Operation	Mode.								
	0: Mode 0: 8-bit UART with Variable Baud Rate											
	1: Mode 1: 9-bit UART with Variable Baud Rate											
Bit6:	UNUSED. R	Read = 1b. V	Vrite = don'	t care.								
Bit5:	MCE1: Multi	iprocessor (Communica	tion Enable								
	I he function	of this bit is	s dependen	it on the Se	rial Port 0 C	Operation M	ode.					
		ecks for vali	a slop bil. Eston hit is	ianored								
	0. L	11 will only	he activated	d if stop hit	is logic leve	1						
	Mode 1: Mu	Itiprocessor	Communic	ations Enal	ole.							
	0: L	, ogic level o	f ninth bit is	ignored.								
	1: R	l1 is set an	d an interru	pt is genera	ated only wh	nen the nint	h bit is logi	c 1.				
Bit4:	REN1: Rece	eive Enable										
	This bit enal	bles/disable	s the UART	receiver.								
	0: UARI1 re	eception dis	abled.									
Dit2	T: UART1 fe	Transmissi	abled.									
DILJ.	The logic lev	riansmissi el of this hi	un dit. twill he ass	ianed to the	ninth trans	mission hit	in 9_hit I I A	RT Mode It				
	is not used i	n 8-bit UAR	T Mode S	Set or cleare	ed by software	are as requi	ired	itti mode. it				
Bit2:	RB81: Ninth	Receive Bi	t.									
	RB81 is ass	igned the va	alue of the S	STOP bit in	Mode 0; it i	is assigned	the value of	of the 9th				
	data bit in M	lode 1.				•						
Bit1:	TI1: Transm	it Interrupt F	lag.									
	Set by hard	ware when a	a byte of da	ita has beei	n transmitte	d by UART	1 (after the	8th bit in 8-				
	bit UART Mo	ode, or at th	e beginning	j of the SIC	OP bit in 9-b	It UART MO	de). When	the UARI1				
	routine This	hit must be	ling this bit	causes the	CPU lo veo	tor to the U	ARTIMUE	rupt service				
Bit0 [.]	RI1: Receive	e Interrunt F	lan	anually by s	Soliwale.							
Dito.	Set to '1' by	hardware v	/hen a byte	of data has	s been rece	ived by UAI	RT1 (set at	the STOP				
	bit sampling	time). Whe	n the UAR	T1 interrupt	is enabled,	setting this	bit to '1' ca	auses the				
	CPU to vect	or to the UA	RT1 interru	upt service	routine. This	s bit must b	e cleared r	nanually by				
	software.											

SFR Definition 22.1. SCON1: Serial Port 1 Control

