
Microchip Technology - ATMEGA645-16AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 53

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega645-16au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega645-16au-4392123
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega325/3250/645/6450
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

Note: 1.

4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

6. Capacitive touch sensing
The Atmel®QTouch® Library provides a simple to use solution to realize touch sensitive inter-
faces on most Atmel AVR® microcontrollers. The QTouch Library includes support for the
QTouch and QMatrix® acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library
for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch chan-
nels and sensors, and then calling the touch sensing API’s to retrieve the channel information
and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the
Atmel QTouch Library User Guide - also available for download from the Atmel website.
9
2570N–AVR–05/11

www.atmel.com/qtouchlibrary
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf

ATmega325/3250/645/6450
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the Atmel
ATmega325/3250/645/6450 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

7.3 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.
11
2570N–AVR–05/11

ATmega325/3250/645/6450
7.4 Status Register
The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

7.4.1 SREG – AVR Status Register
The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
12
2570N–AVR–05/11

ATmega325/3250/645/6450
Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is
written to logic one. See “Asynchronous Operation of Timer/Counter2” on page 141 for further
description on selecting external clock as input instead of a 32kHz crystal.

9.9 System Clock Prescaler
The Atmel ATmega325/3250/645/6450 system clock can be divided by setting the “CLKPR –
Clock Prescale Register” on page 33. This feature can be used to decrease power consumption
when the requirement for processing power is low. This can be used with all clock source
options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clkI/O,
clkADC, clkCPU, and clkFLASH are divided by a factor as shown in Table 9-11 on page 33.

9.9.1 Switching Time
When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occur in the clock system and that no intermediate frequency is higher than neither the
clock frequency corresponding to the previous setting, nor the clock frequency corresponding to
the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU’s clock frequency. Hence, it is not possible to determine the
state of the prescaler – even if it were readable, and the exact time it takes to switch from one
clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the
new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the
previous clock period, and T2 is the period corresponding to the new prescaler setting.

9.10 Register Description

9.10.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value
The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in Table 28-2 on page 300. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 28-
2 on page 300. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value
32
2570N–AVR–05/11

ATmega325/3250/645/6450
When the BOOTRST Fuse is programmed, the Boot section size set to 4K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

;

.org 0x3800/0x7800
0x3800/0x7800 jmp RESET ; Reset handler
0x3802/0x7802 jmp EXT_INT0 ; IRQ0 Handler

0x3804/0x7804 jmp PCINT0 ; PCINT0 Handler

... ;

0x382C/0x782C jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x382E/0x782ERESET:ldir16,high(RAMEND); Main program start

0x382F/0x782F out SPH,r16 ; Set Stack Pointer to top of RAM

0x3830/0x7830 ldi r16,low(RAMEND)

0x3831/0x7831 out SPL,r16
0x3832/0x7832 sei ; Enable interrupts

0x3833/0x7833 <instr> xxx

12.2 Moving Interrupts Between Application and Boot Space
The MCU Control Register controls the placement of the Interrupt Vector table.

12.3 Register Description

12.3.1 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support – Read-While-Write
Self-Programming” on page 251 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
53
2570N–AVR–05/11

ATmega325/3250/645/6450
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 6– PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT24..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 5– PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 4– PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

13.2.4 PCMSK3 – Pin Change Mask Register 3(1)

• Bit 6:0 – PCINT30:24: Pin Change Enable Mask 30:24
Each PCINT30:24-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT30:24 is set and the PCIE3 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT30:24 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

13.2.5 PCMSK2 – Pin Change Mask Register 2(1)

Bit 7 6 5 4 3 2 1 0

(0x73) – PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 PCMSK3

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial
Value

0 0 0 0 0 0 0 0
58
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 15-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0A) from the Waveform
Generator if either of the COM0A1:0 bits are set. However, the OC0A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC0A pin (DDR_OC0A) must be set as output before the OC0A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0A state before the
output is enabled. Note that some COM0A1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 96.

15.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM0A1:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COM0A1:0 = 0 tells the Waveform Generator that no action on
the OC0A Register is to be performed on the next compare match. For compare output actions
in the non-PWM modes refer to Table 15-3 on page 97. For fast PWM mode, refer to Table 15-4
on page 97, and for phase correct PWM refer to Table 15-5 on page 98.

A change of the COM0A1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC0A strobe bits.

15.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM01:0) and Compare Output
mode (COM0A1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM0A1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COM0A1:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 89.).

For detailed timing information refer to Figure 15-8, Figure 15-9, Figure 15-10 and Figure 15-11
in “Timer/Counter Timing Diagrams” on page 95.

PORT

DDR

D Q

D Q

OCn
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O
90
2570N–AVR–05/11

ATmega325/3250/645/6450
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 16-1. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 1.

16.1 Register Description

16.1.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR2 and PSR10 bits is kept, hence keeping the corresponding pres-
caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and
can be configured to the same value without the risk of one of them advancing during configura-
tion. When the TSM bit is written to zero, the PSR2 and PSR10 bits are cleared by hardware,
and the Timer/Counters start counting simultaneously.

• Bit 0 – PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1
and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers.

PSR10

Clear

clkT1 clkT0

T1

T0

clkI/O

Synchronization

Synchronization

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSR2 PSR10 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
101
2570N–AVR–05/11

ATmega325/3250/645/6450
The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant
bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

Note: 1. See “About Code Examples” on page 9.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

20.7.2 Receiving Frames with 9 Data Bits
If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8n bit in UCSRnB
before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn Sta-
tus Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn I/O
location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,
DORn and UPEn bits, which all are stored in the FIFO, will change.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSR0A, RXC0

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR0

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSR0A & (1<<RXC0)))

;

/* Get and return received data from buffer */

return UDR0;

}

168
2570N–AVR–05/11

ATmega325/3250/645/6450
with Auto triggering from a source other than the ADC Conversion Complete, each conversion
will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after
every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 23-1.

Figure 23-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 23-5. ADC Timing Diagram, Single Conversion

Figure 23-6. ADC Timing Diagram, Auto Triggered Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update
205
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 23-9. ADC Power Connections

23.6.3 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

Figure 23-10. Offset Error

VCC

100nF

Analog Ground Plane

(ADC0) PF0

(ADC7) PF7

(ADC1) PF1

(ADC2) PF2

(ADC3) PF3

(ADC4) PF4

(ADC5) PF5

(ADC6) PF6

AREF

GND

AVCC

52

53

54

55

56

57

58

59

60

6161

6262

6363

6464

1

51

D
N

C

PA0

10μΗ

GND

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error
209
2570N–AVR–05/11

ATmega325/3250/645/6450
• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is
latched onto the parallel output from the Shift Register path in the Update-IR state. The Exit-
IR, Pause-IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift
Data Register – Shift-DR state. While in this state, upload the selected Data Register
(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI
input at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must
be held low during input of all bits except the MSB. The MSB of the data is shifted in when
this state is left by setting TMS high. While the Data Register is shifted in from the TDI pin,
the parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the
TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data
Register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”
on page 223.

24.5 Using the Boundary-scan Chain
A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1
(JTAG) Boundary-scan” on page 224.

24.6 Using the On-chip Debug System
As shown in Figure 24-1, the hardware support for On-chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal peripheral
units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range
Break Point”).
221
2570N–AVR–05/11

ATmega325/3250/645/6450
64 PG1.Control

63 PG1.Pull-up_Enable

62 PC0.Data Port C

61 PC0.Control

60 PC0.Pull-up_Enable

59 PC1.Data

58 PC1.Control

57 PC1.Pull-up_Enable

56 PC2.Data

55 PC2.Control

54 PC2.Pull-up_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pull-up_Enable

50 PC4.Data

49 PC4.Control

48 PC4.Pull-up_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pull-up_Enable

44 PC6.Data

43 PC6.Control

42 PC6.Pull-up_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pull-up_Enable

38 PG2.Data Port G

37 PG2.Control

36 PG2.Pull-up_Enable

35 PA7.Data Port A

34 PA7.Control

33 PA7.Pull-up_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pull-up_Enable

29 PA5.Data

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
242
2570N–AVR–05/11

ATmega325/3250/645/6450
27. Memory Programming

27.1 Program And Data Memory Lock Bits
The Atmel ATmega325/3250/645/6450 provides six Lock bits which can be left unprogrammed
(“1”) or can be programmed (“0”) to obtain the additional features listed in Table 27-2. The Lock
bits can only be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 27-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 27-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is
disabled in Parallel and Serial Programming mode. The
Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and
EEPROM is disabled in Parallel and Serial Programming
mode. The Boot Lock bits and Fuse bits are locked in both
Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.
265
2570N–AVR–05/11

ATmega325/3250/645/6450
Notes: 1. Not all instructions are applicable for all parts
2. a = address
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and

Page size.
6. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 27-12.

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions

Write Program Memory Page $4C adr MSB adr LSB $00

Write EEPROM Memory $C0 0000 00aa
/

0000 0aaa

aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa
/

0000 0aaa

aaaa aa00
/

aaaa a000

$00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in

Table 27-15. Serial Programming Instruction Set

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4
283
2570N–AVR–05/11

ATmega325/3250/645/6450
8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to
Table 27-12 on page 279).

27.8.21 Programming the Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer
to Table 27-12 on page 279).

27.8.22 Reading the Fuses and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

27.8.23 Reading the Signature Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

27.8.24 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

Read the calibration byte using programming instruction 10c.
296
2570N–AVR–05/11

ATmega325/3250/645/6450
28.5 System and Reset Characteristics

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is
tested down to VCC = VBOT during the production test. This guarantees that a Brown-Out Reset will occur before VCC drops to
a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 10 for Atmel ATmega325/3250/645/6450 and BODLEVEL = 01 for Atmel ATmega325/3250/645/6450V.

Table 28-4. Reset, Brown-out and Internal Voltage Reference Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT
(1)

Power-on Reset Threshold Voltage (rising) TA = -40°C to 85°C 0.7 1.0 1.4 V

Power-on Reset Threshold Voltage (falling)(1) TA = -40°C to 85°C 0.05 0.9 1.3 V

VPSR Power-on Slope Rate 0.01 4.5 V/ms

VRST RESET Pin Threshold Voltage VCC = 3V 0.2VCC 0.85VCC V

tRST Minimum pulse width on RESET Pin VCC = 3V 800 ns

VHYST Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs

VBG Bandgap reference voltage VCC= 2.7V, TA = 25°C 1.0 1.1 1.2 V

tBG Bandgap reference start-up time VCC= 2.7V, TA = 25°C 40 70 µs

IBG Bandgap reference current consumption VCC= 2.7V, TA = 25°C 15 µA

Table 28-5. BODLEVEL Fuse Coding(1)

BODLEVEL 2:0 Fuses Min VBOT Typ VBOT Max VBOT Units

11 BOD Disabled

10 1.7 1.8 2.0

V01 2.5 2.7 2.9

00 4.1 4.3 4.5
301
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 28-5. SPI Interface Timing Requirements (Slave Mode)

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16
303
2570N–AVR–05/11

ATmega325/3250/645/6450
29.7 Pin Pull-up

Figure 29-15. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 29-16. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5

VIO (V)

I IO
 (u

A
)

85°C
25°C

-40°C

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

VIO (V)

I IO
 (u

A
)

85°C 25°C

-40°C
314
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 29-35. I/O Pin Input Hysteresis vs. VCC

Figure 29-36. Reset Input Threshold Voltage vs. VCC (VIH,Reset Pin Read as “1”)

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

85°C

25°C

-40°C

In
pu

t H
ys

te
re

si
s

(V
)

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

85°C
25°C
-40°C
324
2570N–AVR–05/11

