
Microchip Technology - ATMEGA6450V-8AI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 68

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega6450v-8ai

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega6450v-8ai-4429624
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega325/3250/645/6450
Figure 1-2. Pinout ATmega325/645

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally con-
nected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If
the center pad is left unconnected, the package might loosen from the board.

PC0

V
C

C

G
N

D

P
F

0
(A

D
C

0)

P
F

7
(A

D
C

7/
T

D
I)

P
F

1
(A

D
C

1)

P
F

2
(A

D
C

2)

P
F

3
(A

D
C

3)

P
F

4
(A

D
C

4/
T

C
K

)

P
F

5
(A

D
C

5/
T

M
S

)

P
F

6
(A

D
C

6/
T

D
O

)

A
R

E
F

G
N

D

A
V

C
C

17

61 60

18

59

20

58

19 21

57

22

56

23

55

24

54

25

53

26

52

27

51

2928

50 49
323130

(RXD/PCINT0) PE0

(TXD/PCINT1) PE1

(XCK/AIN0/PCINT2) PE2

(AIN1/PCINT3) PE3

(USCK/SCL/PCINT4) PE4

 (DI/SDA/PCINT5) PE5

(DO/PCINT6) PE6

 (CLKO/PCINT7) PE7

(SCK/PCINT9) PB1

 (MOSI/PCINT10) PB2

 (MISO/PCINT11) PB3

(OC0A/PCINT12) PB4

(O
C

2A
/P

C
IN

T
15

)
P

B
7

 (
T

1)
 P

G
3

(OC1B/PCINT14) PB6

(T
0)

 P
G

4

 (OC1A/PCINT13) PB5

PC1

PG0

P
D

7

PC2

PC3

PC4

PC5

PC6

PC7

PA7

PG2

PA6

PA5

PA4

PA3

P
A

0

P
A

1

P
A

2
PG1

P
D

6

P
D

5

P
D

4

P
D

3

P
D

2

P
D

1
(I

N
T

0)

(I
C

P
1)

 P
D

0

X
T

A
L1

 (
T

O
S

C
1)

X
T

A
L2

 (
T

O
S

C
2)

R
E

S
E

T
/P

G
5

G
N

D

V
C

C

INDEX CORNER

(SS/PCINT8) PB0

2

3

1

4

5

6

7

8

9

10

11

12

13

14

16

15

64 63 62
47

46

48

45

44

43

42

41

40

39

38

37

36

35

33

34

ATmega325/645

DNC
3
2570N–AVR–05/11

ATmega325/3250/645/6450
This clock may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 9-7 on page 30. If selected, it will operate with no external components. During reset,
hardware loads the pre-programmed calibration value into the OSCCAL Register and thereby
automatically calibrates the RC Oscillator. The accuracy of this calibration is shown as Factory
calibration in Table 28-2 on page 300.

By changing the OSCCAL register from SW, see “OSCCAL – Oscillator Calibration Register” on
page 32, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as User calibration in Table 28-2 on page 300.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-
bration value, see the section “Calibration Byte” on page 268.

Note: 1. The device is shipped with this option selected.

2. The frequency ranges are preliminary values. Actual values are TBD.

3. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-8 on page 30.

Note: The device is shipped with this option selected.

9.6 External Clock
To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
9-3 on page 31. To run the device on an external clock, the CKSEL Fuses must be programmed
to “0000” (see Table 9-9 on page 30).

Table 9-7. Internal Calibrated RC Oscillator Operating Modes(1)(3)

Frequency Range(2) (MHz) CKSEL3..0

7.3 - 8.1 0010

Table 9-8. Start-up times for the internal calibrated RC Oscillator clock selection

Power Conditions
Start-up Time from Power-

down and Power-save
Additional Delay from

Reset (VCC = 5.0V) SUT1..0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4.1ms 01

Slowly rising power 6 CK 14CK + 65ms(Note:) 10

Reserved 11

Table 9-9. Crystal Oscillator Clock Frequency

Frequency Range CKSEL3..0

0 - 16MHz 0000
30
2570N–AVR–05/11

ATmega325/3250/645/6450
Table 12-2 on page 50 shows reset and Interrupt Vectors placement for the various combina-
tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations. This
is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in
the Boot section or vice versa.

Note: The Boot Reset Address is shown in Table 26-6 on page 262. For the BOOTRST Fuse “1” means
unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
Atmel ATmega325/3250/645/6450 is:

Table 12-2. Reset and Interrupt Vectors Placement(Note:)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Addre

ss

Label

s

Code Comments

0x000

0

jmp RESET ; Reset Handler

0x000

2

jmp EXT_INT0 ; IRQ0 Handler

0x000

4

jmp PCINT0 ; PCINT0 Handler

0x000

6

jmp PCINT1 ; PCINT1 Handler

0x000

8

jmp TIM2_COMP ; Timer2 Compare Handler

0x000

A

jmp TIM2_OVF ; Timer2 Overflow Handler

0x000

C

jmp TIM1_CAPT ; Timer1 Capture Handler

0x000

E

jmp TIM1_COMPA ; Timer1 CompareA Handler

0x001

0

jmp TIM1_COMPB ; Timer1 CompareB Handler

0x001

2

jmp TIM1_OVF ; Timer1 Overflow Handler

0x001

4

jmp TIM0_COMP ; Timer0 Compare Handler

0x001

6

jmp TIM0_OVF ; Timer0 Overflow Handler

0X001

8

jmp SPI_STC ; SPI Transfer Complete Handler

0x001

A

jmp USART_RXC ; USART RX Complete Handler

0x001

C

jmp USART_UDRE ; USART,UDR Empty Handler

0x001

E

jmp USART_TXC ; USART TX Complete Handler

0x002

0

jmp USI_STRT ; USI Start Condition Handler
50
2570N–AVR–05/11

ATmega325/3250/645/6450
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 6– PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT24..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 5– PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 4– PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

13.2.4 PCMSK3 – Pin Change Mask Register 3(1)

• Bit 6:0 – PCINT30:24: Pin Change Enable Mask 30:24
Each PCINT30:24-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT30:24 is set and the PCIE3 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT30:24 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

13.2.5 PCMSK2 – Pin Change Mask Register 2(1)

Bit 7 6 5 4 3 2 1 0

(0x73) – PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 PCMSK3

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial
Value

0 0 0 0 0 0 0 0
58
2570N–AVR–05/11

ATmega325/3250/645/6450
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

14.2.2 Toggling the Pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

14.2.3 Switching Between Input and Output
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 14-1 summarizes the control signals for the pin value.

14.2.4 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 14-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 14-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tpd,max and tpd,min respectively.

Table 14-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if ext. pulled
low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)
62
2570N–AVR–05/11

ATmega325/3250/645/6450
• XCK/AIN0/PCINT2 – Port E, Bit 2

XCK, USART External Clock. The Data Direction Register (DDE2) controls whether the clock is
output (DDE2 set) or input (DDE2 cleared). The XCK pin is active only when the USART oper-
ates in synchronous mode.

AIN0 – Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

PCINT2, Pin Change Interrupt Source 2: The PE2 pin can serve as an external interrupt source.

• TXD/PCINT1 – Port E, Bit 1
TXD0, UART0 Transmit pin.

PCINT1, Pin Change Interrupt Source 1: The PE1 pin can serve as an external interrupt source.

• RXD/PCINT0 – Port E, Bit 0
RXD, USART Receive pin. Receive Data (Data input pin for the USART). When the USART
Receiver is enabled this pin is configured as an input regardless of the value of DDE0. When the
USART forces this pin to be an input, a logical one in PORTE0 will turn on the internal pull-up.

PCINT0, Pin Change Interrupt Source 0: The PE0 pin can serve as an external interrupt source.

Table 14-9 and Table 14-10 relates the alternate functions of Port E to the overriding signals
shown in Figure 14-5 on page 66.

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

Table 14-9. Overriding Signals for Alternate Functions PE7:PE4

Signal
Name PE7/PCINT7

PE6/DO/
PCINT6

PE5/DI/SDA/
PCINT5

PE4/USCK/SCL/
PCINT4

PUOE 0 0 USI_TWO-WIRE USI_TWO-WIRE

PUOV 0 0 0 0

DDOE CKOUT(1) 0 USI_TWO-WIRE USI_TWO-WIRE

DDOV 1 0 (SDA +
PORTE5) •
DDE5

(USI_SCL_HOL
D + PORTE4) •
DDE4

PVOE CKOUT(1) USI_THREE-
WIRE

USI_TWO-WIRE
• DDE5

USI_TWO-WIRE
• DDE4

PVOV clkI/O DO 0 0

PTOE – – 0 USITC

DIEOE PCINT7 • PCIE0 PCINT6 • PCIE0 (PCINT5 •
PCIE0) + USISIE

(PCINT4 •
PCIE0) + USISIE

DIEOV 1 1 1 1

DI PCINT7 INPUT PCINT6 INPUT DI/SDA INPUT

PCINT5 INPUT

USCKL/SCL
INPUT

PCINT4 INPUT

AIO – – – –
73
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 17-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, “Alternate Functions of Port D” on page 71, and “Alternate
Functions of Port G” on page 76for Timer/Counter1 pin placement and description.

17.2.1 Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 104. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See “Out-

Clock Select

Timer/Counter
D

AT
A

 B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn
103
2570N–AVR–05/11

ATmega325/3250/645/6450
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 104.

17.7.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM11:0 bits settings define whether the OC1x pin is set, cleared or
toggled).

17.7.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

17.7.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
units, independent of whether the Timer/Counter is running or not. If the value written to TCNT1
equals the OCR1x value, the compare match will be missed, resulting in incorrect waveform
generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly,
do not write the TCNT1 value equal to BOTTOM when the counter is counting down.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.

17.8 Compare Match Output Unit
The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses
the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.
112
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 17-6. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

17.9.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=
115
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 18-3. Output Compare Unit, Block Diagram

The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is
disabled the CPU will access the OCR2A directly.

18.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the
OCF2A Flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare
match had occurred (the COM2A1:0 bits settings define whether the OC2A pin is set, cleared or
toggled).

18.5.2 Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

18.5.3 Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
counting down.

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnX1:0

bottom
133
2570N–AVR–05/11

ATmega325/3250/645/6450
• Bit 3 – AS2: Asynchronous Timer/Counter2
When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is
written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, and
TCCR2A might be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy
When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy
When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading
TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the tem-
porary storage register is read.

18.11.5 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable
When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the Timer/Coun-
ter 2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Interrupt
Flag Register – TIFR2.

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – – OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
146
2570N–AVR–05/11

ATmega325/3250/645/6450
The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.

20.7.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will
no longer override the normal function of the RxD port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

20.7.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See “About Code Examples” on page 9.

20.8 Asynchronous Data Reception
The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxD pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

20.8.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 20-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxD line is idle (i.e., no communication activity).

Assembly Code Example(1)

USART_Flush:

sbis UCSR0A, RXC0

ret

in r16, UDR0

rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSR0A & (1<<RXC0)) dummy = UDR0;

}

171
2570N–AVR–05/11

ATmega325/3250/645/6450
Note that the corresponding Data Direction Register to the pin must be set to one for enabling
data output from the Shift Register.

21.4.2 USISR – USI Status Register

The Status Register contains Interrupt Flags, line Status Flags and the counter value.

• Bit 7 – USISIF: Start Condition Interrupt Flag
When Two-wire mode is selected, the USISIF Flag is set (to one) when a start condition is
detected. When output disable mode or Three-wire mode is selected, the flag is set when the 4-
bit counter is incremented.

An interrupt will be generated when the flag is set while the USISIE bit in USICR and the Global
Interrupt Enable Flag are set. The flag will only be cleared by writing a logical one to the USISIF
bit. Clearing this bit will release the start detection hold of USCL in Two-wire mode.

A start condition interrupt will wake up the processor from all sleep modes.

• Bit 6 – USIOIF: Counter Overflow Interrupt Flag
This flag is set (one) when the 4-bit counter overflows (i.e., at the transition from 15 to 0). An
interrupt will be generated when the flag is set while the USIOIE bit in USICR and the Global
Interrupt Enable Flag are set. The flag will only be cleared if a one is written to the USIOIF bit.
Clearing this bit will release the counter overflow hold of SCL in Two-wire mode.

A counter overflow interrupt will wake up the processor from Idle sleep mode.

• Bit 5 – USIPF: Stop Condition Flag
When Two-wire mode is selected, the USIPF Flag is set (one) when a stop condition is detected.
The flag is cleared by writing a one to this bit. Note that this is not an Interrupt Flag. This signal is
useful when implementing Two-wire bus master arbitration.

• Bit 4 – USIDC: Data Output Collision
This bit is logical one when bit 7 in the Shift Register differs from the physical pin value. The flag
is only valid when Two-wire mode is used. This signal is useful when implementing Two-wire
bus master arbitration.

• Bits 3:0 – USICNT3:0: Counter Value
These bits reflect the current 4-bit counter value. The 4-bit counter value can directly be read or
written by the CPU.

The 4-bit counter increments by one for each clock generated either by the external clock edge
detector, by a Timer/Counter0 Compare Match, or by software using USICLK or USITC strobe
bits. The clock source depends of the setting of the USICS1..0 bits. For external clock operation
a special feature is added that allows the clock to be generated by writing to the USITC strobe
bit. This feature is enabled by write a one to the USICLK bit while setting an external clock
source (USICS1 = 1).

Note that even when no wire mode is selected (USIWM1..0 = 0) the external clock input
(USCK/SCL) are can still be used by the counter.

Bit 7 6 5 4 3 2 1 0

(0xB9) USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 USISR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
193
2570N–AVR–05/11

ATmega325/3250/645/6450
If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

23.4 Prescaling and Conversion Timing

Figure 23-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for
the voltage to stabilize. If not stabilized the first value read after the first conversion may be
wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic. When using Differential mode, along

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START
204
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 26-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 26-6 on page 262.

26.5 Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 26-2 and Table 26-3 for further details. The Boot Lock bits and general Lock bits can
be set in software and in Serial or Parallel Programming mode, but they can be cleared by a
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the pro-
gramming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock
(Lock Bit mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

0x0000

Flashend

Program Memory
BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory
BOOTSZ = '10'

0x0000

Program Memory
BOOTSZ = '01'

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

0x0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application Flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader
254
2570N–AVR–05/11

ATmega325/3250/645/6450
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
261
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 27-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to read-
ing operation.

Table 27-12. Parallel Programming Characteristics, VCC = 5V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
279
2570N–AVR–05/11

ATmega325/3250/645/6450
Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

27.7.2 Serial Programming Algorithm
When writing serial data to the Atmel ATmega325/3250/645/6450, data is clocked on the rising
edge of SCK.

When reading data from the Atmel ATmega325/3250/645/6450, data is clocked on the falling
edge of SCK. See Figure 27-11 for timing details.

To program and verify the Atmel ATmega325/3250/645/6450 in the serial programming mode,
the following sequence is recommended (See four byte instruction formats in Table 27-15):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchro-
nization. When in sync. the second byte (0x53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The page size is found in Table 27-10 on
page 270. The memory page is loaded one byte at a time by supplying the 6/7 LSB of the
address and data together with the Load Program Memory Page instruction. To ensure
correct loading of the page, the data low byte must be loaded before data high byte is
applied for a given address. The Program Memory Page is stored by loading the Write
Program Memory Page instruction with the 8 MSB of the address. If polling is not used,
the user must wait at least tWD_FLASH before issuing the next page. (See Table 27-14.)
Accessing the serial programming interface before the Flash write operation completes
can result in incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling (RDY/BSY) is not used, the
user must wait at least tWD_EEPROM before issuing the next byte (See Table 27-14.) In a
chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded
one byte at a time by supplying the 2 LSB of the address and data together with the Load
EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading
the Write EEPROM Memory Page Instruction with the 4 MSB of the address. When using
EEPROM page access only byte locations loaded with the Load EEPROM Memory Page
instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is
not used, the used must wait at least tWD_EEPROM before issuing the next page (See Table
27-11). In a chip erased device, no 0xFF in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.
281
2570N–AVR–05/11

ATmega325/3250/645/6450
ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is
post-incremented after reading each high byte, including the first read byte. This ensures that
the first data is captured from the first address set up by PROG_COMMANDS, and reading the
last location in the page makes the program counter increment into the next page.

Figure 27-16. Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user.
However, if too few bits are shifted between each Update-DR state during page load, the TAP
controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at
least 11 TCK cycles between each Update-DR state.

27.8.12 Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 27-16.

27.8.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

27.8.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine
293
2570N–AVR–05/11

ATmega325/3250/645/6450
(0x84) TCNT1L Timer/Counter1 Low 127

(0x83) Reserved - - - - - - - -

(0x82) TCCR1C FOC1A FOC1B - - - - - - 126

(0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 125

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10 123

(0x7F) DIDR1 - - - - - - AIN1D AIN0D 200

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 217

(0x7D) Reserved - - - - - - - -

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 213

(0x7B) ADCSRB - ACME - - - ADTS2 ADTS1 ADTS0 198/217

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 215

(0x79) ADCH ADC Data Register High 216

(0x78) ADCL ADC Data Register Low 216

(0x77) Reserved - - - - - - - -

(0x76) Reserved - - - - - - - -

(0x75) Reserved - - - - - - - -

(0x74) Reserved - - - - - - - -

(0x73) PCMSK3 - PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 58

(0x72) Reserved - - - - - - - -

(0x71) Reserved - - - - - - - -

(0x70) TIMSK2 - - - - - - OCIE2A TOIE2 146

(0x6F) TIMSK1 - - ICIE1 - - OCIE1B OCIE1A TOIE1 128

(0x6E) TIMSK0 - - - - - - OCIE0A TOIE0 99

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 58

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 59

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 59

(0x6A) Reserved - - - - - - - -

(0x69) EICRA - - - - - - ISC01 ISC00 56

(0x68) Reserved - - - - - - - -

(0x67) Reserved - - - - - - - -

(0x66) OSCCAL Oscillator Calibration Register [CAL7..0] 32

(0x65) Reserved - - - - - - - -

(0x64) PRR - - - - PRTIM1 PRSPI PSUSART0 PRADC 40

(0x63) Reserved - - - - - - - -

(0x62) Reserved - - - - - - - -

(0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPS0 32

(0x60) WDTCR - - - WDCE WDE WDP2 WDP1 WDP0 47

0x3F (0x5F) SREG I T H S V N Z C 12

0x3E (0x5E) SPH Stack Pointer High 14

0x3D (0x5D) SPL Stack Pointer Low 14

0x3C (0x5C) Reserved - - - - - - - -

0x3B (0x5B) Reserved - - - - - - - -

0x3A (0x5A) Reserved - - - - - - - -

0x39 (0x59) Reserved - - - - - - - -

0x38 (0x58) Reserved - - - - - - - -

0x37 (0x57) SPMCSR SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN 263

0x36 (0x56) Reserved

0x35 (0x55) MCUCR JTD - - PUD - - IVSEL IVCE 53/81/227

0x34 (0x54) MCUSR - - - JTRF WDRF BORF EXTRF PORF 47

0x33 (0x53) SMCR - - - - SM2 SM1 SM0 SE 35

0x32 (0x52) Reserved - - - - - - - -

0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 223

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 198

0x2F (0x4F) Reserved - - - - - - - -

0x2E (0x4E) SPDR SPI Data Register 156

0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X 156

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 154

0x2B (0x4B) GPIOR2 General Purpose I/O Register 25

0x2A (0x4A) GPIOR1 General Purpose I/O Register 25

0x29 (0x49) Reserved - - - - - - - -

0x28 (0x48) Reserved - - - - - - - -

0x27 (0x47) OCR0A Timer/Counter0 Output Compare A 98

0x26 (0x46) TCNT0 Timer/Counter0 98

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
338
2570N–AVR–05/11

