
Microchip Technology - ATMEGA645V-8AI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 53

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega645v-8ai

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega645v-8ai-4429625
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega325/3250/645/6450
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the Atmel
ATmega325/3250/645/6450 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

7.3 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.
11
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 11-1. Reset Logic

11.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in “System and Reset Characteristics” on page 301. The POR is activated whenever
VCC is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

Figure 11-2. MCU Start-up, RESET Tied to VCC

MCU Status
Register (MCUSR)

Brown-out
Reset CircuitBODLEVEL [1..0]

Delay Counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

JT
R

F

JTAG Reset
Register

Watchdog
Oscillator

SUT[1:0]

Power-on Reset
Circuit

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC
42
2570N–AVR–05/11

ATmega325/3250/645/6450
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 6– PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT24..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 5– PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 4– PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

13.2.4 PCMSK3 – Pin Change Mask Register 3(1)

• Bit 6:0 – PCINT30:24: Pin Change Enable Mask 30:24
Each PCINT30:24-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT30:24 is set and the PCIE3 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT30:24 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

13.2.5 PCMSK2 – Pin Change Mask Register 2(1)

Bit 7 6 5 4 3 2 1 0

(0x73) – PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 PCMSK3

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial
Value

0 0 0 0 0 0 0 0
58
2570N–AVR–05/11

ATmega325/3250/645/6450
Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.
When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 14-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 14-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd
64
2570N–AVR–05/11

ATmega325/3250/645/6450
• PCINT20 – Port H, Bit 4
PCINT20, Pin Change Interrupt Source 20: The PH4 pin can serve as an external interrupt
source.

• PCINT19 – Port H, Bit 3
PCINT19, Pin Change Interrupt Source 19: The PH3 pin can serve as an external interrupt
source.

• PCINT18 – Port H, Bit 2
PCINT18, Pin Change Interrupt Source 18: The PH2 pin can serve as an external interrupt
source.

• PCINT17 – Port H, Bit 1
PCINT17, Pin Change Interrupt Source 17: The P1 pin can serve as an external interrupt
source.

• PCINT16 – Port H, Bit 0
PCINT16, Pin Change Interrupt Source 16: The PH0 pin can serve as an external interrupt
source.

Table 14-17 and Table 14-18 relates the alternate functions of Port H to the overriding signals
shown in Figure 14-5 on page 66.

Table 14-17. Overriding Signals for Alternate Functions in PH7:4

Signal
Name PH7/PCINT23 PH6/PCINT22 PH5/PCINT21 PH4/PCINT20

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE PCINT23 •
PCIE0

PCINT22 •
PCIE0

PCINT21 •
PCIE0

PCINT20 •
PCIE0

DIEOV 0 0 0 0

DI PCINT23 INPUT PCINT22 INPUT PCINT21 INPUT PCINT20 INPUT

AIO – – – –
78
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 17-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 17-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 17-12. Timer/Counter Timing Diagram, no Prescaling

Figure 17-13 shows the same timing data, but with the prescaler enabled.

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O
122
2570N–AVR–05/11

ATmega325/3250/645/6450
20.10 Examples of Baud Rate Setting
For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 20-4. UBRR values
which yield an actual baud rate differing less than 0.5% from the target baud rate, are bold in the
table. Higher error ratings are acceptable, but the Receiver will have less noise resistance when
the error ratings are high, especially for large serial frames (see “Asynchronous Operational
Range” on page 173). The error values are calculated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠

⎛ ⎞ 100%•=

Table 20-4. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%
176
2570N–AVR–05/11

ATmega325/3250/645/6450
• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-
ator. When the bandgap reference is used as input to the analog comparator, it will take a
certain time for the voltage to stabilize. If not stabilized, the the first converison may give a wrong
value. See “Internal Voltage Reference” on page 44.

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
Input Capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the Input Capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.
199
2570N–AVR–05/11

ATmega325/3250/645/6450
with Auto triggering from a source other than the ADC Conversion Complete, each conversion
will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after
every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 23-1.

Figure 23-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 23-5. ADC Timing Diagram, Single Conversion

Figure 23-6. ADC Timing Diagram, Auto Triggered Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update
205
2570N–AVR–05/11

ATmega325/3250/645/6450
25.3.1 Bypass Register
The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR
controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

25.3.2 Device Identification Register
Figure 25-1 shows the structure of the Device Identification Register.

Figure 25-1. The Format of the Device Identification Register

25.3.2.1 Version
Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

25.3.2.2 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for Atmel
ATmega325/3250/645/6450 is listed in Table 25-1.

25.3.2.3 Manufacturer ID
The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 25-2.

25.3.3 Reset Register
The Reset Register is a test Data Register used to reset the part. Since the AVR tri-states Port
Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the fuse set-
tings for the clock options, the part will remain reset for a reset time-out period (refer to “Clock

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1-bit

Table 25-1. AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

ATmega325 0x9505

ATmega3250 0x9506

ATmega645 0x9605

ATmega6450 0x9606

Table 25-2. Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL 0x01F
225
2570N–AVR–05/11

ATmega325/3250/645/6450
157 PE0.Data Port E

156 PE0.Control

155 PE0.Pull-up_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pull-up_Enable

151 PE2.Data

150 PE2.Control

149 PE2.Pull-up_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pull-up_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pull-up_Enable

142 PE5.Data

141 PE5.Control

140 PE5.Pull-up_Enable

139 PE6.Data

138 PE6.Control

137 PE6.Pull-up_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pull-up_Enable

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
239
2570N–AVR–05/11

ATmega325/3250/645/6450
26.4 Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 26-
7 on page 262 and Figure 26-2 on page 254. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during
the entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

26.4.1 RWW – Read-While-Write Section
If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read
as logical one as long as the RWW section is blocked for reading. After a programming is com-
pleted, the RWWSB must be cleared by software before reading code located in the RWW
section. See “Store Program Memory Control and Status Register – SPMCSR” on page 263. for
details on how to clear RWWSB.

26.4.2 NRWW – No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 26-1. Read-While-Write Features

Which Section does the Z-
pointer Address During the

Programming?

Which Section Can
be Read During
Programming?

Is the CPU
Halted?

Read-While-Write
Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
252
2570N–AVR–05/11

ATmega325/3250/645/6450
1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

26.8.11 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 26-5 shows the typical pro-
gramming time for Flash accesses from the CPU.

26.8.12 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256

Table 26-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write,
and write Lock bits by SPM)

3.7ms 4.5ms
260
2570N–AVR–05/11

ATmega325/3250/645/6450
The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

27.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

27.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

For the Atmel ATmega325/3250/645/6450 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x95/0x96 (indicates Flash memory,refer to “Part Number” on page 225).

3. 0x002: 0x05/0x06 (indicates device, refer to “Part Number” on page 225).

27.4 Calibration Byte
The Atmel ATmega325/3250/645/6450 has a byte calibration value for the internal RC Oscilla-
tor. This byte resides in the high byte of address 0x000 in the signature address space. During
reset, this byte is automatically written into the OSCCAL Register to ensure correct frequency of
the calibrated RC Oscillator.

27.5 Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the Atmel ATmega325/3250/645/6450.
Pulses are assumed to be at least 250ns unless otherwise noted.

27.5.1 Signal Names
In this section, some pins of the Atmel ATmega325/3250/645/6450 are referenced by signal
names describing their functionality during parallel programming, see Figure 27-1 and Table 27-
6. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 27-8.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 27-9.
268
2570N–AVR–05/11

ATmega325/3250/645/6450
1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

27.6.4 Programming the Flash
The Flash is organized in pages, see Table 27-10 on page 270. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 27-3 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 27-2 on page 273. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte
272
2570N–AVR–05/11

ATmega325/3250/645/6450
28. Electrical Characteristics

28.1 Absolute Maximum Ratings*

28.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

Table 28-1. TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ. Max. Units

VIL
Input Low Voltage, Except
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1) V

VIL1
Input Low Voltage, XTAL1
pin

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1) V

VIH

Input High Voltage,
Except XTAL1 and
RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIH1
Input High Voltage,
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.8VCC
(2)

0.7VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIH2
Input High Voltage,
RESET pin

VCC = 1.8V - 5.5V 0.85VCC
(2) VCC + 0.5 V

VOL
Output Low Voltage(3),
Port A, C, D, E, F, G, H, J

IOL = 10mA, VCC = 5V
IOL = 5mA, VCC = 3V

0.7
0.5

V

VOL1
Output Low Voltage(3),
Port B

IOL = 20mA, VCC = 5V
IOL = 10mA, VCC = 3V

0.7
0.5

V

VOH
Output High Voltage(4),
Port A, C, D, E, F, G, H, J

IOH = -10mA, VCC = 5V
IOH = -5mA, VCC = 3V

4.2
2.3

V

VOH1
Output High Voltage(4),
Port B

IOH = -20mA, VCC = 5V
IOH = -10mA, VCC = 3V

4.2
2.3

V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1 µA

RRST Reset Pull-up Resistor 20 100 kΩ

RPU I/O Pin Pull-up Resistor 20 100 kΩ
297
2570N–AVR–05/11

ATmega325/3250/645/6450
Figure 28-5. SPI Interface Timing Requirements (Slave Mode)

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16
303
2570N–AVR–05/11

ATmega325/3250/645/6450
29.12 Current Consumption of Peripheral Units

Figure 29-49. Brownout Detector Current vs. VCC

Figure 29-50. ADC Current vs. VCC (AREF = AVCC)

85 °C
25 °C

-40 °C

0

5

10

15

20

25

30

35

40

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
u

A
)

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C
25°C

-40°C
331
2570N–AVR–05/11

ATmega325/3250/645/6450
34. Errata

34.1 Errata ATmega325
The revision letter in this section refers to the revision of the ATmega325 device.

34.1.1 ATmega325 Rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.1.2 ATmega325 Rev. B

Not sampled.

34.1.3 ATmega325 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.2 Errata ATmega3250
The revision letter in this section refers to the revision of the ATmega3250 device.

34.2.1 ATmega3250 Rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.2.2 ATmega3250 Rev. B

Not sampled.
350
2570N–AVR–05/11

ATmega325/3250/645/6450
35. Datasheet Revision History
Please note that the referring page numbers in this section are referring to this document. The
referring revision in this section are referring to the document revision.

35.1 Rev. 2570N – 05/11

35.2 Rev. 2570M – 04/11

35.3 Rev. 2570L – 08/07

35.4 Rev. 2570K – 04/07

35.5 Rev. 2570J – 11/06

1. Added Atmel QTouch Library Support and QTouch Sensing Capablity Features.

2. Updated the last page with Atmel® trademarks and Microsft Windows® trademarks.

1. Removed “Preliminary” from the front page
2. Removed “Disclaimer” section from the datasheet
3. Updated Table 28-5 on page 301 “BODLEVEL Fuse Coding(1)”
4. Updated “Ordering Information” on page 343 to include the “Tape & Reel”

devices. Removed “AI” and “MI” devices.
5. Updated “Errata” on page 350.
6. Updated the datasheet according to the Atmel new drand style guide, including

the last page.

1. Updated “Features” on page 1.
2. Added “Data Retention” on page 9
3. Updated “Serial Programming Algorithm” on page 281.
4. Updated “Speed Grades” on page 299.
5. Updated “System and Reset Characteristics” on page 301.
6. Updated the Register Description at the end of each chapter.

1. Updated “Errata” on page 350.

1. Updated Table 28-7 on page 304.
2. Updated note in Table 28-7 on page 304.
352
2570N–AVR–05/11

