

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ic2-rltum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 10. Two-Wire Interface Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SSCON	93h	Synchronous Serial control	SSCR2	SSPE	SSSTA	SSSTO	SSI	SSAA	SSCR1	SSCR0
SSCS	94h	Synchronous Serial Status	SSC4	SSC3	SSC2	SSC1	SSC0	0	0	0
SSDAT	95h	Synchronous Serial Data	SSD7	SSD6	SSD5	SSD4	SSD3	SSD2	SSD1	SSD0
SSADR	96h	Synchronous Serial Address	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSGC

Table 11. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

Table 13.	Pin Description	for 40/44 Pin	Packages	(Continued)
-----------	------------------------	---------------	----------	-------------

	Pin Nu	umber	Turne	
Mnemonic	PLCC44	VQFP44 1.4	туре	Name and Function
				SDA is the bidirectional 2-wire data line
RST	10	4	I/O	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . This pin is an output when the hardware watchdog forces a system reset.
ALE/PROG	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped <u>during</u> each access to external data memory. This pin is also the program pulse input (PROG) during Flash programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	32	26	0	Program Strobe ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
EA	35	29	I	External Access Enable: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to FFFFH (RD). If security level 1 is programmed, EA will be internally latched on Reset.

Functional Block Diagram

Figure 3. Functional Oscillator Block Diagram

Operating Modes

Reset

A hardware RESET puts the Clock generator in the following state:

The selected oscillator depends on OSC bit in Hardware Security Byte (HSB) (see HSB Table 84)

HSB.OSC = 1 (Oscillator A selected)

- OscAEn = 1 & OscBEn = 0: OscA is running, OscB is stopped.
- CKS = 1: OscA is selected for CPU.

HSB.OSC = 0 (Oscillator B selected)

- OscAEn = 0 & OscBEn = 1: OscB is running, OscA is stopped.
- CKS = 0: OscB is selected for CPU.

Functional Modes

Normal Modes

- CPU and Peripherals clock depend on the software selection using CKCON0, CKCON1 and CKRL registers
- CKS bit in CKSEL register selects either OscA or OscB
- CKRL register determines the frequency of the OscA clock.

Dual Data Pointer Register

The additional data pointer can be used to speed up code execution and reduce code size.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 21) that allows the program code to switch between them (Refer to Figure 7).

Figure 7. Use of Dual Pointer

7

Reset Value: XXXX XX0X0b Not bit addressable

Note: *Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.

Table 26. CMOD Register

CMOD - PCA Counter Mode Register (D9h)

7	6	5	4	3	2	1	0		
CIDL	WDTE	-	-	-	CPS1	CPS0	ECF		
Bit Number	Bit Mnemonic	Description							
7	CIDL	Counter Idle Cleared to pr Set to progra	Counter Idle Control Cleared to program the PCA Counter to continue functioning during idle Mode. Set to program PCA to be gated off during idle.						
6	WDTE	Watchdog T Cleared to di Set to enable	Watchdog Timer Enable Cleared to disable Watchdog Timer function on PCA Module 4. Set to enable Watchdog Timer function on PCA Module 4.						
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.			
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.			
2	CPS1	PCA Count	Pulse Select						
1	CPS0	CPS1 CPS0Selected PCA input 0 0 Internal clock fCLK PERIPH/6 0 1 Internal clock fCLK PERIPH/2 1 0Timer 0 Overflow 1 1 External clock at ECI/P1.2 pin (max rate = fCLK PERIPH/4)							
0	ECF	PCA Enable Counter Overflow Interrupt Cleared to disable CF bit in CCON to inhibit an interrupt. Set to enable CF bit in CCON to generate an interrupt.							

Reset Value = 00XX X000b Not bit addressable

The CMOD register includes three additional bits associated with the PCA (See Figure 11 and Table 26).

- The CIDL bit which allows the PCA to stop during idle mode.
- The WDTE bit which enables or disables the watchdog function on module 4.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 27).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

Baud Rates	F _{osca} = 16	6.384 MHz	F _{OSCA} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

 Table 38.
 Example of computed value when X2=1, SMOD1=1, SPD=1

 Table 39.
 Example of computed value when X2=0, SMOD1=0, SPD=0

Baud Rates	F _{OSCA} = 16	6.384 MHz	F _{OSCA} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 20.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 46.)

AMEL

Interrupt System

The AT89C51IC2 has a total of 10 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Two Wire Interface (I2C) interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 22.

Figure 22. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 51 and Table 49). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 52) and in the Interrupt Priority High register (Table 50 and Table 51) shows the bit values and priority levels associated with each combination.

AT89C51IC2

Reset Recommendation to Prevent Flash Corruption

An example of bad initialization situation may occur in an instance where the bit ENBOOT in AUXR1 register is initialized from the hardware bit BLJB upon reset. Since this bit allows mapping of the bootloader in the code area, a reset failure can be critical.

If one wants the ENBOOT cleared in order to unmap the boot from the code area (yet due to a bad reset) the bit ENBOOT in SFRs may be set. If the value of Program Counter is accidently in the range of the boot memory addresses then a Flash access (write or erase) may corrupt the Flash on-chip memory.

It is recommended to use an external reset circuitry featuring power supply monitoring to prevent system malfunction during periods of insufficient power supply voltage (power supply failure, power supply switched off).

Idle Mode An instruction that sets PCON.0 indicates that it is the last instruction to be executed before going into Idle mode. In Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high level.

There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred during normal operation or during idle. For example, an instruction that activates idle can also set one or both flag bits. When idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

Power-down Mode To save maximum power, a Power-down mode can be invoked by software (see PCON register).

In Power-down mode, the oscillator is stopped and the instruction that invoked Powerdown mode is the last instruction executed. The internal RAM and SFRs retain their value until the Power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from Powerdown. To properly terminate Power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts INT0, INT1 and Keyboard Interrupts are useful to exit from Power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. When Keyboard Interrupt occurs after a power down mode, 1024 clocks are necessary to exit to power down mode and enter in operating mode.

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 25. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case, the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that puts the AT89C51IC2 into Power-down mode.

AT89C51IC2

Serial Port Interface (SPI)

The Serial Peripheral Interface Module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.

Features

- Features of the SPI Module include the following:
- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- Eight programmable Master clock rates
- Serial clock with programmable polarity and phase
- · Master Mode fault error flag with MCU interrupt capability
- Write collision flag protection

Signal DescriptionFigure 26 shows a typical SPI bus configuration using one Master controller and many
Slave peripherals. The bus is made of three wires connecting all the devices.

Figure 26. SPI Master/Slaves Interconnection

The Master device selects the individual Slave devices by using four pins of a parallel port to control the four SS pins of the Slave devices.

Master Output Slave Input
(MOSI)This 1-bit signal is directly connected between the Master Device and a Slave Device.
The MOSI line is used to transfer data in series from the Master to the Slave. Therefore,
it is an output signal from the Master, and an input signal to a Slave. A Byte (8-bit word)
is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

Master Input Slave Output
(MISO)This 1-bit signal is directly connected between the Slave Device and a Master Device.
The MISO line is used to transfer data in series from the Slave to the Master. Therefore,
it is an output signal from the Slave, and an input signal to the Master. A Byte (8-bit
word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

SPI Serial Clock (SCK) This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one Byte on the serial lines.

Slave Select (SS)Each Slave peripheral is selected by one Slave Select pin (SS). This signal must stay
low for any message for a Slave. It is obvious that only one Master (SS high level) can

Table 62. KBE Register

KBE-Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0			
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0			
Bit Number	Bit Mnemonic	Description								
7	KBE7	Keyboard lin Cleared to en Set to enable	n e 7 Enable I nable standar e KBF.7 bit in	oit d I/O pin. KBF register t	o generate an	interrupt requ	uest.			
6	KBE6	Keyboard lin Cleared to en Set to enable	Ceyboard line 6 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.6 bit in KBF register to generate an interrupt request.							
5	KBE5	Keyboard lin Cleared to en Set to enable	Keyboard line 5 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.5 bit in KBF register to generate an interrupt request.							
4	KBE4	Keyboard lin Cleared to en Set to enable	n e 4 Enable I nable standar e KBF.4 bit in	oit d I/O pin. KBF register t	o generate an	interrupt requ	uest.			
3	KBE3	Keyboard lin Cleared to en Set to enable	Keyboard line 3 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.3 bit in KBF register to generate an interrupt request.							
2	KBE2	Keyboard line 2 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.2 bit in KBF register to generate an interrupt request.					uest.			
1	KBE1	Keyboard line 1 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.1 bit in KBF register to generate an interrupt request.					uest.			
0	KBE0	Keyboard lin Cleared to en Set to enable	n e 0 Enable I nable standar e KBF.0 bit in	oit d I/O pin. KBF register t	Keyboard line 0 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.0 bit in KBF register to generate an interrupt request.					

Reset Value= 0000 0000b

2-wire Interface (TWI)

This section describes the 2-wire interface. In the rest of the section SSLC means Twowire. The 2-wire bus is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The serial data transfer is limited to 400Kbit/s in standard mode. Various communication configuration can be designed using this bus. Figure 35 shows a typical 2-wire bus configuration. All the devices connected to the bus can be master and slave.

Figure 35. 2-wire Bus Configuration

Description

The CPU interfaces to the 2-wire logic via the following four 8-bit special function registers: the Synchronous Serial Control register (SSCON; Table 73), the Synchronous Serial Data register (SSDAT; Table 74), the Synchronous Serial Control and Status register (SSCS; Table 75) and the Synchronous Serial Address register (SSADR Table 78).

SSCON is used to enable SSLC, to program the bit rate (see Table 66), to enable slave modes, to acknowledge or not a received data, to send a START or a STOP condition on the 2-wire bus, and to acknowledge a serial interrupt. A hardware reset disables SSLC.

In write mode, SSCS is used to select the 2-wire interface and to select the bit rate source. In read mode, SSCS contains a status code which reflects the status of the 2-wire logic and the 2-wire bus. The three least significant bits are always zero. The five most significant bits contains the status code. There are 26 possible status codes. When SSCS contains F8h, no relevant state information is available and no serial interrupt is requested. A valid status code is available in SSCS one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. Table 68.to Table 72. give the status for the master modes and miscellaneous states.

SSDAT contains a byte of serial data to be transmitted or a byte which has just been received. It is addressable while it is not in process of shifting a byte. This occurs when 2-wire logic is in a defined state and the serial interrupt flag is set. Data in SSDAT remains stable as long as SI is set. While data is being shifted out, data on the bus is simultaneously shifted in; SSDAT always contains the last byte present on the bus.

SSADR may be loaded with the 7-bit slave address (7 most significant bits) to which SSLC will respond when programmed as a slave transmitter or receiver. The LSB is used to enable general call address (00h) recognition.

Figure 37 shows how a data transfer is accomplished on the 2-wire bus.

Figure 37. Complete data transfer on 2-wire bus

The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave transmitter
- Slave receiver

Data transfer in each mode of operation is shown in Table 68 to Table 72 and Figure 38. to Figure 41.. These figures contain the following abbreviations:

S: START condition

Figure 39. Format and State in the Master Receiver Mode

Flash EEPROM Memory	The Flash memory increases EPROM and ROM functionality with in-circuit electrical erasure and programming. It contains 32K Bytes of program memory organized in 128 or 256 pages of 128 Bytes. This memory is both parallel and serial In-system Programmable (ISP). ISP allows devices to alter their own program memory in the actual end product under software control. A default serial loader (bootloader) program allows ISP of the Flash.					
	The programming does not require external dedicated programming voltage. The necessary high programming voltage is generated on-chip using the standard $\rm V_{\rm CC}$ pins of the microcontroller.					
Features	 Flash EEPROM internal program memory. Boot vector allows user provided Flash loader code to reside anywhere in the Flash memory space. This configuration provides flexibility to the user. Default loader in Boot ROM allows programming via the serial port without the need of a user-provided loader. Up to 64K Byte external program memory if the internal program memory is disabled (EA = 0). Programming and erase voltage with standard 5V or 3V V_{CC} supply. Read/Programming/Erase: Byte-wise read without wait state Byte or page erase and programming (10 ms) Typical programming time (32K Bytes) in 10 s Parallel programming with 87C51 compatible hardware interface to programmer Programmable security for the code in the Flash 10K write cycles 10 years data retention 					
Flash Programming and Erasure	 The 32K Bytes Flash is programmed by Bytes or by pages of 128 Bytes. It is not necessary to erase a Byte or a page before programming. The programming of a Byte or a page includes a self erase before programming. There are three methods of programming the Flash memory: First, the on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the UART. Second, the Flash may be programmed or erased in the end-user application by calling low-level routines through a common entry point in the Boot ROM. Third, the Flash may be programmed using the parallel method by using a conventional EPROM programmer. The parallel programming method used by these devices is similar to that used by EPROM 87C51 but it is not identical and the commercially available programmers need to have support for the AT89C511C2. The bootloader and the Application Programming Interface (API) routines are located in the BOOT ROM. 					

Flash Registers and Memory Map

The AT89C51IC2 Flash memory uses several registers for its management:

- Hardware registers can only be accessed through the parallel programming modes which are handled by the parallel programmer.
- Software registers are in a special page of the Flash memory which can be accessed through the API or with the parallel programming modes. This page, called "Extra Flash Memory", is not in the internal Flash program memory addressing space.

Hardware Register The only hardware register of the AT89C51IC2 is called Hardware Security Byte (HSB).

7 6 5 4 3 2 1 0 X2 BLJB osc XRAM LB2 LB1 LB0 Bit Bit Number Mnemonic Description X2 Mode Programmed ('0' value) to force X2 mode (6 clocks per instruction) after reset. 7 Х2 Unprogrammed ('1' Value) to force X1 mode, Standard Mode, after reset (Default). Boot Loader Jump Bit Unprogrammed ('1' value) to start the user's application on next reset at address BLJB 6 0000h. Programmed ('0' value) to start the boot loader at address F800h on next reset (Default). Oscillator Bit OSC 5 Programmed to allow oscillator B at startup Unprogrammed this bit to allow oscillator A at startup (Default). 4 Reserved _ XRAM config bit (only programmable by programmer tools) XRAM 3 Programmed to inhibit XRAM Unprogrammed, this bit to valid XRAM (Default) User Memory Lock Bits (only programmable by programmer tools) 2-0 LB2-0 See Table 85

Table 84. Hardware Security Byte (HSB)

Boot Loader Jump Bit (BLJB)

One bit of the HSB, the BLJB bit, is used to force the boot address:

- When this bit is programmed ('1' value) the boot address is 0000h.
- When this bit is unprogrammed ('1' value) the boot address is F800h. By default, this bit is unprogrammed and the ISP is enabled.

Flash Memory Lock Bits

The three lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 85.

|--|

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
HSB	Hardware security Byte	101x 1011b	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	ATMEL
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: memories	F7h	AT89C51IC2 32KB
	Copy of the Device ID #3: name and revision	EFh	AT89C51IC2 32KB, Revision 0

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 86 and Table 88.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 87.	Software Security Byte	Э
-----------	------------------------	---

7	6	5	4	3	2	1	0
-	-	-	-	-	-	LB1	LB0
Bit Number	Bit Mnemonic	Description					
7	-	Reserved Do not clear t	his bit.				
6	-	Reserved Do not clear t	his bit.				
5	-	Reserved Do not clear t	his bit.				
4	-	Reserved Do not clear t	his bit.				
3	-	Reserved Do not clear t	his bit.				
2	-	Reserved Do not clear t	his bit.				
1-0	LB1-0	User Memor see Table 88	y Lock Bits				

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 88.

AT89C51IC2

ISP Commands Summary

Table 92. ISP Commands Summary

Command	Command Name	Data[0]	Data[1]	Command Effect
00h	Program Data			Program Nb Data Byte. Bootloader will accept up to 128 (80h) data Bytes. The data Bytes should be 128 Byte page Flash boundary.
			00h	Erase block0 (0000h-1FFFh)
			20h	Erase block1 (2000h-3FFFh)
		01h	40h	Erase block2 (4000h-7FFFh)
			80h	Erase block3 (8000h- BFFFh)
			C0h	Erase block4 (C000h- FFFFh)
		03h	00h	Hardware Reset
		04h	00h	Erase SBV & BSB
		05b	00h	Program SSB level 1
03h	Write Function	03h 00h Hardware Reset 04h 00h Erase SBV & BSB 05h 00h Program SSB level 1 01h Program SSB level 2 00h Program BSB (value to write		
		06b	00h	Program BSB (value to write in data[2])
		0011	01h	Program SBV (value to write in data[2])
		07h	-	Full Chip Erase (This command needs about 6 sec to be executed)
			02h	Program Osc fuse (value to write in data[2])
		0Ah	04h	Program BLJB fuse (value to write in data[2])
			08h	Program X2 fuse (value to write in data[2])
04h	Display Function	Data[0:1] = Data [2:3] = Data[4] = 00h Data[4] = 01h	start address end address -> Display data -> Blank check	Display Data Note: The maximum number of data that can be read with a single command frame (difference between start and end address) is 1kbyte.
				Blank Check
			00h	Manufacturer ID
		00b	01h	Device ID #1
		0011	02h	Device ID #2
			03h	Device ID #3
			00h	Read SSB
05h	Read Function	07h	01h	Read BSB
0011	ricad r unotion	0/11	02h	Read SBV
			06h	Read Extra Byte
		0Bh	00h	Read Hardware Byte
		0Fh	00h	Read Device Boot ID1
			01h	Read Device Boot ID2
		0Fh	00h	Read Bootloader Version

	-М			-L	
Symbol	Min	Max	Min	Мах	Units
T _{RLRH}	125		125		ns
T _{WLWH}	125		125		ns
T _{RLDV}		95		95	ns
T _{RHDX}	0		0		ns
T _{RHDZ}		25		25	ns
T _{LLDV}		155		155	ns
T _{AVDV}		160		160	ns
T _{LLWL}	45	105	45	105	ns
T _{AVWL}	70		70		ns
T _{QVWX}	5		5		ns
T _{QVWH}	155		155		ns
T _{WHQX}	10		10		ns
T _{RLAZ}	0		0		ns
T _{WHLH}	5	45	5	45	ns

 Table 98.
 AC Parameters for a Fix Clock

R

Symbol	Туре	Standard Clock	X2 Clock	X Parameter for - M Range	X Parameter for - L Range	Units
T _{RLRH}	Min	6 T - x	3 T - x	25	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	25	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	30	30	ns
T _{RHDX}	Min	х	х	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	25	25	ns
T _{LLDV}	Max	8 T - x	4T -x	45	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	65	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	30	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	30	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	30	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	20	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	20	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	15	15	ns
T _{RLAZ}	Max	х	х	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	20	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	20	20	ns

External Data Memory Write Cycle

Table of Contents

Description	2
Block Diagram	3
SFR Mapping	4
Pin Configurations	10
Oscillators	14
Overview	14
Registers	14
Functional Block Diagram	17
Operating Modes	17
Design Considerations	19
Timer 0: Clock Inputs	20
Enhanced Features	
X2 Feature and OSCA Clock Generation	21
Dual Data Pointer Register	25
	07
	27
Timer 2	27 30
Timer 2	
Timer 2 Auto-Reload Mode Programmable Clock-Output	
Timer 2 Auto-Reload Mode Programmable Clock-Output	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode High Speed Output Mode	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode High Speed Output Mode Pulse Width Modulator Mode	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode High Speed Output Mode PUSe Width Modulator Mode PCA Watchdog Timer	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode High Speed Output Mode Pulse Width Modulator Mode PCA Watchdog Timer Serial I/O Port Framing Error Detection Automatic Address Becognition	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode High Speed Output Mode PUSe Width Modulator Mode PCA Watchdog Timer Serial I/O Port Framing Error Detection Automatic Address Recognition Baud Rate Selection for UART for mode 1 and 3 UART Registers	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode High Speed Output Mode PUSe Width Modulator Mode PCA Watchdog Timer Serial I/O Port Framing Error Detection Automatic Address Recognition Baud Rate Selection for UART for mode 1 and 3 UART Registers	27 30 30 31 31 35 43 43 43 43 43 43 43 43 44 45 46 46 47 47 47 48 50 54
Timer 2 Auto-Reload Mode. Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode. 16-bit Software Timer/ Compare Mode. High Speed Output Mode. Pulse Width Modulator Mode. PCA Watchdog Timer. Serial I/O Port Framing Error Detection Automatic Address Recognition. Baud Rate Selection for UART for mode 1 and 3. UART Registers.	
Timer 2 Auto-Reload Mode Programmable Clock-Output Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode High Speed Output Mode PUlse Width Modulator Mode PCA Watchdog Timer Serial I/O Port Framing Error Detection Automatic Address Recognition Baud Rate Selection for UART for mode 1 and 3. UART Registers Interrupt System Registers	27 30 30 31 31 35 43 43 43 43 43 43 43 43 43 43

i