

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ic2-slrim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 10. Two-Wire Interface Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SSCON	93h	Synchronous Serial control	SSCR2	SSPE	SSSTA	SSSTO	SSI	SSAA	SSCR1	SSCR0
SSCS	94h	Synchronous Serial Status	SSC4	SSC3	SSC2	SSC1	SSC0	0	0	0
SSDAT	95h	Synchronous Serial Data	SSD7	SSD6	SSD5	SSD4	SSD3	SSD2	SSD1	SSD0
SSADR	96h	Synchronous Serial Address	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSGC

Table 11. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

• It is always possible to switch dynamically by software from OscA to OscB, and vice versa by changing CKS bit.

Idle Modes

- IDLE modes are achieved by using any instruction that writes into PCON.0 bit (IDL)
- IDLE modes A and B depend on previous software sequence, prior to writing into PCON.0 bit:
- IDLE MODE A: OscA is running (OscAEn = 1) and selected (CKS = 1)
- IDLE MODE B: OscB is running (OscBEn = 1) and selected (CKS = 0)
- The unused oscillator OscA or OscB can be stopped by software by clearing OscAEn or OscBEn respectively.
- IDLE mode can be canceled either by Reset, or by activation of any enabled interruption
- In both cases, PCON.0 bit (IDL) is cleared by hardware
- Exit from IDLE modes will leave Oscillators control bits (OscEnA, OscEnB, CKS) unchanged.
- Power Down Modes
 POWER DOWN modes are achieved by using any instruction that writes into PCON.1 bit (PD)
 - POWER DOWN modes A and B depend on previous software sequence, prior to writing into PCON.1 bit:
 - Both OscA and OscB will be stopped.
 - POWER DOWN mode can be cancelled either by a hardware Reset, an external interruption, or the keyboard interrupt.
 - By Reset signal: The CPU will restart according to OSC bit in Hardware Security Bit (HSB) register.
 - By INT0 or INT1 interruption, if enabled: (standard behavioral), request on Pads must be driven low enough to ensure correct restart of the oscillator which was selected when entering in Power down.
 - By keyboard Interrupt if enabled: a hardware clear of the PCON.1 flag ensure the restart of the oscillator which was selected when entering in Power down.

Table 18. Overview

PCON.1	PCON.0	OscBEn	OscAEn	CKS	Selected Mode	Comment
0	0	0	1	1	NORMAL MODE A, OscB stopped	Default mode after power-up or Warm Reset
0	0	1	1	1	NORMAL MODE A, OscB running	Default mode after power-up or Warm Reset + OscB running
0	0	1	0	0	NORMAL MODE B, OscA stopped	OscB running and selected
0	0	1	1	0	NORMAL MODE B, OscA running	OscB running and selected + OscA running
х	х	0	0	х	INVALID	OscA & OscB cannot be stopped at the same time
х	х	х	0	1	INVALID	OscA must not be stopped, as used for CPU and peripherals
х	х	0	х	0	INVALID	OscB must not be stopped as used for CPU and peripherals

Enhanced Features

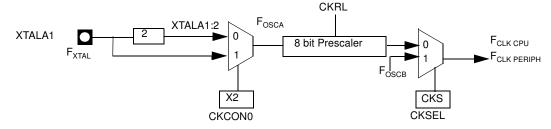
In comparison to the original 80C52, the AT89C51IC2 implements some new features, which are:

- The X2 option
- The Dual Data Pointer
- The extended RAM
- The Programmable Counter Array (PCA)
- The Hardware Watchdog
- The SPI interface
- The 2-wire interface
- The 4 level interrupt priority system
- The power-off flag
- The Power On Reset
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the timer 2

X2 Feature and OSCA Clock Generation

The AT89C51IC2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically the operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.


In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTALA1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

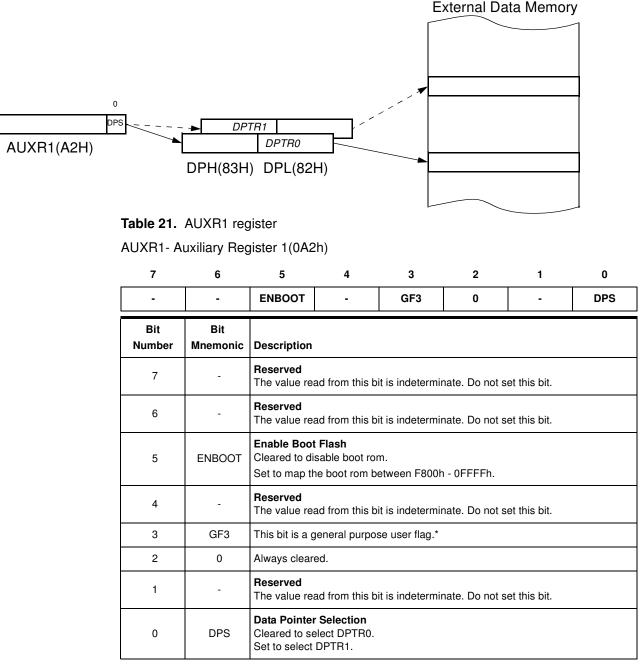
The clock for the whole circuit and peripherals is first divided by two before being used by the CPU core and the peripherals.

This allows any cyclic ratio to be accepted on XTALA1 input. In X2 mode, as this divider is bypassed, the signals on XTALA1 must have a cyclic ratio between 40 to 60%.

Figure 5. shows the clock generation block diagram.x2 bit is validated on the rising edge of the XTALA1÷2 to avoid glitches when switching from X2 to STD mode. Figure 6. shows the switching mode waveforms.

Figure 5. Clock Generation Diagram

Description


Dual Data Pointer Register

The additional data pointer can be used to speed up code execution and reduce code size.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 21) that allows the program code to switch between them (Refer to Figure 7).

Figure 7. Use of Dual Pointer

7

Reset Value: XXXX XX0X0b Not bit addressable

Note: *Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.

Expanded RAM (XRAM)

The AT89C51IC2 provides additional Bytes of random access memory (RAM) space for increased data parameter handling and high level language usage.

AT89C51IC2 devices have expanded RAM in external data space; maximum size and location are described in Table 22.

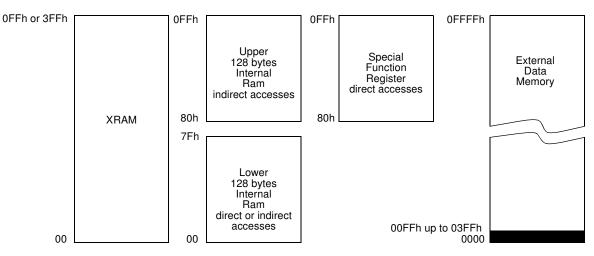
Table 22. Expanded RAM

		Addre	ess
	XRAM size	Start	End
AT89C51IC2	1024	00h	3FFh

The AT89C51IC2 has internal data memory that is mapped into four separate segments.

The four segments are:

1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly addressable.


2. The Upper 128 bytes of RAM (addresses 80h to FFh) are indirectly addressable only.

3. The Special Function Registers, SFRs, (addresses 80h to FFh) are directly address-able only.

4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register (see Table 22)

The lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

Figure 8. Internal and External Data Memory Address

When an instruction accesses an internal location above address 7Fh, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.

 Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data, accesses the SFR at location 0A0h (which is P2).

Table 27. CCON Register

CCON - PCA Counter Control Register (D8h)

7	6	5	4	3	2	1	0				
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0				
Bit Number	Bit Mnemonic	Description									
7	CF	Set by hardw CMOD is set	PCA Counter Overflow flag Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be cleared by software.								
6	CR	Must be clea	PCA Counter Run control bit Must be cleared by software to turn the PCA counter off. Set by software to turn the PCA counter on.								
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	CCF4	Must be clea	e 4 interrupt ared by softwa vare when a n	-	re occurs.						
3	CCF3	Must be clea	e 3 interrupt ared by softwa vare when a n		re occurs.						
2	CCF2	Must be clea	e 2 interrupt ared by softwa vare when a n	•	re occurs.						
1	CCF1	Must be clea	PCA Module 1 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs.								
0	CCF0	Must be clea	e 0 interrupt ared by softwa vare when a n		re occurs.						

Reset Value = 00X0 0000b Not bit addressable

The watchdog timer function is implemented in module 4 (See Figure 14).

The PCA interrupt system is shown in Figure 12.

Table 28 shows the CCAPMn settings for the various PCA functions.

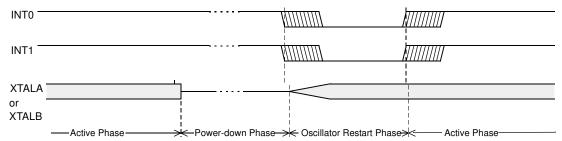
- Table 28.
 CCAPMn Registers (n = 0-4)
- CCAPM0 PCA Module 0 Compare/Capture Control Register (0DAh)
- CCAPM1 PCA Module 1 Compare/Capture Control Register (0DBh)
- CCAPM2 PCA Module 2 Compare/Capture Control Register (0DCh)
- CCAPM3 PCA Module 3 Compare/Capture Control Register (0DDh)
- CCAPM4 PCA Module 4 Compare/Capture Control Register (0DEh)

7	6	5	4	3	2	1	0				
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn				
Bit Number	Bit Mnemonic	Description									
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	ECOMn	Cleared to di	Enable Comparator Cleared to disable the comparator function. Set to enable the comparator function.								
5	CAPPn	Cleared to di	apture Positive leared to disable positive edge capture. et to enable positive edge capture.								
4	CAPNn	Cleared to di	Capture Negative Cleared to disable negative edge capture. Set to enable negative edge capture.								
3	MATn	compare/cap	oture register	of the PCA co causes the et, flagging an		s module's					
2	TOGn		oture register of	of the PCA co causes the	ounter with this	s module's					
1	PWMn	Cleared to di		Xn pin to be u	•						
0	CCF0	Cleared to di an interrupt.	Set to enable compare/capture flag CCFn in the CCON register to generate an								

Reset Value = X000 0000b Not bit addressable

Table 37. SCON Register

SCON - Serial Control Register (98h)


7	6	5	4	3	2	1	0				
FE/SM0	SM1	SM2	REN	TB8	RB8	ті	RI				
Bit Number	Bit Mnemonic	Descriptior	Description								
7	FE	Clear to res Set by hard	ware when an	ate, not cleare	ed by a valid s bit is detected. to the FE bit.						
	SM0	Refer to SM	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit.								
6	SM1		 0 Shift Register F_{XTAL}/12 (or F_{XTAL} /6 in mode X2) 1 8-bit UART Variable 0 9-bit UART F_{XTAL}/64 or F_{XTAL}/32 								
5	SM2	Clear to disa Set to enable	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.								
4	REN		Enable bit able serial rec le serial recep								
3	TB8	o transmit a	r Bit 8 / Ninth logic 0 in the mit a logic 1 ir	9th bit.	nit in modes 2	2 and 3					
2	RB8	Cleared by Set by hard	hardware if 9t ware if 9th bit	h bit received received is a		-	3 is not used.				
1	TI	Clear to ack Set by hard	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.								
0	RI	Clear to ack Set by hard	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 18. and Figure 19. in the other modes.								

Reset Value = 0000 0000b

Bit addressable

Figure 25. Power-down Exit Waveform

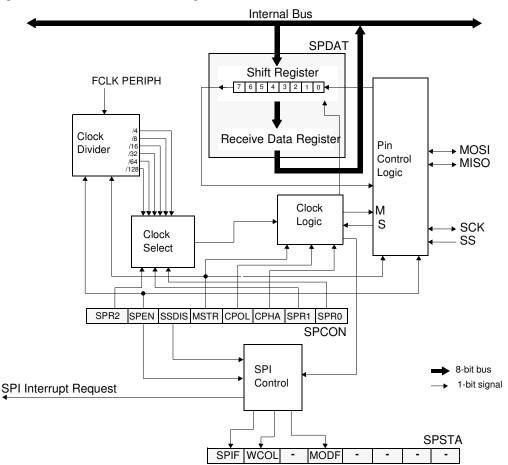
Exit from Power-down by reset redefines all the SFRs, exit from Power-down by external interrupt does no affect the SFRs.

Exit from Power-down by either reset or external interrupt does not affect the internal RAM content.

Note: If idle mode is activated with Power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Table 55 shows the state of ports during idle and power-down modes.

Table 55. State of Ports


Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Port 0 can force a 0 level. A "one" will leave port floating.

Functional Description

Figure 27 shows a detailed structure of the SPI Module.

Figure 27. SPI Module Block Diagram

Operating Modes

The Serial Peripheral Interface can be configured in one of the two modes: Master mode or Slave mode. The configuration and initialization of the SPI Module is made through one register:

• The Serial Peripheral Control register (SPCON)

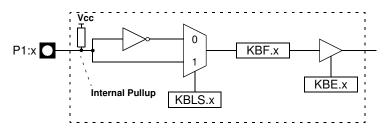
Once the SPI is configured, the data exchange is made using:

- SPCON
- The Serial Peripheral STAtus register (SPSTA)
- The Serial Peripheral DATa register (SPDAT)

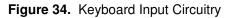
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line (SS) allows individual selection of a Slave SPI device; Slave devices that are not selected do not interfere with SPI bus activities.

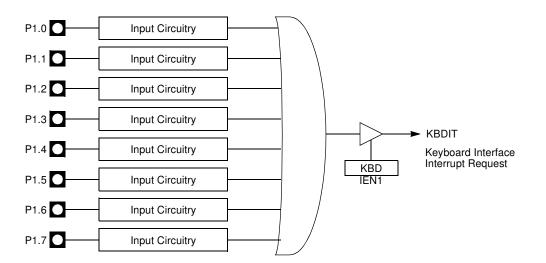
When the Master device transmits data to the Slave device via the MOSI line, the Slave device responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock (Figure 28).

Keyboard Interface


The AT89C51IC2 implements a keyboard interface allowing the connection of a 8 x n matrix keyboard. It is based on 8 inputs with programmable interrupt capability on both high or low level. These inputs are available as alternate function of P1 and allow to exit from idle and power down modes.

The keyboard interface interfaces with the C51 core through 3 special function registers: KBLS, the Keyboard Level Selection register (Table 63), KBE, The Keyboard interrupt Enable register (Table 62), and KBF, the Keyboard Flag register (Table 61).


Interrupt


The keyboard inputs are considered as 8 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (KBD in IEN1) allows global enable or disable of the keyboard interrupt (see Figure 33). As detailed in Figure 34 each keyboard input has the capability to detect a programmable level according to KBLS.x bit value. Level detection is then reported in interrupt flags KBF.x that can be masked by software using KBE.x bits.

This structure allow keyboard arrangement from 1 by n to 8 by n matrix and allow usage of P1 inputs for other purpose.

Figure 33. Keyboard Interface Block Diagram

Power Reduction Mode

P1 inputs allow exit from idle and power down modes as detailed in Section "Power Management", page 67.

Table 63. KBLS Register

KBLS-Keyboard Level Selector Register (9Ch)

7	6	5	4	3	2	1	0			
KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0			
Bit Number	Bit Mnemonic	Description	Description							
7	KBLS7	Cleared to en		election bit vel detection of detection on F						
6	KBLS6	Cleared to en	eyboard line 6 Level Selection bit eared to enable a low level detection on Port line 6. et to enable a high level detection on Port line 6.							
5	KBLS5	Cleared to en	Ceyboard line 5 Level Selection bit Cleared to enable a low level detection on Port line 5. Set to enable a high level detection on Port line 5.							
4	KBLS4	Cleared to en		election bit vel detection o detection on F						
3	KBLS3	Cleared to en			on Port line 3. Port line 3.					
2	KBLS2	Cleared to en		election bit vel detection of detection on F						
1	KBLS1	Cleared to en	Keyboard line 1 Level Selection bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1.							
0	KBLS0	Cleared to en	Keyboard line 0 Level Selection bit Cleared to enable a low level detection on Port line 0. Set to enable a high level detection on Port line 0.							

Reset Value= 0000 0000b

AT89C51IC2

Table 80. WDTPRG Register

WDTPRG - Watchdog Timer Out Register (0A7h)

7	6	5	4	3	2	1	0				
-	-	-	-	-	S2	S1	S0				
Bit Number	Bit Mnemonic	Description									
7	-										
6	-										
5	-	Reserved The value rea	ad from this bi	t is undetermi	ned. Do not try	y to set this bit	t.				
4	-										
3	-										
2	S2	WDT Time-o	out select bit	2							
1	S1	WDT Time-o	out select bit	1							
0	S0	WDT Time-o	out select bit	0							
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 ¹⁵ - 1) machir - 1) machine c 2 ¹⁷ - 1) machir 2 ¹⁸ - 1) machir - 1) machine c 2 ²⁰ - 1) machir	-out ne cycles, 16. : ne cycles, 32.7 cycles, 65.5 m ne cycles, 131 ne cycles, 262 cycles, 542 ms ne cycles, 1.05 ne cycles, 2.09	$7 \text{ ms } @ \text{F}_{OSCA}$ $1 \text{ ms } @ \text{F}_{OSCA} = 1$ $1 \text{ ms } @ \text{F}_{OSCA} =$ $1 \text{ ms } @ \text{F}_{OSCA} = 12$ $2 \text{ s } @ \text{F}_{OSCA} = 12$ $2 \text{ s } @ \text{F}_{OSCA} = 12$	=12 MHz 2 MHz =12 MHz =12 MHz MHz 12 MHz					

Reset value XXXX X000

WDT During Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the AT89C51IC2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is better to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the AT89C51IC2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

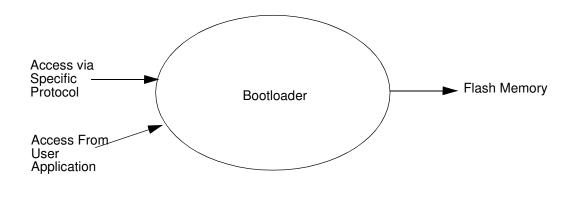
The power-off flag (POF) is located in PCON register (Table 81). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

Table 81. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0			
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic	Description								
7	SMOD1	Serial port I Set to select		rate in mode 1	, 2 or 3.					
6	SMOD0	Cleared to se	Serial port Mode bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.							
5	-	Reserved The value re	ad from this b	it is indetermir	nate. Do not se	et this bit.				
4	POF		cognize next		o its nominal v	oltage. Can a	llso be set by			
3	GF1			Il purpose usa pose usage.	ge.					
2	GF0			Il purpose usa pose usage.	ge.					
1	PD	Cleared by h	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle mode b Cleared by h Set to enter i	ardware wher	n interrupt or re	eset occurs.					

Reset Value = 00X1 0000b Not bit addressable



Bootloader Architecture

Introduction

The bootloader manages a communication according to a specific defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.

Acronyms

ISP: In-system Programming SBV: Software Boot Vector BSB: Boot Status Byte SSB: Software Security Bit HW : Hardware Byte

ISP Protocol Description

Physical Layer

The UART used to transmit information has the following configuration:

- Character: 8-bit data
- Parity: none
- Stop: 1 bit
- Flow control: none
- Baud rate: autobaud is performed by the bootloader to compute the baud rate choosen by the host.

Frame Description The Serial Protocol is based on the Intel Hex-type records.

Intel Hex records consist of ASCII characters used to represent hexadecimal values and are summarized below.

Table 89. Intel Hex Type Frame

Record Mark ':'	Reclen	Load Offset	Record Type	Data or Info	Checksum
1 byte	1 byte	2 bytes	1 bytes	n byte	1 byte

- Record Mark:
 - Record Mark is the start of frame. This field must contain ':'.
- Reclen:
 - Reclen specifies the number of Bytes of information or data which follows the Record Type field of the record.
- Load Offset:
 - Load Offset specifies the 16-bit starting load offset of the data Bytes, therefore this field is used only for
 - Data Program Record (see Section "ISP Commands Summary").
 - Record Type:
 - Record Type specifies the command type. This field is used to interpret the remaining information within the frame. The encoding for all the current record types is described in Section "ISP Commands Summary".
- Data/Info:
 - Data/Info is a variable length field. It consists of zero or more Bytes encoded as pairs of hexadecimal digits. The meaning of data depends on the Record Type.
- Checksum:
 - The two's complement of the 8-bit Bytes that result from converting each pair of ASCII hexadecimal digits to one Byte of binary, and including the Reclen field to and including the last Byte of the Data/Info field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, from the Reclen field to and including the Checksum field, is zero.

		R			
Full Chip Erase	 The ISP command "Full Chip Erast some Bytes used by the boot BSB = FFh SBV = FCh SSB = FFh and finally erase the full Chip Erast does not affect 	loader at their default valu ne Software Security Bits			
Checksum Error	When a checksum error is detecte	d send 'X' followed with C	R&LF.		
Flow Description					
Overview	An initialization step must be performed after each Reset. After microcontroller reset, the bootloader waits for an autobaud sequence (see section 'autobaud performance').				
	When the communication is initialized the protocol depends on the record type requested by the host.				
	FLIP, a software utility to impleme Atmel the web site.	ent ISP programming with	a PC, is available from the		
Communication Initialization	The host initializes the communication by sending a 'U' character to help the bootloader to compute the baudrate (autobaud).				
	Figure 47. Initialization <u>Host</u>		<u>Bootloader</u>		
	Init Communication	"U" >	Performs Autobaud		
	If (not received "U") Else Communication Opened	≺ "U"	Sends Back 'U' Character		

MEI

Example

Programming	Data (write 55h at address 0010h in the Flash)
HOST	: 01 0010 00 55 9A
BOOTLOADER	: 01 0010 00 55 9A . CR LF
Programming	Atmel function (write SSB to level 2)
HOST	: 02 0000 03 05 01 F5
BOOTLOADER	: 02 0000 03 05 01 F5. CR LF
Writing Fram	me (write BSB to 55h)
HOST	: 03 0000 03 06 00 55 9F
BOOTLOADER	: 03 0000 03 06 00 55 9F . CR LF
HOST	: 03 0000 03 06 00 55 9F

API Call Description

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made through a common interface, PGM_MTP. The programming functions are selected by setting up the microcontroller's registers before making a call to PGM_MTP at FFF0h. Results are returned in the registers.

When several Bytes have to be programmed, it is highly recommended to use the Atmel API "PROGRAM DATA PAGE" call. Indeed, this API call writes up to 128 Bytes in a single command.

All routines for software access are provided in the C Flash driver available at Atmel's web site.

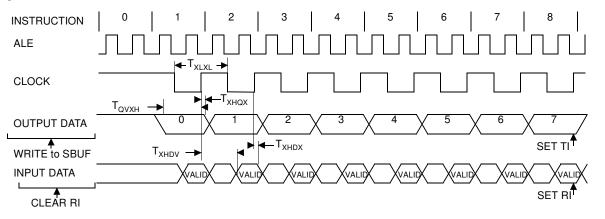
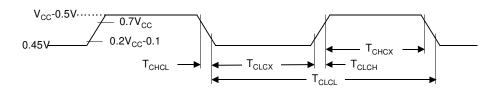
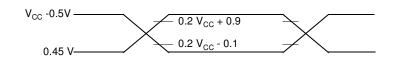

The API calls description and arguments are shown in Table 93.

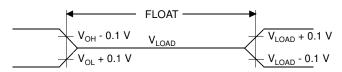
Table 93. API Call Summary


Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect
READ MANUF ID	00h	XXh	0000h	XXh	ACC = Manufacturer Id	Read Manufacturer identifier
READ DEVICE ID1	00h	XXh	0001h	XXh	ACC = Device Id 1	Read Device identifier 1
READ DEVICE ID2	00h	XXh	0002h	XXh	ACC = Device Id 2	Read Device identifier 2
READ DEVICE ID3	00h	XXh	0003h	XXh	ACC = Device Id 3	Read Device identifier 3
		XXh	DPH = 00h	00h	ACC = DPH	Erase block 0
			DPH = 20h			Erase block 1
			DPH = 40h			Erase block 2
ERASE BLOCK	01h		Address of byte to program			Program one Data Byte in user Flash
			XXh			Erase Software boot vector and boot status byte. (SBV = FCh and BSB = FFh)
	05h	XXh	DPH = 00h DPL = 00h	- 00h	ACC = SSB value	Set SSB level 1
PROGRAM SSB			DPH = 00h DPL = 01h			Set SSB level 2
FROGRAM 335			DPH = 00h DPL = 10h			Set SSB level 0
			DPH = 00h DPL = 11h			Set SSB level 1
PROGRAM BSB	06h	New BSB value	0000h	XXh	none	Program boot status byte
PROGRAM SBV	06h	New SBV value	0001h	XXh	none	Program software boot vector
READ SSB	07h	XXh	0000h	XXh	ACC = SSB	Read Software Security Byte
READ BSB	07h	XXh	0001h	XXh	ACC = BSB	Read Boot Status Byte
READ SBV	07h	XXh	0002h	XXh	ACC = SBV	Read Software Boot Vector

Shift Register Timing Waveforms



External Clock Drive Waveforms


AC Testing Input/Output Waveforms

INPUT/OUTPUT

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 must be changed to XTAL2/2.