

Welcome to E-XFL.COM

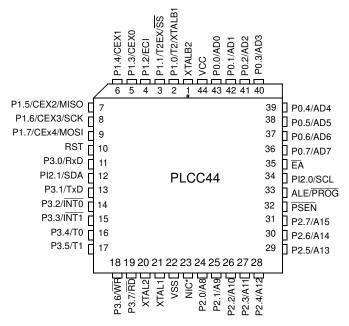
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at89c51ic2-slsul


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configurations

Figure 2. Pin Configurations

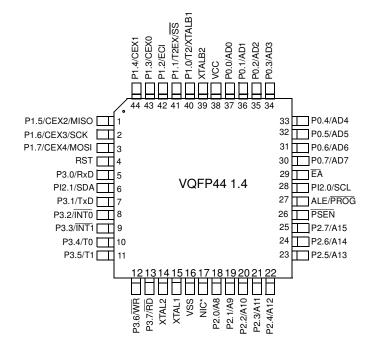


Table 28 shows the CCAPMn settings for the various PCA functions.

- Table 28.
 CCAPMn Registers (n = 0-4)
- CCAPM0 PCA Module 0 Compare/Capture Control Register (0DAh)
- CCAPM1 PCA Module 1 Compare/Capture Control Register (0DBh)
- CCAPM2 PCA Module 2 Compare/Capture Control Register (0DCh)
- CCAPM3 PCA Module 3 Compare/Capture Control Register (0DDh)
- CCAPM4 PCA Module 4 Compare/Capture Control Register (0DEh)

7	6	5	4	3	2	1	0				
-	ECOMn	CAPPn	CAPPn CAPNn MATn TOGn PWMn E								
Bit Number	Bit Mnemonic	Description									
7	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.					
6	ECOMn		-	nparator functi Itor function.	on.						
5	CAPPn			e edge capture e capture.).						
4	CAPNn			e edge captur ge capture.	e.						
3	MATn	compare/cap	oture register	of the PCA co causes the et, flagging an		s module's					
2	TOGn		oture register of	of the PCA co causes the	ounter with this	s module's					
1	PWMn	Cleared to di	Pulse Width Modulation Mode Cleared to disable the CEXn pin to be used as a pulse width modulated output Set to enable the CEXn pin to be used as a pulse width modulated output.								
0	CCF0	Cleared to di an interrupt.	sable compar			Enable CCF interrupt Cleared to disable compare/capture flag CCFn in the CCON register to generat an interrupt. Set to enable compare/capture flag CCFn in the CCON register to generate ar					

Reset Value = X000 0000b Not bit addressable

- **Table 31.** CCAPnL Registers (n = 0-4)
- CCAP0L PCA Module 0 Compare/Capture Control Register Low (0EAh)
- CCAP1L PCA Module 1 Compare/Capture Control Register Low (0EBh)
- CCAP2L PCA Module 2 Compare/Capture Control Register Low (0ECh)
- CCAP3L PCA Module 3 Compare/Capture Control Register Low (0EDh)

CCAP4L - PCA Module 4 Compare/Capture Control Register Low (0EEh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0	-	PCA Module CCAPnL Val		Capture Con	trol		

Reset Value = 0000 0000b Not bit addressable

Table 32. CH Register

CH - PCA Counter Register High (0F9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0	-	PCA counte CH Value	r				

Reset Value = 0000 0000b Not bit addressable

Table 33. CL Register

CL - PCA Counter Register Low (0E9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0	-	PCA Counte CL Value	er				

Reset Value = 0000 0000b Not bit addressable

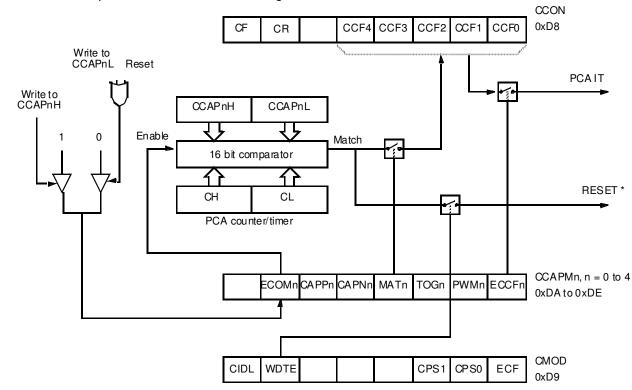


Figure 14. PCA Compare Mode and PCA Watchdog Timer

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

High Speed Output Mode In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 15).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

Table 45. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Descriptior	1						
7	SMOD1		Mode bit 1 fo t double baud	or UART I rate in mode	1, 2 or 3.				
6	SMOD0	Cleared to s	Mode bit 0 fo select SM0 bit t FE bit in SC ⁰	in SCON regi	ister.				
5	-	Reserved The value re	ead from this I	bit is indeterm	inate. Do not s	set this bit.			
4	POF		ecognize nex ware when V(0 to its nomina	al voltage. Ca	n also be set		
3	GF1		user for gener	ral purpose us urpose usage.					
2	GF0	Cleared by	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
1	PD	Cleared by	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Cleared by	Idle mode bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode.						

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

AMEL

Interrupt System

The AT89C51IC2 has a total of 10 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Two Wire Interface (I2C) interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 22.

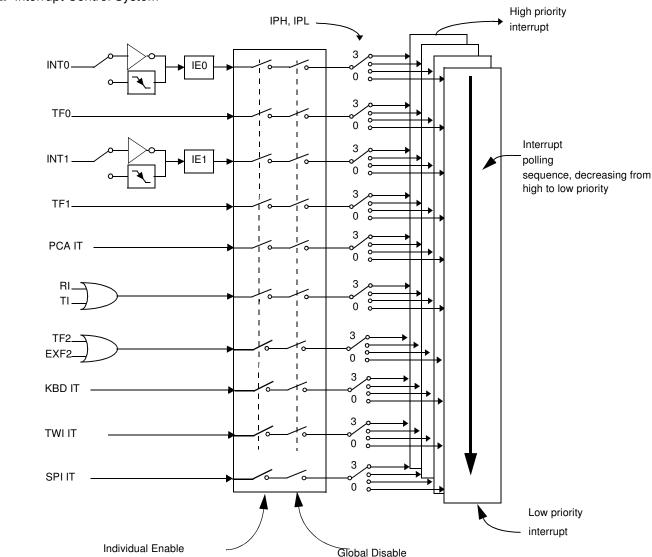


Figure 22. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 51 and Table 49). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 52) and in the Interrupt Priority High register (Table 50 and Table 51) shows the bit values and priority levels associated with each combination.

AT89C51IC2

Reset Recommendation to Prevent Flash Corruption

An example of bad initialization situation may occur in an instance where the bit ENBOOT in AUXR1 register is initialized from the hardware bit BLJB upon reset. Since this bit allows mapping of the bootloader in the code area, a reset failure can be critical.

If one wants the ENBOOT cleared in order to unmap the boot from the code area (yet due to a bad reset) the bit ENBOOT in SFRs may be set. If the value of Program Counter is accidently in the range of the boot memory addresses then a Flash access (write or erase) may corrupt the Flash on-chip memory.

It is recommended to use an external reset circuitry featuring power supply monitoring to prevent system malfunction during periods of insufficient power supply voltage (power supply failure, power supply switched off).

Idle Mode An instruction that sets PCON.0 indicates that it is the last instruction to be executed before going into Idle mode. In Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high level.

There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred during normal operation or during idle. For example, an instruction that activates idle can also set one or both flag bits. When idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

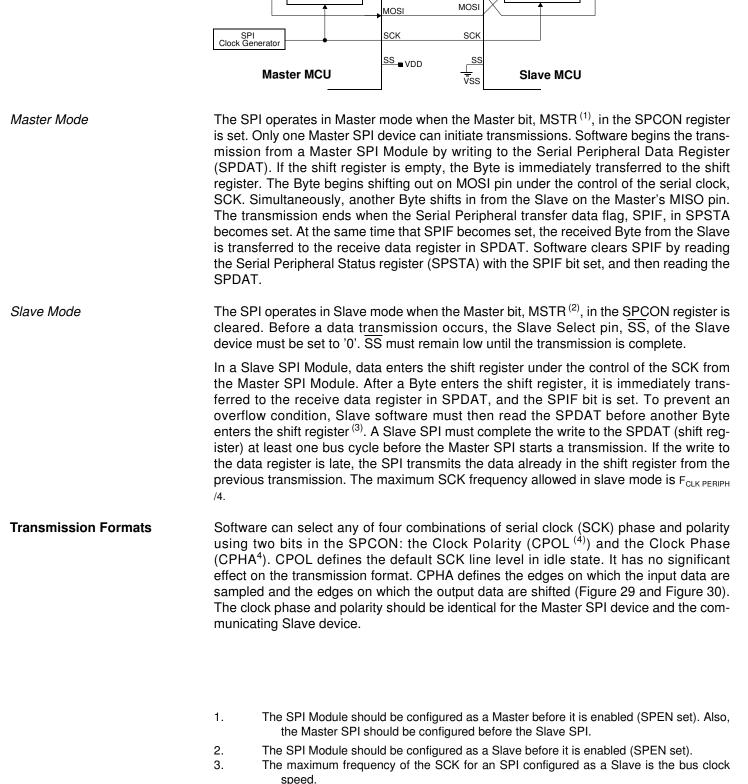
The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

Power-down Mode To save maximum power, a Power-down mode can be invoked by software (see PCON register).

In Power-down mode, the oscillator is stopped and the instruction that invoked Powerdown mode is the last instruction executed. The internal RAM and SFRs retain their value until the Power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from Powerdown. To properly terminate Power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

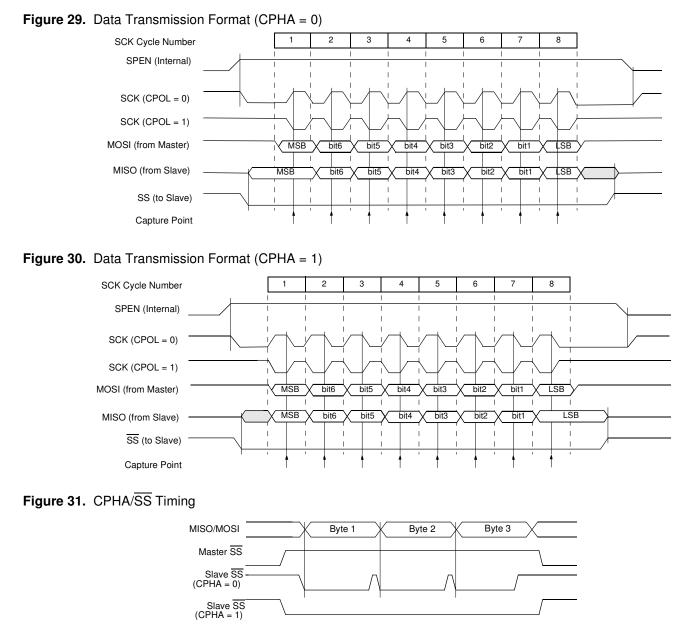
Only external interrupts INT0, INT1 and Keyboard Interrupts are useful to exit from Power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. When Keyboard Interrupt occurs after a power down mode, 1024 clocks are necessary to exit to power down mode and enter in operating mode.

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 25. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case, the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that puts the AT89C51IC2 into Power-down mode.



8-bit Shift register

MISO


MISC

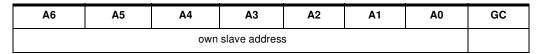
8-bit Shift register

4. Before writing to the CPOL and CPHA bits, the SPI should be disabled (SPEN = '0').

74 **AT89C51IC2**

As shown in Figure 29, the first SCK edge is the MSB capture strobe. Therefore, the Slave must begin driving its data before the first SCK edge, and a falling edge on the \overline{SS} pin is used to start the transmission. The \overline{SS} pin must be toggled high and then low between each Byte transmitted (Figure 31).

Figure 30 shows an SPI transmission in which CPHA is '1'. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore, the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmissions (Figure 31). This format may be preffered in systems having only one Master and only one Slave driving the MISO data line.



When the slave address and the direction bit have been transmitted and an acknowledgement bit has been received, the serial interrupt flag is set again and a number of status code in SSCS are possible. There are 40h, 48h or 38h for the master mode and also 68h, 78h or B0h if the slave mode was enabled (AA=logic 1). The appropriate action to be taken for each of these status code is detailed in Table 69. This scheme is repeated until a STOP condition is transmitted.

SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to Table 11. After a repeated START condition (state 10h) SSLC may switch to the master transmitter mode by loading SSDAT with SLA+W.

Slave Receiver Mode In the slave receiver mode, a number of data bytes are received from a master transmitter (Figure 40). To initiate the slave receiver mode, SSADR and SSCON must be loaded as follows:

Table 65. SSADR: slave receiver mode initialization

The upper 7 bits are the address to which SSLC will respond when addressed by a master. If the LSB (GC) is set SSLC will respond to the general call address (00h); otherwise it ignores the general call address.

 Table 66.
 SSCON: slave receiver mode initialization

CR2	SSIE	STA	STO	SI	AA	CR1	CR0
bit rate	1	0	0	0	1	bit rate	bit rate

CR0, CR1 and CR2 have no effect in the slave mode. SSIE must be set to enable SSLC. The AA bit must be set to enable the own slave address or the general call address acknowledgement. STA, STO and SI must be cleared.

When SSADR and SSCON have been initialised, SSLC waits until it is addressed by its own slave address followed by the data direction bit which must be at logic 0 (W) for SSLC to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag is set and a valid status code can be read from SSCS. This status code is used to vector to an interrupt service routine. The appropriate action to be taken for each of these status code is detailed in Table 70. The slave receiver mode may also be entered if arbitration is lost while SSLC is in the master mode (states 68h and 78h).

If the AA bit is reset during a transfer, SSLC will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, SSLC does not respond to its own slave address. However, the 2-wire bus is still monitored and address recognition may be resume at any time by setting AA. This means that the AA bit may be used to temporarily isolate SSLC from the 2-wire bus.

Slave Transmitter Mode In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (Figure 41). Data transfer is initialized as in the slave receiver mode. When SSADR and SSCON have been initialized, SSLC waits until it is addressed by its own

		Application software response						
Status	Status of the Two-			To SSC	ON			
Code SSSTA	wire Bus and Two- wire Hardware	To/From SSDAT	SSSTA	SSSTO	SSI	SSAA	Next Action Taken by Two-wire Hardware	
08h	A START condition has been transmitted	Write SLA+W	х	0	0	х	SLA+W will be transmitted.	
105	A repeated START	Write SLA+W	х	0	0	x	SLA+W will be transmitted.	
10h	condition has been transmitted	Write SLA+R	х	0	0	х	SLA+R will be transmitted. Logic will switch to master receiver mode	
18h	SLA+W has been transmitted; ACK has been received	Write data byte No SSDAT action No SSDAT action	0 1 0	0 0 1	0 0 0	X X X	Data byte will be transmitted. Repeated START will be transmitted. STOP condition will be transmitted and SSSTO flag will be reset.	
	been received	No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.	
20h	SLA+W has been transmitted; NOT ACK has been received	Write data byte No SSDAT action No SSDAT action No SSDAT action	0 1 0 1	0 0 1 1	0 0 0 0	x x x x	Data byte will be transmitted. Repeated START will be transmitted. STOP condition will be transmitted and SSSTO flag will be reset. STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.	
28h	Data byte has been transmitted; ACK has been received	Write data byte No SSDAT action No SSDAT action No SSDAT action	0 1 0 1	0 0 1 1	0 0 0	x x x x	Data byte will be transmitted. Repeated START will be transmitted. STOP condition will be transmitted and SSSTO flag will be reset. STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.	
30h	Data byte has been transmitted; NOT ACK has been received	Write data byte No SSDAT action No SSDAT action No SSDAT action	0 1 0 1	0 0 1 1	0 0 0 0	x x x x	Data byte will be transmitted. Repeated START will be transmitted. STOP condition will be transmitted and SSSTO flag will be reset. STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.	
38h	Arbitration lost in	No SSDAT action	0	0	0	x	Two-wire bus will be released and not addressed slave mode will be entered.	
-	SLA+W or data bytes	No SSDAT action	1	0	0	х	A START condition will be transmitted when the bus becomes free.	

Table 68. Status in master transmitter mode

AT89C51IC2

Table 77. SSADR (096h) - Synchronus Serial Address Register (read/write)

7	6	5	4	3	2	1	0
A7	A6	A5	A4	A3	A2	A1	A0

Bit Number	Bit Mnemonic	Description
7	A7	Slave Address bit 7
6	A6	Slave Address bit 6
5	A5	Slave Address bit 5
4	A4	Slave Address bit 4
3	A3	Slave Address bit 3
2	A2	Slave Address bit 2
1	A1	Slave Address bit 1
0	GC	General Call bit Clear to disable the general call address recognition. Set to enable the general call address recognition.

Table 78. SSADR Register - Reset value = FEh

Flash EEPROM Memory	The Flash memory increases EPROM and ROM functionality with in-circuit electrical erasure and programming. It contains 32K Bytes of program memory organized in 128 or 256 pages of 128 Bytes. This memory is both parallel and serial In-system Programmable (ISP). ISP allows devices to alter their own program memory in the actual end product under software control. A default serial loader (bootloader) program allows ISP of the Flash. The programming does not require external dedicated programming voltage. The necessary high programming voltage is generated on-chip using the standard V _{CC} pins of the microcontroller.
Features	 Flash EEPROM internal program memory. Boot vector allows user provided Flash loader code to reside anywhere in the Flash memory space. This configuration provides flexibility to the user. Default loader in Boot ROM allows programming via the serial port without the need of a user-provided loader. Up to 64K Byte external program memory if the internal program memory is disabled (EA = 0). Programming and erase voltage with standard 5V or 3V V_{CC} supply. Read/Programming/Erase: Byte-wise read without wait state Byte or page erase and programming (10 ms) Typical programming time (32K Bytes) in 10 s Parallel programming with 87C51 compatible hardware interface to programmer Programmable security for the code in the Flash 10K write cycles 10 years data retention
Flash Programming and Erasure	 The 32K Bytes Flash is programmed by Bytes or by pages of 128 Bytes. It is not necessary to erase a Byte or a page before programming. The programming of a Byte or a page includes a self erase before programming. There are three methods of programming the Flash memory: First, the on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the UART. Second, the Flash may be programmed or erased in the end-user application by calling low-level routines through a common entry point in the Boot ROM. Third, the Flash may be programmed using the parallel method by using a conventional EPROM programmer. The parallel programming method used by these devices is similar to that used by EPROM 87C51 but it is not identical and the commercially available programmers need to have support for the AT89C51IC2. The bootloader and the Application Programming Interface (API) routines are located in the BOOT ROM.

Flash Registers and Memory Map

The AT89C51IC2 Flash memory uses several registers for its management:

- Hardware registers can only be accessed through the parallel programming modes which are handled by the parallel programmer.
- Software registers are in a special page of the Flash memory which can be accessed through the API or with the parallel programming modes. This page, called "Extra Flash Memory", is not in the internal Flash program memory addressing space.

Hardware Register The only hardware register of the AT89C51IC2 is called Hardware Security Byte (HSB).

7 6 5 4 3 2 1 0 X2 BLJB osc XRAM LB2 LB1 LB0 Bit Bit Number Mnemonic Description X2 Mode Programmed ('0' value) to force X2 mode (6 clocks per instruction) after reset. 7 Х2 Unprogrammed ('1' Value) to force X1 mode, Standard Mode, after reset (Default). Boot Loader Jump Bit Unprogrammed ('1' value) to start the user's application on next reset at address BLJB 6 0000h. Programmed ('0' value) to start the boot loader at address F800h on next reset (Default). Oscillator Bit OSC 5 Programmed to allow oscillator B at startup Unprogrammed this bit to allow oscillator A at startup (Default). 4 Reserved _ XRAM config bit (only programmable by programmer tools) XRAM 3 Programmed to inhibit XRAM Unprogrammed, this bit to valid XRAM (Default) User Memory Lock Bits (only programmable by programmer tools) 2-0 LB2-0 See Table 85

Table 84. Hardware Security Byte (HSB)

Boot Loader Jump Bit (BLJB)

One bit of the HSB, the BLJB bit, is used to force the boot address:

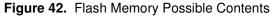
- When this bit is programmed ('1' value) the boot address is 0000h.
- When this bit is unprogrammed ('1' value) the boot address is F800h. By default, this bit is unprogrammed and the ISP is enabled.

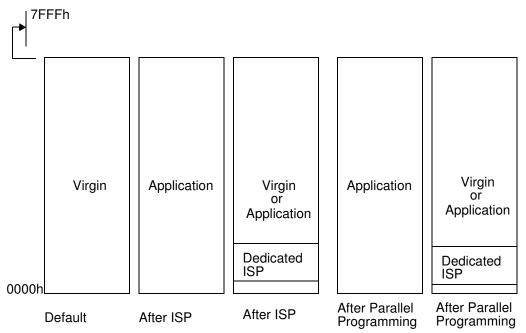
Flash Memory Lock Bits

The three lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 85.

Table 88. Program Lock Bits of the SSB

Program	n Lock I	Bits	
Security level	LB0	LB1	Protection Description
1	U	U	No program lock features enabled.
2	Р	U	ISP programming of the Flash is disabled.
3	Х	Р	Same as 2, also verify through ISP programming interface is disabled.


Note: U: unprogrammed or "one" level.


P: programmed or "zero" level.

X: don't care

WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory Status AT89C51IC2 parts are delivered in standard with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized on Figure 42.

Memory Organization

In the AT89C51IC2, the lowest 32K of the 64 KB program memory address space is filled by internal Flash.

When the \overline{EA} pin is high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 32K upward automatic since external instruction fetches occur automatically when the program counter exceeds 7FFFh (32K). If the \overline{EA} pin is tied low, all program memory fetches are from external memory.

Bootloader Functionality

Introduction

The bootloader can be activated by two means: Hardware conditions or regular boot process.

The Hardware conditions (EA = 1, PSEN = 0) during the Reset# falling edge force the on-chip bootloader execution. This allows an application to be built that will normally execute the end user's code but can be manually forced into default ISP operation.

As PSEN is an output port in normal operating mode (running user application or boorloader code) after reset, it is recommended to release PSEN after falling edge of reset signal. The hardware conditions are sampled at reset signal falling edge, thus they can be released at any time when reset input is low.

To ensure correct microcontroller startup, the PSEN pin should not be tied to ground during power-on (See Figure 45).

Figure 45. Hardware conditions typical sequence during power-on.

VCC	
PSEN	
RST	

The on-chip bootloader boot process is shown in Figure 46.

	Purpose
Hardware Conditions	The Hardware Conditions force the bootloader execution whatever BLJB, BSB and SBV values.
	The Boot Loader Jump Bit forces the application execution. BLJB = 0 => Boot loader execution. BLJB = 1 => Application execution.
BLJB	The BLJB is a fuse bit in the Hardware Byte.
	That can be modified by hardware (programmer) or by software (API).
	Note:
	The BLJB test is perform by hardware to prevent any program execution.
SBV	The Software Boot Vector contains the high address of custumer bootloader stored in the application.
	SBV = FCh (default value) if no custumer bootloader in user Flash.
	Note:
	The costumer bootloader is called by JMP [SBV]00h instruction.

		R								
Full Chip Erase	 The ISP command "Full Chip Erase" erases all User Flash memory (fills with FFh) and sets some Bytes used by the bootloader at their default values: BSB = FFh SBV = FCh SSB = FFh and finally erase the Software Security Bits The Full Chip Erase does not affect the bootloader. 									
Checksum Error	When a checksum error is detected send 'X' followed with CR&LF.									
Flow Description										
Overview	An initialization step must be performed after each Reset. After microcontroller reset, the bootloader waits for an autobaud sequence (see section 'autobaud performance').									
	When the communication is initialized the protocol depends on the record type requested by the host.									
	FLIP, a software utility to implement ISP programming with a PC, is av Atmel the web site.									
Communication Initialization	The host initializes the communication by sending a 'U' character to help the bootloader to compute the baudrate (autobaud).									
	Figure 47. Initialization <u>Host</u>		<u>Bootloader</u>							
	Init Communication	"U" >	Performs Autobaud							
	If (not received "U") Else Communication Opened	≺ "U"	Sends Back 'U' Character							

MEI

Autobaud Performances

The ISP feature allows a wide range of baud rates in the user application. It is also adaptable to a wide range of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in a received character. This information is then used to program the baud rate in terms of timer counts based on the oscillator frequency. The ISP feature requires that an initial character (an uppercase U) be sent to the AT89C51IC2 to establish the baud rate. Table 91 shows the autobaud capability.

Frequency (MHz) Baudrate (bit/s)	1.8432	2	2.4576	3	3.6864	4	5	6	7.3728	8
2400	ОК	ОК	OK	OK	OK	OK	OK	ОК	ОК	OK
4800	ОК	-	OK	OK	ОК	ОК	ОК	OK	ОК	ОК
9600	ОК	-	OK	OK	OK	OK	OK	OK	ОК	ОК
19200	ОК	-	ОК	OK	ОК	-	-	ОК	ОК	OK
38400	-	-	ОК		ОК	-	ОК	OK	ОК	
57600	-	-	-	-	ОК	-	-	-	ОК	
115200	-	-	-	-	-	-	-	-	ОК	
Frequency (MHz)										
Baudrate (bit/s)	10	11.0592	12	14.318	14.746	16	20	24	26.6	
2400	ОК	ОК	ОК	OK	ОК	ОК	ОК	ОК	ОК	
4800	ОК	ОК	ОК	OK	ОК	ОК	ОК	ОК	ОК	
9600	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ок	
19200	ОК	ОК	ОК	OK	ОК	ОК	ОК	ОК	ОК	
38400	-	ОК	OK	OK	ОК	OK	OK	OK	ОК	
57600	-	ОК	-	OK	ОК	OK	OK	OK	ОК	
115200	-	ОК	-	OK	OK	-	-	-	-	

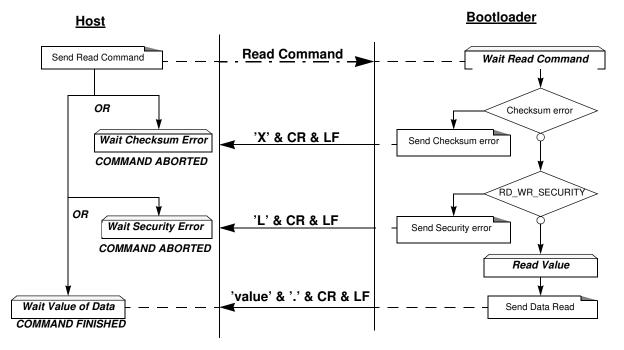
Table 91. Autobaud Performances

Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by the bootloader.

Example

Display data from address 0000h to 0020h


HOST	: 05 0000 04 0000 0020 00 D7
BOOTLOADER	: 05 0000 04 0000 0020 00 D7
BOOTLOADER	0000=data CR LF (16 data)
BOOTLOADER	0010=data CR LF (16 data)
BOOTLOADER	0020=data CR LF (1 data)

Read Function

- This flow is similar for the following frames:
- Reading Frame
- EOF Frame/Atmel Frame (only reading Atmel Frame)

Description

Figure 52. Read Flow

Example

Read function (read SBV)											
HOST	:	02	0000	05	07	02	FO				
BOOTLOADER	:	02	0000	05	07	02	FO	Value		CR	LF
Atmel Read	func	tic	on (r	ead	lВo	oot	loa	ıder v	er	sic	on)
HOST	:	02	0000	01	02	00	FΒ				
BOOTLOADER	:	02	0000	01	02	00	FB	Value		CR	LF

124 AT89C51IC2

Datasheet Revision History

Changes from Rev. A 01/04 - Rev. B 01/06

1. Added green product ordering information.

Changes from Rev. B 01/06 - Rev. C 06/06

Changes from Rev. C 06/06 - Rev. D 02/08

- 1. Correction to ordering information concerning product marking on green products.
- 1. Removed non green part numbers from ordering information.

