

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ic2-slsum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 10. Two-Wire Interface Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SSCON	93h	Synchronous Serial control	SSCR2	SSPE	SSSTA	SSSTO	SSI	SSAA	SSCR1	SSCR0
SSCS	94h	Synchronous Serial Status	SSC4	SSC3	SSC2	SSC1	SSC0	0	0	0
SSDAT	95h	Synchronous Serial Data	SSD7	SSD6	SSD5	SSD4	SSD3	SSD2	SSD1	SSD0
SSADR	96h	Synchronous Serial Address	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSGC

Table 11. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

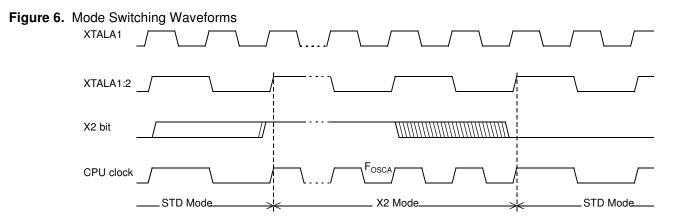
Table 18. Overview (Continued)

PCON.1	PCON.0	OscBEn	OscAEn	CKS	Selected Mode	Comment
0	1	х	1	1	IDLE MODE A	The CPU is off, OscA supplies the peripherals, OscB can be disabled (OscBEn = 0)
0	1	1	х	0	IDLE MODE B	The CPU is off, OscB supplies the peripherals, OscA can be disabled (OscAEn = 0)
1	х	х	1	х	POWER DOWN MODE	The CPU and peripherals are off, OscA and OscB are stopped

Design Considerations

Oscillators Control

- PwdOscA and PwdOscB signals are generated in the Clock generator and used to control the hard blocks of oscillators A and B.
- PwdOscA ='1' stops OscA
- PwdOscB ='1' stops OscB
- The following tables summarize the Operating modes:


PCON.1	OscAEn	PwdOscA	Comments
0	1	0	OscA running
1	х	1	OscA stopped by Power-down mode
0	0	1	OscA stopped by clearing OscAEn
PCON.1	OscBEn	PwdOscB	Comments
PCON.1 0	OscBEn 1	PwdOscB 0	Comments OscB running
	OscBEn 1 X		

Prescaler Divider

- A hardware RESET puts the prescaler divider in the following state:
 - CKRL = FFh: $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}/2$ (Standard C51 feature)
- CKS signal selects OSCA or OSCB: F_{CLK OUT} = F_{OSCA} or F_{OSCB}
- Any value between FFh down to 00h can be written by software into CKRL register in order to divide frequency of the selected oscillator:
 - CKRL = 00h: minimum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}/1020$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}/510$ (X2 Mode)
 - $\begin{array}{ll} & \mathsf{CKRL} = \mathsf{FFh:} \mbox{ maximum frequency} \\ & \mathsf{F}_{\mathsf{CLK}\ \mathsf{CPU}} = \mathsf{F}_{\mathsf{CLK}\ \mathsf{PERIPH}} = \mathsf{F}_{\mathsf{OSCA}}/2 \mbox{ (Standard Mode)} \\ & \mathsf{F}_{\mathsf{CLK}\ \mathsf{CPU}} = \mathsf{F}_{\mathsf{CLK}\ \mathsf{PERIPH}} = \mathsf{F}_{\mathsf{OSCA}} \mbox{ (X2 Mode)} \end{array}$

The X2 bit in the CKCON0 register (see Table 19) allow to switch from 12 clock periods per instruction to 6 clock periods and vice versa. At reset, the speed is setting according to X2 bit of Hardware Security Byte (HSB). By default, Standard mode is actived. Setting the X2 bit activates the X2 feature (X2 mode).

The T0X2, T1X2, T2X2, UartX2, PcaX2, WdX2 and I2CX2 bits in the CKCON0 register (See Table 19.) and SPIX2 bit in the CKCON1 register (see Table 20) allow to switch from standard peripheral speed (12 clock periods per peripheral clock cycle) to fast peripheral speed (6 clock periods per peripheral clock cycle). These bits are active only in X2 mode.

More information about the X2 mode can be found in the application note "How to take advantage of the X2 features in TS80C51 microcontroller?"

Table 19. CKCON0 Register

CKCON0 - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0			
SPIX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2			
Bit Number	Bit Mnemonic	Descriptior	Description							
7	I2CX2	X2 is low, th Cleared to s	2-wire clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.							
6	WDX2	when X2 is Cleared to s	Watchdog clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.							
5	PCAX2	CPU clock > Cleared to s	Programmable Counter Array clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.							
4	SIX2	CPU clock X Cleared to s	Enhanced UART clock (Mode 0 and 2) (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.							
3	T2X2	X2 is low, th Cleared to s	is bit has no e elect 6 clock	ol bit is validat effect) periods per pe iods per perip	eripheral clock	cycle.	is set; when			
2	T1X2	X2 is low, th Cleared to s	is bit has no e elect 6 clock	ol bit is validat effect) periods per pe iods per peripl	eripheral clock	cycle.	is set; when			
1	T0X2	X2 is low, th Cleared to s	Timer0 clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.							
0	X2	all the perip Set to selec individual pe Programme	herals. t 6clock perio eripherals "X2	e after Power-	e cycle (X2 m	ode) and to e	nable the			

Reset Value = 0000 000'HSB.X2'b Not bit addressable

Programmable Counter Array PCA

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any one of the following signals:

- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 6
- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 2
- Timer 0 overflow
- External input on ECI (P1.2)

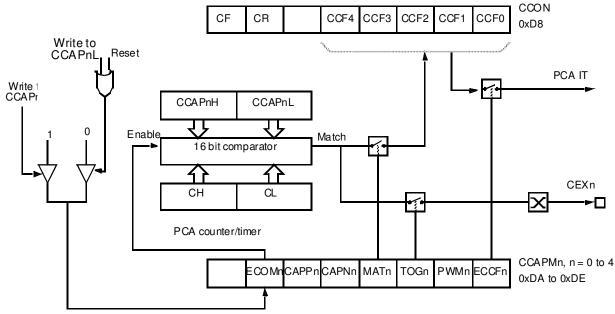
Each compare/capture modules can be programmed in any one of the following modes:

- rising and/or falling edge capture
- software timer
- high-speed output
- pulse width modulator

Module 4 can also be programmed as a watchdog timer (See Section "PCA Watchdog Timer", page 46).

When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If the port is not used for the PCA, it can still be used for standard I/O.


PCA component	External I/O Pin
16-bit Counter	P1.2 / ECI
16-bit Module 0	P1.3 / CEX0
16-bit Module 1	P1.4 / CEX1
16-bit Module 2	P1.5 / CEX2
16-bit Module 3	P1.6 / CEX3

The PCA timer is a common time base for all five modules (See Figure 11). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 26) and can be programmed to run at:

- 1/6 the peripheral clock frequency (F_{CLK PERIPH})
- 1/2 the peripheral clock frequency (F_{CLK PERIPH})
- The Timer 0 overflow
- The input on the ECI pin (P1.2)

Figure 15. PCA High Speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

Pulse Width Modulator Mode All of the PCA modules can be used as PWM outputs. Figure 16 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Baud Rates	F _{OSCA} = 1	6.384 MHz	F _{OSCA} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

 Table 38.
 Example of computed value when X2=1, SMOD1=1, SPD=1

 Table 39.
 Example of computed value when X2=0, SMOD1=0, SPD=0

Baud Rates	F _{OSCA} = 16	6.384 MHz	F _{OSCA} = 24MHz		
	BRL	BRL Error (%)		Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 20.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 46.)

Table 53. IPH1 Register

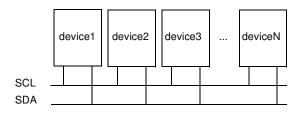
IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0
-	-	-	-	-	SPIH	тwін	KBDH
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.	
6	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.	
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.	
4	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.	
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.	
2	SPIH	SPIHSPILPr 0 0 Low 0 1 1 0	t Priority Hig i <u>ority Level</u> vest hest	ıh bit			
1	TWIH	TWI interrupt Priority High bit TWIHTWILPriority Level 0 0 0 1 1 0 1 1 Highest					
0	KBDH	<u>KB DHKBDL</u> 0 0 Lov 0 1 1 0	nterrupt Prior Priority Level west hest				

Reset Value = XXXX X000b Not bit addressable

	drive the network. The Master may select each Slave device by software through port pins (Figure 27). To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master for a transmission.
	In a Master configuration, the \overline{SS} line can be used in conjunction with the MODF flag in the SPI Status register (SPSTA) to prevent multiple masters from driving MOSI and SCK (see Error conditions).
	A high level on the $\overline{\text{SS}}$ pin puts the MISO line of a Slave SPI in a high-impedance state.
	The \overline{SS} pin could be used as a general-purpose if the following conditions are met:
	 The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of configuration can be found when only one Master is driving the network and there is no way that the SS pin could be pulled low. Therefore, the MODF flag in the SPSTA will never be set⁽¹⁾.
	• The Device is configured as a Slave with CPHA and SSDIS control bits set ⁽²⁾ . This kind of configuration can happen when the system comprises one Master and one Slave only. Therefore, the device should always be selected and there is no reason that the Master uses the SS pin to select the communicating Slave device.
	Note: 1. Clearing SSDIS control bit does not clear MODF.
	2. Special care should be taken not to set SSDIS control bit when CPHA = '0' because in this mode, the \overline{SS} is used to start the transmission.
Baud Rate	In Master mode, the baud rate can be selected from a baud rate generator which is con- trolled by three bits in the SPCON register: SPR2, SPR1 and SPR0.The Master clock is selected from one of seven clock rates resulting from the division of the internal clock by 2, 4, 8, 16, 32, 64 or 128.
	Table 56 gives the different clock rates selected by SPR2:SPR1:SPR0.
	Table 56. SPI Master Baud Rate Selection

SPR2	SPR1	SPR0	Clock Rate	Baud Rate Divisor (BD)
0	0	0	F _{CLK PERIPH} /2	2
0	0	1	F _{CLK PERIPH} /4	4
0	1	0	F _{CLK PERIPH} /8	8
0	1	1	F _{CLK PERIPH} /16	16
1	0	0	F _{CLK PERIPH} /32	32
1	0	1	F _{CLK PERIPH} /64	64
1	1	0	F _{CLK PERIPH} /128	128
1	1	1	Don't Use	No BRG


 Table 56.
 SPI Master Baud Rate Selection

2-wire Interface (TWI)

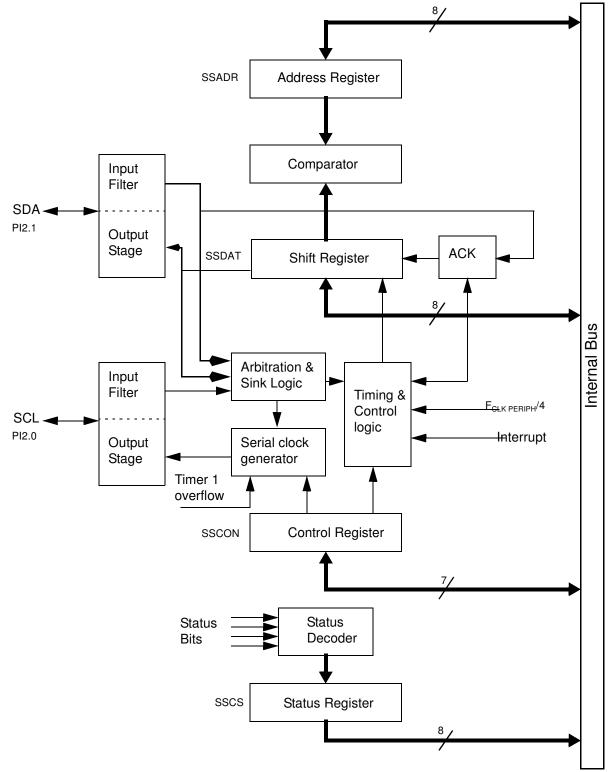

This section describes the 2-wire interface. In the rest of the section SSLC means Twowire. The 2-wire bus is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The serial data transfer is limited to 400Kbit/s in standard mode. Various communication configuration can be designed using this bus. Figure 35 shows a typical 2-wire bus configuration. All the devices connected to the bus can be master and slave.

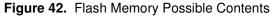
Figure 35. 2-wire Bus Configuration

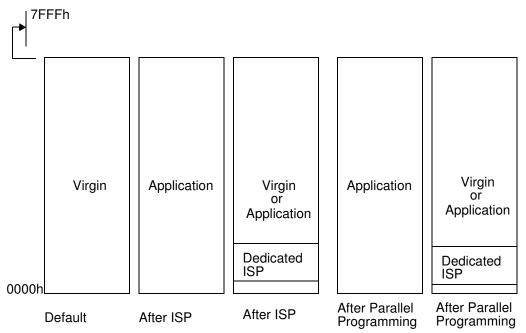
AT89C51IC2

		Application S	Software	e Respo	nse		
Status		To/from SSDAT		To SS	CON		
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA	STO	SI	AA	Next Action Taken By 2-wire Software
		Read data byte or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own
		Read data byte or	0	0	0	1	SLA will be recognised; GCA will be recognised if GC=logic 1
98h	Previously addressed with general call; data has been received; NOT ACK has been returned	Read data byte or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		Read data byte	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free
		No SSDAT action or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own
		No SSDAT action or	0	0	0	1	SLA will be recognised; GCA will be recognised if GC=logic 1
A0h	A STOP condition or repeated START condition has been received while still addressed as slave	No SSDAT action or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		No SSDAT action	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free

Table 88. Program Lock Bits of the SSB

Program Lock Bits		Bits	
Security level	LB0	LB1	Protection Description
1	U	U	No program lock features enabled.
2	Р	U	ISP programming of the Flash is disabled.
3	Х	Р	Same as 2, also verify through ISP programming interface is disabled.


Note: U: unprogrammed or "one" level.


P: programmed or "zero" level.

X: don't care

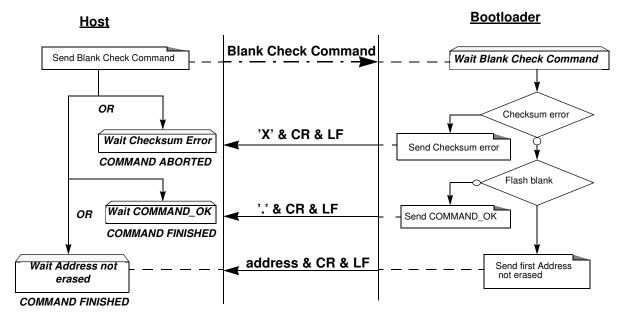
WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory Status AT89C51IC2 parts are delivered in standard with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized on Figure 42.

Memory Organization

In the AT89C51IC2, the lowest 32K of the 64 KB program memory address space is filled by internal Flash.

When the \overline{EA} pin is high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 32K upward automatic since external instruction fetches occur automatically when the program counter exceeds 7FFFh (32K). If the \overline{EA} pin is tied low, all program memory fetches are from external memory.



Blank Check Command

Description

Figure 50. Blank Check Flow

Example

Blank	Check	ok												
HOST		:	05	0000	04	0000	7fff	01	78					
BOOTL	OADER	:	05	0000	04	0000	7fff	01	78	•	CR	LF		
Blank	Check	ko	at	addr	ess	XXXX	x							
HOST		:	05	0000	04	0000	7fff	01	78					
BOOTLO	ADER	:	05	0000	04	0000	7fff	01	78	XX	XX	CR	LF	
Blank	Check	wit	th d	check	sur	n err	or							
HOST		:	05	0000	04	0000	7fff	01	70					
BOOTL	OADER	:	05	0000	04	0000	7fff	01	70	Х	CR	LF	CR	LF

AT89C51IC2

Table 93. API Call Summary (Continued)

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect
PROGRAM DATA PAGE	09h	Number of byte to program	Address of the first byte to program in the Flash memory	Address in XRAM of the first data to program	ACC = 0: DONE	Program up to 128 bytes in user Flash. Remark: number of bytes to program is limited such as the Flash write remains in a single 128 bytes page. Hence, when ACC is 128, valid values of DPL are 00h, or, 80h.
PROGRAM X2 FUSE	0Ah	Fuse value 00h or 01h	0008h	XXh	none	Program X2 fuse bit with ACC
PROGRAM BLJB FUSE	0Ah	Fuse value 00h or 01h	0004h	XXh	none	Program BLJB fuse bit with ACC
READ HSB	0Bh	XXh	XXXXh	XXh	ACC = HSB	Read Hardware Byte
READ BOOT ID1	0Eh	XXh	DPL = 00h	XXh	ACC = ID1	Read boot ID1
READ BOOT ID2	0Eh	XXh	DPL = 01h	XXh	ACC = ID2	Read boot ID2
READ BOOT VERSION	0Fh	XXh	XXXXh	XXh	ACC = Boot_Version	Read bootloader version

$T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{SS} = 0V$;

 V_{CC} =2.7V to 5.5V and F = 0 to 40 MHz (both internal and external code execution)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$V_{CC} = 5V \pm 10\%$ $I_{OH} = -200 \ \mu\text{A}$ $I_{OH} = -3.2 \ \text{mA}$ $I_{OH} = -7.0 \ \text{mA}$
		0.9 V _{CC}			V	VCC = 2.7V to 5.5V I _{OH} = -10 μA
R _{RST}	RST Pulldown Resistor	50	200 ⁽⁵⁾	250	kΩ	
I_{IL}	Logical 0 Input Current ports 1, 2, 3, 4 and 5			-50	μA	V _{IN} = 0.45V
ILI	Input Leakage Current for P0 only			±10	μA	$0.45V < V_{IN} < V_{CC}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4			-650	μA	V _{IN} = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 3 MHz TA = 25°C
I _{PD}	Power Down Current		100	150	μA	$4.5V < V_{CC} < 5.5V^{(3)}$
I _{CCOP}	Power Supply Current on normal mode			0.4 x Frequency (MHz) + 5	mA	$V_{\rm CC} = 5.5 V^{(1)}$
	Power Supply Current on idle mode			0.3 x Frequency (MHz) + 5	mA	$V_{\rm CC} = 5.5 V^{(1)}$
I _{CCProg}	Power Supply Current during flash Write / Erase		0.4 x Frequency (MHz) + 20		mA	V _{CC} = 5.5V ⁽⁸⁾

Notes: 1. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 56.), $V_{IL} = V_{SS} + 0.5V$,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used (see Figure 53).

- 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} 0.5V; XTAL2 N.C; Port 0 = V_{CC}; \overline{EA} = RST = V_{SS} (see Figure 54).
- Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 55).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. Typical are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

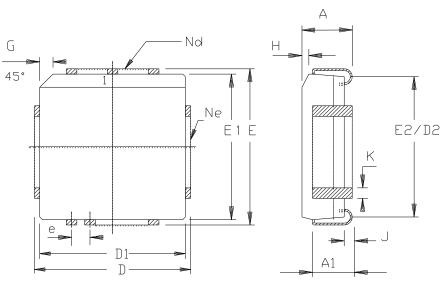
 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 7. For other values, please contact your sales office.
- 8. Icc Flash Write operation current while an on-chip flash page write is on going.
- 9. Flash Retention is guaranteed with the same formula for $V_{\rm CC}$ Min down to 0.

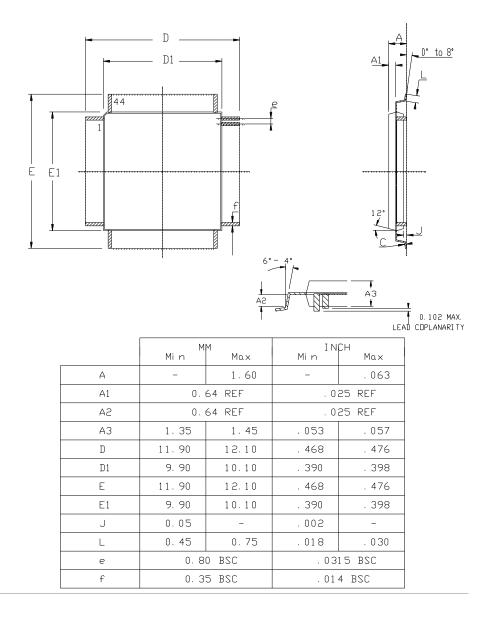
Symbol	-М			-L	Units
	Min	Max	Min	Мах	
Т	25		25		ns
T _{LHLL}	35		35		ns
T _{AVLL}	5		5		ns
T _{LLAX}	5		5		ns
T _{LLIV}		n 65		65	ns
T _{LLPL}	5		5		ns
T _{PLPH}	50		50		ns
T _{PLIV}		30		30	ns
T _{PXIX}	0		0		ns
T _{PXIZ}		10		10	ns
T _{AVIV}		80		80	ns
T _{PLAZ}		10		10	ns


 Table 95.
 AC Parameters for a Fix Clock

Symbol	Туре	Standard Clock	X2 Clock	X Parameter for - M Range	X Parameter for -L Range	Units
T _{LHLL}	Min	2 T - x	T - x	15	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	20	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	20	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	35	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	15	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	25	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	45	45	ns
T _{PXIX}	Min	х	х	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	15	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	45	45	ns
T _{PLAZ}	Max	х	х	10	10	ns

Package Drawing

PLCC44


	M	1M ·	IN	СН	
A	4.20	4. 57	. 165	. 180	
A1	2. 29	3.04	. 090	. 120	
D	17.40	17.65	. 685	. 695	
D1	16.44	16.66	. 647	. 656	
D2	14.99	16.00	. 590	. 630	
E	17.40	17.65	. 685	. 695	
E1	16.44	16.66	. 647	. 656	
E5	14.99	16.00	. 590	. 630	
e	1.27	BSC	. 050	BSC	
G	1.07	1.22	. 042	. 048	
н	1.07	1.42	. 042	.056	
J	0.51	-	. 020	-	
К	0.33	0.53	. 013	. 021	
Nd	11		11		
Ne	1	1	11		
P	KG STD	00			

Package Drawing

VQFP44

DC Parameters for Low Voltage AC Parameters	
Ordering Information	140
Package Drawing	
PLCC44	141
Package Drawing	142
Datasheet Revision History	
Changes from Rev. A 01/04 - Rev. B 01/06	143
Changes from Rev. B 01/06 - Rev. C 06/06	143
Changes from Rev. C 06/06 - Rev. D 02/08	143
Table of Contents	i