
E. Renesas Electronics America Inc - UPD78F0401GA-GAM-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0401ga-gam-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

[MEMO]

13.4.4 Calculation of baud rate	
CHAPTER 14 SERIAL INTERFACE UART6	335
14.1 Functions of Serial Interface UART6	335
14.2 Configuration of Serial Interface UART6	339
14.3 Registers Controlling Serial Interface UART6	
14.4 Operation of Serial Interface UART6	353
- 14.4.1 Operation stop mode	
14.4.2 Asynchronous serial interface (UART) mode	
14.4.3 Dedicated baud rate generator	
14.4.4 Calculation of baud rate	
CHAPTER 15 LCD CONTROLLER/DRIVER	
15.1 Functions of LCD Controller/Driver	
15.2 Configuration of LCD Controller/Driver	
15.3 Registers Controlling LCD Controller/Driver	
15.4 Setting LCD Controller/Driver	
15.5 LCD Display Data Memory	
15.6 Common and Segment Signals	
15.7 Display Modes	
15.7.1 Static display example	
15.7.2 Two-time-slice display example	
15.7.3 Three-time-slice display example	
15.7.4 Four-time-slice display example	
15.8 Supplying LCD Drive Voltages VLc0, VLc1, VLc2 and VLc3	
15.8.1 Internal resistance division method	
15.8.2 External resistance division method	
CHAPTER 16 MANCHESTER CODE GENERATOR	410
16.1 Functions of Manchester Code Generator	410
16.2 Configuration of Manchester Code Generator	410
16.3 Registers Controlling Manchester Code Generator	413
16.4 Operation of Manchester Code Generator	416
16.4.1 Operation stop mode	416
16.4.2 Manchester code generator mode	417
16.4.3 Bit sequential buffer mode	
CHAPTER 17 INTERRUPT FUNCTIONS	435
17.1 Interrupt Function Types	435
17.2 Interrupt Sources and Configuration	
17.3 Registers Controlling Interrupt Functions	
17.4 Interrupt Servicing Operations	
17.4.1 Maskable interrupt acknowledgment	
17.4.2 Software interrupt request acknowledgment	
17.4.3 Multiple interrupt servicing	
17.4.4 Interrupt request hold	

78K0/LF3

Part Number

(3/3)

RAM (KB) 0.75 1 1 2 2 0.75 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 1 1 1 <th1< th=""> 1</th1<>					D78F0	47x		μPD78F048x					μPD78F049x					
RAM (KB) 0.75 1 1 2 2 0.75 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 1 2 2 0.75 1 1 1 2 2 0.75 1 1 1 1 2 2 1	Iter	n							1		80 Pins	3						
Power supply voltage Void = 1.8 to 5.5 V Regulator Provided Minimum instruction execution time 0.2 µs (10 MH2: Void = 2.7 to 5.5 V/3 0.4 µs (5 MH2: Void = 1.8 to 5.5 V) execution time 10 MH2: Void = 2.7 to 5.5 V/3 0.4 µs (5 MH2: Void = 1.8 to 5.5 V) execution time 10 MH2: Void = 2.7 to 5.5 V/3 0.4 µs (5 MH2: Void = 1.8 to 5.5 V) execution time 2.7 to 5.5 V/3 0.4 µs (5 MH2: Void = 1.8 to 5.5 V) execution time 2.7 to 5.5 V/3 0.4 µs (5 MH2: Void = 1.8 to 5.5 V) Subclock 32.768 kH2 (TYP.): Void = 1.8 to 5.5 V Subclock 32.768 kH2 (TYP.): Void = 1.8 to 5.5 V Itemaal low-speed descillation clock 3 ch Bits (TM0) 1 ch Bits (TM1) 3 ch Bits (TM1) 3 ch Bits (TM1) 1 ch WDT 1 ch MAUT supporting LIN- treelve 3-wire CSI 1 ch Segment signal 40 (36) ^{MM3} 32 (28) ^{MM3} Common signal 4 (8) ^{MM43} 32 (28) ^{MM3} Common signal 4 (8) ^{MM43} 32 (28) ^{MM3} Common signal 20 21 22 Metand	Fla	sh r	nemory (KB)	16	24	32	48	60	16	24	32	48	60	16	24	32	48	60
Regulator Provided Minimum instruction execution time 0.2 µs (10 MHz: Voo = 2.7 to 5.5 V/) 0.4 µs (5 MHz: Voo = 1.8 to 5.5 V) Image: State of the system oscillation clock 10 MHz: Voo = 2.7 to 5.5 V/5 MHz: Voo = 1.8 to 5.5 V Image: State of the system oscillation clock 10 MHz: Voo = 2.7 to 5.5 V/5 MHz: Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.6 V Subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.6 V Subclock 32.08 kHz (TYP.): Voo = 1.8 to 5.6 V Subclock 32.08 kHz (TYP.): Voo = 1.8 to 5.6 V Subclock 32.08 kHz (TYP.): Voo = 1.8 to 5.6 V Subclock 32.08 kHz (TYP.): Voo = 1.8 to 5.6 V Subclock 32.08 kHz (TYP.): Voo = 1.8 to 5.6 V Subclock 32.08 kHz (TYP.): Voo = 1.8 to 5.6 V	RA	M (ł	(В)	0.75	1	1	2	2	0.75	1	1	2	2	0.75	1	1	2	2
Minimum instruction time 0.2 µs (10 MHz: Von = 2.7 to 5.5 V/) 0.4 µs (5 MHz: Von = 1.8 to 5.5 V) 	Po	wer	supply voltage							V _{DD} =	= 1.8 to	5.5 V						
execution time High-Speed system 10 MHz: Voo = 2.7 to 5.5 V/SMHz: Voo = 1.8 to 5.5 V file control high-Speed system 2.7 to 5.5 V/SMHz: Voo = 1.8 to 5.5 V subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V subclock 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 240 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.708 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.768 kHz (TYP.): Voo = 1.8 to 5.5 V filemail low-speed 32.777 filemail low-speed 32.777 filem	Re	gula	tor							I	Provide	d						
$ \begin{array}{ c c c } \hline \hline \begin{tabular}{ c c } \hline \hline \bellambol{tabular}{ c c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \bellambol{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \bellambol{tabular}{ c c } \hline \hline \bellambol{tabular}{ c c c c } \hline \hline \bellambol{tabular}{ c c c c c } \hline \hline \belambol{tabular}{ c c c } \hline \hline \bellambol{tabular}{ c $						0.2	μs (10	MHz: \	∕ _{DD} = 2.	7 to 5.	5 V)/ 0. [,]	4 <i>μ</i> s (5	MHz:	V _{DD} = 1	.8 to 5	.5 V)		
Constrained Constrained Constrained Subclock 32.768 kHz (TYP.): Vac) = 1.8 to 5.5 V Internal low-speed oscillation clock 62 Total 62 Ib bits (TM0) 1 ch 8 bits (TM5) 3 ch 8 bits (TM1) 3 ch 8 bits (TM1) 3 ch 9 bits (TM1) 1 ch WDT 1 ch WDT 1 ch WDT 1 ch 9 bits (TM1) 3 ch 9 wire CSI/UART*host 1 ch 9 bits (TM2) 1 ch </td <td></td> <td>ain</td> <td>High-speed system clock</td> <td></td> <td colspan="9">10 MHz: V_{DD} = 2.7 to 5.5 V/5 MHz: V_{DD} = 1.8 to 5.5 V</td>		ain	High-speed system clock		10 MHz: V_{DD} = 2.7 to 5.5 V/5 MHz: V_{DD} = 1.8 to 5.5 V													
SUGOCK 32.768 kH2 (17P). Voc = 1.8 to 5.5 V Internal low-speed oscillation clock 240 kH2 (17P). Voc = 1.8 to 5.5 V It 62 It 62 It 8 bits (TM0) It 1 c h B bits (TM5) 3 c h RC 1 c h WDT 1 c h Veg 3-wire CSI/UART*Now1 It 1 c h Automatic transmit/ 1 c h Veg Segment signal OPP External resistance division and internal resistance division are switchable. Segment signal 40 (36)*New3 Common signal 4 (8)*New3 It-bit Successive approximation type A/D - Stack type A/D - Internal 20 External 7 Internal 20 External 7 Internal 20 Stack type A/D - It is uscessive approximation type A/D - It is uscessive approximation type A/D - It is Up A/D	clock	Ma	Internal high-speed oscillation clock							•								
oscillation clock Call Total 62 16 bits (TM0) 1 ch 3 bits (TM5) 3 ch 3 bits (TM1) 3 ch 3 bits (TM1) 3 ch 3 bits (TM1) 3 ch 3 wire CSI/UART ^{Note1} 1 ch 4utomatic transmit/ 1 ch Automatic transmit/ 2 (28) ^{Note3} Common signal 40 (36) ^{Note3} Common signal 4 (8) ^{Note3} 10-bit successive - Segment signal 20 External 7 Internal 20 External 7 Internal 20 POC 1.59 V ±0.15 V (Time for rising up to 1.8 V : 3.6 m s (MAX.)) VI The detection level of the supply voitage is selectable in 16 steps. WOT <td>0</td> <td>Sul</td> <td>oclock</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>2.768 k</td> <td>(Hz (T</td> <td>YP.): Vo</td> <td>od = 1.8</td> <td>8 to 5.5</td> <td>V</td> <td></td> <td></td> <td></td> <td></td>	0	Sul	oclock					3	2.768 k	(Hz (T	YP.): Vo	od = 1.8	8 to 5.5	V				
$ \frac{1}{10} $ $ $									240 k⊦	iz (tyf	P.): V dd	= 1.8 t	o 5.5 V	/				
B bits (TM5) 3 ch 8 bits (TM4) 3 ch 8 bits (TM4) 3 ch RTC 1 ch WDT 1 ch 3-wire CSI/UART Notert 1 ch Automatic transmit/ receive 3-wire CSI 1 ch WDT 1 ch Automatic transmit/ receive 3-wire CSI 1 ch 0 Type External resistance division and internal resistance division are switchable. Segment signal 40 (36) ^{Notes3} 32 (28) ^{Notes3} 10-bit successive approximation type A/D - 8 ch 16-bit ΔΣ type A/D - 3 ch 16-bit ΔΣ type A/D - 3 ch 110-bit successive approximation type A/D - 3 ch 16-bit ΔΣ type A/D - 3 ch 16-bit ΔΣ type A/D - 3 ch 110-bit successive approximation type A/D - 22 Key interrupt 8 ch - 16-bit ΔΣ type A/D - 22 16-bit ΔΣ type A/D - 1.59 V ±0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.)) 16	Port	Tot	al								62							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		16	bits (TM0)								1 ch							
$\begin{tabular}{ c $	L	8 b	its (TM5)								3 ch							
$\begin{tabular}{ c $	ime	8 b	its (TMH)								3 ch							
3-wire CSI/UART ^{Note1} 1 ch 4utomatic transmit/ receive 3-wire CSI 1 ch UART supporting LIN- bus ^{Note2} 1 ch Common signal 40 (36) ^{Note3} 32 (28) ^{Note3} Common signal 4 (8) ^{Note3} 32 (28) ^{Note3} 10-bit successive approximation type A/D 8 ch External 7 3 ch Internal 20 21 22 RESET pin Provided 9 POC 1.59 V ±0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.)) 1.59 V ±0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.)) LVI The detection level of the supply voltage is selectable in 16 steps. WAT WDT Provided Provided REmote controller receiver Provided Provided WDT Provided Provided Remote controller receiver Provided Provided MCG Onchip debug function Provided Onchip debug function Provided Provided	μ	RT	С								1 ch							
QuestionAutomatic transmit/ receive 3-wire CSI1 chUART supporting LIN- bus Note21 chUART supporting LIN- bus Note21 chSegment signal40 (36) Note3Common signal40 (36) Note310-bit successive approximation type A/D-16-bit $\Delta\Sigma$ type A/D-16-bit $\Delta\Sigma$ type A/D-16-bit $\Delta\Sigma$ type A/D-16-bit $\Delta\Sigma$ type A/D20172218RESET pinPOC1.59 V ±0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.))19VDTVDTProvided											1 ch							
Image: Provided	e	3-v	/ire CSI/UART ^{Note1}								1 ch							
Image: Provided	erfac	Aut	omatic transmit/	1 ch														
TypeExternal resistance division and internal resistance division are switchable.Segment signal40 (36)^Note332 (28)^Note310-bit successive aproximation type A/D-8 ch16-bit $\Delta\Sigma$ type A/D-3 ch16-bit $\Delta\Sigma$ type A/D-3 ch16-bit $\Delta\Sigma$ type A/D-3 ch16-bit $\Delta\Sigma$ type A/D-2216-bit $\Delta\Sigma$ type A/D-3 ch16-bit $\Delta\Sigma$ type A/D16-bit $\Delta\Sigma$ type A/D-3 ch16-bit $\Delta\Sigma$ type A/D16-bit $\Delta\Sigma$ type A/D1718191010101010101010101010	inte																	
Common signal40 (36) Note332 (28) Note310-bit successive approximation type A/D-8 ch16-bit $\Delta\Sigma$ type A/D-3 ch16-bit $\Delta\Sigma$ type A/D-716-bit $\Delta\Sigma$ type A/D212216-bit $\Delta\Sigma$ type A/D212216-bit $\Delta\Sigma$ type A/D0116-bit $\Delta\Sigma$ type A/D-716-bit $\Delta\Sigma$ type A/D-716-bit $\Delta\Sigma$ type A/D202116-bit $\Delta\Sigma$ type A/D202110-bit $\Delta\Sigma$ type A/D8 chKey internupt8 chRESET pinProvidedPOC1.59 V ±0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.))VVDTProvidedVDTProvidedVDTProvidedRemote controller receiverProvidedMCGProvidedOn-chip debug functionProvidedOperating ambientTA = -40 to +85°C	Serial	UA bus	RT supporting LIN-	1 ch														
Common signal $4 (8)^{Note3}$ 10-bit successive approximation type A/D-8 ch16-bit $\Delta\Sigma$ type A/D-3 ch16-bit $\Delta\Sigma$ type A/D-7Internal202110 ker2021Key interrupt8 chRESET pinProvidedPOC1.59 V ± 0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.))VUThe detection level of the supply voltage is selectable in 16 steps.WDTProvidedClock output/ Buzzer outputProvidedRESET pinProvidedVDTProvidedVDTProvidedOn-chip debug functionProvidedOperating ambientTA = -40 to +85°C	_	Тур)e															
Common signal 4 (8) ^{Note3} 10-bit successive approximation type A/D 8 ch 16-bit ΔΣ type A/D - 16-bit ΔΣ type A/D - 16-bit ΔΣ type A/D - 16-bit ΔΣ type A/D 3 ch 16-bit ΔΣ type A/D 3 ch 16-bit ΔΣ type A/D - 10-bit ΔΣ type A/D - 10-bit ΔΣ type A/D - 10-bit ΔΣ type A/D 20 10-bit ΔΣ type A/D - 10-bit ΔΣ type A/D - <tr< td=""><td>5</td><td>Se</td><td>gment signal</td><td colspan="9">40 (36)^{Note3}</td><td>33</td><td>2 (28)^{No}</td><td>ote3</td><td></td></tr<>	5	Se	gment signal	40 (36) ^{Note3}									33	2 (28) ^{No}	ote3			
$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_	Co	mmon signal	4 (8) ^{Note3}														
$\begin{tabular}{ c c c c }\hline \hline External & \hline & $					– 8 ch													
$\begin{tabular}{ c c c c }\hline \hline hitemal & 20 & 21 & 22 \\ \hline \hline hitemal & 20 & 8 ch & \\ \hline \hline Key interrupt & 8 ch & \\ \hline \hline Key interrupt & 0 & Provided & \\ \hline \hline POC & 1.59 V \pm 0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.)) & \\ \hline \hline VI & The detection level of the supply voltage is selectable in 16 steps. & \\ \hline WDT & Provided & \\ \hline \hline Clock output/ Buzzer output & Provided & \\ \hline \hline Remote controller receiver & Provided & \\ \hline MCG & Provided & \\ \hline On-chip debug function & Provided & \\ \hline Operating ambient & TA = -40 to +85°C & \\ \hline \end{tabular}$	16-	·bit ∠	ΔΣ type A/D						_							3 ch		
Key interrupt 8 ch RESET pin Provided POC $1.59 V \pm 0.15 V$ (Time for rising up to $1.8 V : 3.6 ms$ (MAX.)) LVI The detection level of the supply voltage is selectable in 16 steps. WDT Provided Clock output/ Buzzer output Provided Remote controller receiver Provided MCG Provided On-chip debug function Provided Operating ambient TA = -40 to +85°C	npt	Ext	ernal								7							
RESET pin Provided POC 1.59 V ±0.15 V (Time for rising up to 1.8 V : 3.6 ms (MAX.)) LVI The detection level of the supply voltage is selectable in 16 steps. WDT Provided Clock output/ Buzzer output Provided Remote controller receiver Provided MCG Provided On-chip debug function Provided Operating ambient TA = -40 to +85°C	Interru	Inte	ernal			20					21					22		
\overline{POC} $1.59 V \pm 0.15 V$ (Time for rising up to $1.8 V : 3.6 ms$ (MAX.)) \overline{POC} $1.59 V \pm 0.15 V$ (Time for rising up to $1.8 V : 3.6 ms$ (MAX.)) LVI The detection level of the supply voltage is selectable in 16 steps.WDTProvidedClock output/ Buzzer outputProvidedRemote controller receiverProvidedMCGProvidedOn-chip debug functionProvidedOperating ambient $T_A = -40$ to $+85^{\circ}C$	Key interrupt										8 ch							
WDT Provided Clock output/ Buzzer output Provided Remote controller receiver Provided MCG Provided On-chip debug function Provided Operating ambient TA = -40 to +85°C		RE	SET pin							I	Provide	d						
WDT Provided Clock output/ Buzzer output Provided Remote controller receiver Provided MCG Provided On-chip debug function Provided Operating ambient TA = -40 to +85°C	set	PO	С				1.59	V ±0.1	5 V (Tin	ne for I	rising up	o to 1.8	3 V : 3.6	6 ms (N	/IAX.))			
WDT Provided Clock output/ Buzzer output Provided Remote controller receiver Provided MCG Provided On-chip debug function Provided Operating ambient TA = -40 to +85°C	Re	LV																
Remote controller receiver Provided MCG Provided On-chip debug function Provided Operating ambient TA = -40 to +85°C																		
MCG Provided On-chip debug function Provided Operating ambient TA = -40 to +85°C	Clo	Clock output/ Buzzer output																
On-chip debug function Provided Operating ambient TA = -40 to +85°C	Re	mot	e controller receiver							I	Provide	d						
Operating ambient $T_A = -40 \text{ to } +85^{\circ}\text{C}$	MC	G								I	Provide	d						
	On	-chi	o debug function							I	Provide	d						
temperature										TA =	–40 to +	+85°C						

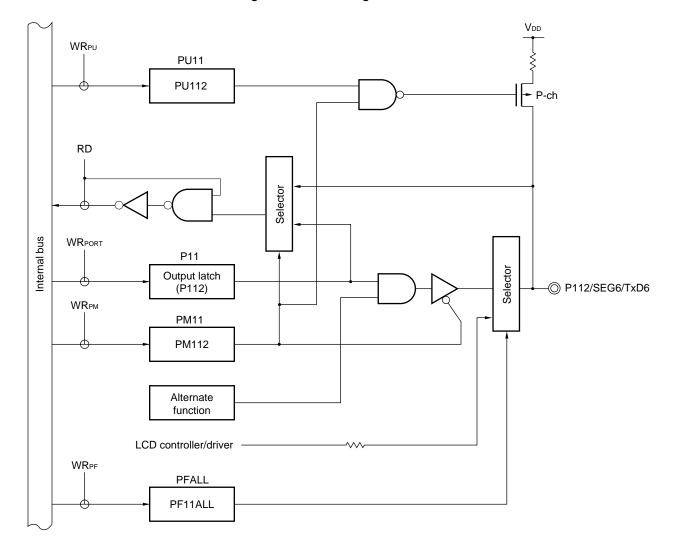
Notes 1. Select either of the functions of these alternate-function pins.

- 2. The LIN-bus supporting UART pins can be changed to the Automatic transmit/receive 3-wire CSI/UART pins (pin numbers 75 and 76).
- 3. The values in parentheses are the number of signal outputs when 8com is used.

Address	Special Function Register (SFR) Name	Symbol	R/W	Mani	After		
				1 Bit	8 Bits	16 Bits	Reset
FF00H	Receive buffer register 6	RXB6	R	_	\checkmark	-	FFH
FF01H	Port register 1	P1	R/W		\checkmark	_	00H
FF02H	Port register 2	P2	R/W	\checkmark	\checkmark	-	00H
FF03H	Port register 3	P3	R/W	\checkmark	\checkmark	-	00H
FF04H	Port register 4	P4	R/W	\checkmark	\checkmark	-	00H
FF05H	Transmit buffer register 6	TXB6	R/W	-	\checkmark	-	FFH
FF06H	A/D conversion result register ^{Note}	ADCR	R	-	-	\checkmark	0000H
FF07H	A/D conversion result register (H) Note	ADCRH	R	-	\checkmark	-	00H
FF0AH	Port register 10	P10	R/W	\checkmark	\checkmark	_	00H
FF0BH	Port register 11	P11	R/W	\checkmark	\checkmark	_	00H
FF0CH	Port register 12	P12	R/W	\checkmark	\checkmark	_	00H
FF0EH	Port register 14	P14	R/W	\checkmark	\checkmark	_	00H
FF0FH	Port register 15	P15	R/W	\checkmark	\checkmark	_	00H
FF10H	16-bit timer counter 00	ТМ00	R	_	_	\checkmark	0000H
FF11H							
FF12H	16-bit timer capture/compare register 000	CR000	R/W	_	_	\checkmark	0000H
FF13H							
FF14H	16-bit timer capture/compare register 010	CR010	R/W	_	_	\checkmark	0000H
FF15H							
FF16H	8-bit timer counter 50	TM50	R	_	\checkmark	_	00H
FF17H	8-bit timer compare register 50	CR50	R/W	_	\checkmark	_	00H
FF18H	8-bit timer H compare register 00	CMP00	R/W	_	\checkmark	_	00H
FF19H	8-bit timer H compare register 10	CMP10	R/W	_	\checkmark	_	00H
FF1AH	8-bit timer H compare register 01	CMP01	R/W	_	\checkmark	_	00H
FF1BH	8-bit timer H compare register 11	CMP11	R/W	_	\checkmark	-	00H
FF20H	Port function register 1	PF1	R/W	\checkmark	\checkmark	_	00H
FF21H	Port mode register 1	PM1	R/W	\checkmark	\checkmark	-	FFH
FF22H	Port mode register 2	PM2	R/W	\checkmark	\checkmark	-	FFH
FF23H	Port mode register 3	PM3	R/W	\checkmark	\checkmark	_	FFH
FF24H	Port mode register 4	PM4	R/W	\checkmark	\checkmark	-	FFH
FF2AH	Port mode register 10	PM10	R/W	\checkmark	\checkmark	-	FFH
FF2BH	Port mode register 11	PM11	R/W	\checkmark	\checkmark	_	FFH
FF2CH	Port mode register 12	PM12	R/W	\checkmark	\checkmark	_	FFH
FF2EH	Port mode register 14	PM14	R/W	\checkmark	\checkmark	_	FFH
FF2FH	Port mode register 15	PM15	R/W	\checkmark	\checkmark	_	FFH
FF30H	Internal high-speed oscillation trimming register	HIOTRM	R/W	_	\checkmark	_	10H
FF31H	Pull-up resistor option register 1	PU1	R/W	\checkmark	\checkmark	_	00H
FF33H	Pull-up resistor option register 3	PU3	R/W	\checkmark	\checkmark	_	00H
FF34H	Pull-up resistor option register 4	PU4	R/W	\checkmark	\checkmark	_	00H
FF3AH	Pull-up resistor option register 10	PU10	R/W	\checkmark	\checkmark	_	00H
FF3BH	Pull-up resistor option register 11	PU11	R/W	\checkmark	\checkmark	_	00H

Table 3-6. Special Function Register List (1/4)

Note μ PD78F041x only.


4.2.6 Port 11

Port 11 is a 2-bit I/O port with an output latch. Port 11 can be set to the input mode or output mode in 1-bit units using port mode register 11 (PM11). When the P112, P113 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 11 (PU11).

This port can also be used for segment output and serial interface data I/O.

Reset signal generation sets port 11 to input mode.

Figures 4-9 and 4-10 show a block diagram of port 11.

- P11: Port register 11
- PU11: Pull-up resistor option register 11
- PM11: Port mode register 11
- PFALL: Port function register ALL
- RD: Read signal
- WR××: Write signal

(3) Internal low-speed oscillation clock (clock for watchdog timer)

• Internal low-speed oscillator

This circuit oscillates a clock of f_{RL} = 240 kHz (TYP.). After a reset release, the internal low-speed oscillation clock always starts operating.

Oscillation can be stopped by using the internal oscillation mode register (RCM) when "internal low-speed oscillator can be stopped by software" is set by option byte.

The internal low-speed oscillation clock cannot be used as the CPU clock. The following hardware operates with the internal low-speed oscillation clock.

- Watchdog timer
- 8-bit timer H1 (if fRL, $fRL/2^7$ or $fRL/2^9$ is selected as the count clock)
- LCD controller/driver (if $f_{RL}/2^3$ is selected as the LCD source clock)

Remark fRL: Internal low-speed oscillation clock frequency

5.2 Configuration of Clock Generator

The clock generator includes the following hardware.

Item	Configuration
Control registers	Clock operation mode select register (OSCCTL) Processor clock control register (PCC) Internal oscillation mode register (RCM) Main OSC control register (MOC) Main clock mode register (MCM) Oscillation stabilization time counter status register (OSTC) Oscillation stabilization time select register (OSTS) Internal high-speed oscillation trimming register (HIOTRM)
Oscillators	X1 oscillator XT1 oscillator Internal high-speed oscillator Internal low-speed oscillator

Table 5-1. Configuration of Clock Generator

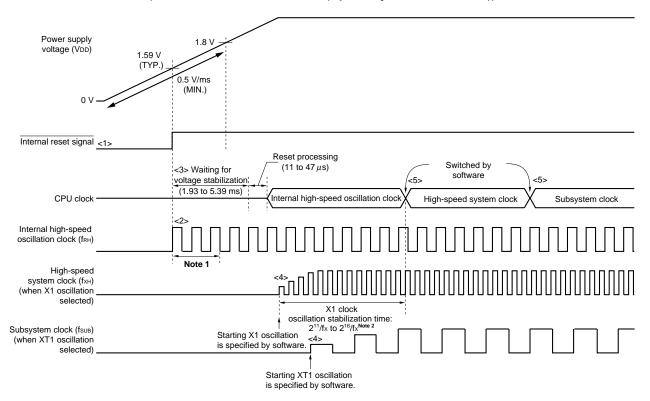
(4) Internal oscillation mode register (RCM)

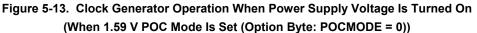
This register sets the operation mode of internal oscillator. RCM can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets this register to 80H^{Note 1}.

Figure 5-4. Format of Internal Oscillation Mode Register (RCM)

Address: FFA0H After reset: 80H^{Note 1} R/W^{Note 2}

Symbol	<7>	6	5	4	3	2	<1>	<0>
RCM	RSTS	0	0	0	0	0	LSRSTOP	RSTOP


RSTS	Status of internal high-speed oscillator				
0 Waiting for accuracy stabilization of internal high-speed oscillator					
1	Stability operating of internal high-speed oscillator				


LSRSTOP	Internal low-speed oscillator oscillating/stopped						
0	ternal low-speed oscillator oscillating						
1	1 Internal low-speed oscillator stopped						

RSTOP	Internal high-speed oscillator oscillating/stopped						
0	nternal high-speed oscillator oscillating						
1	1 Internal high-speed oscillator stopped						

- **Notes 1.** The value of this register is 00H immediately after a reset release but automatically changes to 80H after internal high-speed oscillator has been stabilized.
 - 2. Bit 7 is read-only.
- Caution When setting RSTOP to 1, be sure to confirm that the CPU operates with a clock other than the internal high-speed oscillation clock. Specifically, set under either of the following conditions.
 - When MCS = 1 (when CPU operates with the high-speed system clock)
 - When CLS = 1 (when CPU operates with the subsystem clock)

In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock before setting RSTOP to 1.

- <1> When the power is turned on, an internal reset signal is generated by the power-on-clear (POC) circuit.
- <2> When the power supply voltage exceeds 1.59 V (TYP.), the reset is released and the internal high-speed oscillator automatically starts oscillation.
- <3> When the power supply voltage rises with a slope of 0.5 V/ms (MIN.), the CPU starts operation on the internal high-speed oscillation clock after the reset is released and after the stabilization times for the voltage of the power supply and regulator have elapsed, and then reset processing is performed.
- <4> Set the start of oscillation of the X1 or XT1 clock via software (see (1) in 5.6.1 Example of controlling high-speed system clock and (1) in 5.6.3 Example of controlling subsystem clock).
- <5> When switching the CPU clock to the X1 or XT1 clock, wait for the clock oscillation to stabilize, and then set switching via software (see (3) in 5.6.1 Example of controlling high-speed system clock and (3) in 5.6.3 Example of controlling subsystem clock).
- **Notes 1.** The internal voltage stabilization time includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
 - 2. When releasing a reset (above figure) or releasing STOP mode while the CPU is operating on the internal high-speed oscillation clock, confirm the oscillation stabilization time for the X1 clock using the oscillation stabilization time counter status register (OSTC). If the CPU operates on the high-speed system clock (X1 oscillation), set the oscillation stabilization time when releasing STOP mode using the oscillation stabilization time select register (OSTS).
- Cautions 1. If the voltage rises with a slope of less than 0.5 V/ms (MIN.) from power application until the voltage reaches 1.8 V, input a low level to the RESET pin from power application until the voltage reaches 1.8 V, or set the 2.7 V/1.59 V POC mode by using the option byte (POCMODE = 1) (see Figure 5-14). By doing so, the CPU operates with the same timing as <2> and thereafter in Figure 5-13 after reset release by the RESET pin.
 - 2. It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.

5.6.7 Condition before changing CPU clock and processing after changing CPU clock

Condition before changing the CPU clock and processing after changing the CPU clock are shown below.

CPU	Clock	Condition Before Change	Processing After Change			
Before Change	After Change					
Internal high- speed oscillation clock	X1 clock	Stabilization of X1 oscillation • MSTOP = 0, OSCSEL = 1, EXCLK = 0 • After elapse of oscillation stabilization time	 Internal high-speed oscillator can be stopped (RSTOP = 1). 			
	External main system clock	Enabling input of external clock from EXCLK pin • MSTOP = 0, OSCSEL = 1, EXCLK = 1				
X1 clock	Internal high-	Oscillation of internal high-speed oscillator	X1 oscillation can be stopped (MSTOP = 1).			
External main system clock	speed oscillation clock	• RSTOP = 0	External main system clock input can be disabled (MSTOP = 1).			
Internal high- speed oscillation clock	XT1 clock	Stabilization of XT1 oscillation • OSCSELS = 1 • After elapse of oscillation stabilization time	Operating current can be reduced by stopping internal high-speed oscillator (RSTOP = 1).			
X1 clock			X1 oscillation can be stopped (MSTOP = 1).			
External main system clock			External main system clock input can be disabled (MSTOP = 1).			
XT1 clock	Internal high- speed oscillation clock	Oscillation of internal high-speed oscillator and selection of internal high-speed oscillation clock as main system clock • RSTOP = 0, MCS = 0	XT1 oscillation can be stopped (OSCSELS = 0).			
	X1 clock	Stabilization of X1 oscillation and selection of high-speed system clock as main system clock • MSTOP = 0, OSCSEL = 1, EXCLK = 0 • After elapse of oscillation stabilization time • MCS = 1				
	External main system clock	Enabling input of external clock from EXCLK pin and selection of high-speed system clock as main system clock • MSTOP = 0, OSCSEL = 1, EXCLK = 1 • MCS = 1				

Table 5-6. Changing CPU Clock

(2) Capture/compare control register 00 (CRC00)

CRC00 is the register that controls the operation of CR000 and CR010. Changing the value of CRC00 is prohibited during operation (when TMC003 and TMC002 = other than 00). CRC00 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears CRC00 to 00H.

Figure 6-6. Format of Capture/Compare Control Register 00 (CRC00)

Address: FF	BCH After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
CRC00	0	0	0	0	0	CRC002	CRC001	CRC000

CRC002	CR010 operating mode selection					
0	Operates as compare register					
1	Operates as capture register					

CRC001	CR000 capture trigger selection										
0	Captures on valid edge of TI010 pin										
1	Captures on valid edge of TI000 pin by reverse phase ^{Note}										
The valid ed	lge of the TI010 and TI000 pin is set by PRM00.										
If FS001 and	f ES001 and ES000 are set to 11 (both edges) when CRC001 is 1, the valid edge of the TI000 pin cannot										

If ES001 and ES000 are set to 11 (both edges) when CRC001 is 1, the valid edge of the TI000 pin cannot be detected.

CRC000	CR000 operating mode selection
0	Operates as compare register
1	Operates as capture register
	nd TMC002 are set to 11 (clear & start mode entered upon a match between TM00 and sure to set CRC000 to 0.

- **Note** When the valid edge is detected from the TI010 pin, the capture operation is not performed but the INTTM000 signal is generated as an external interrupt signal.
- Caution To ensure that the capture operation is performed properly, the capture trigger requires a pulse two cycles longer than the count clock selected by prescaler mode register 00 (PRM00).

- <4> When the 8-bit timer counter Hn and the CMP1n register match, an inactive level is output and the compare register to be compared with 8-bit timer counter Hn is changed from the CMP1n register to the CMP0n register. At this time, 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- <5> By performing procedures <3> and <4> repeatedly, a pulse with an arbitrary duty can be obtained.
- <6> To stop the count operation, set TMHEn = 0.

If the setting value of the CMP0n register is N, the setting value of the CMP1n register is M, and the count clock frequency is fcNT, the PWM pulse output cycle and duty are as follows.

- PWM pulse output cycle = (N + 1)/fCNT
- Duty = (M + 1)/(N + 1)
- Cautions 1. The set value of the CMP1n register can be changed while the timer counter is operating. However, this takes a duration of three operating clocks (signal selected by the CKSn2 to CKSn0 bits of the TMHMDn register) from when the value of the CMP1n register is changed until the value is transferred to the register.
 - 2. Be sure to set the CMP1n register when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to the CMP1n register).
 - Make sure that the CMP1n register setting value (M) and CMP0n register setting value (N) are within the following range.
 CMP1r (M) < CMP2r (M) < CEL

 $00H \le CMP1n (M) \le CMP0n (N) \le FFH$

Remarks 1. For the setting of the output pin, see 8.3 (3) Port mode register 3 (PM3).

- 2. For details on how to enable the INTTMHn signal interrupt, see CHAPTER 17 INTERRUPT FUNCTIONS.
- **3.** n = 0 to 2, however, TOH0 and TOH1 only for TOHn

Figure 12-9. Format of A/D Port Configuration Register 0 (ADPC0)

Address:	FF8FH After	reset: 08H R/V	V										
Symbol	7	6	5	4	3	2	2	1	0				
ADPC0	0	0	0	0	0	ADP	C02 A	DPC01	ADPC00				
-													
	ADPC02	ADPC01	ADPC00	Digital I/O (D)/analog input (A) switching									
				P25	P24	P23	P22	P21	P20				
				/ANI5	/ANI4	/ANI3	/AN2	/ANI1	/ANI0				

А

А

А

А

А

А

D

Setting prohibited

Cautions	1.	Set the	channel	used	for A	/D	conversion	to the	input	mode	by	using	port	mode	registe	r 2
		(PM2).														

- 2. Do not set the pin set by ADPC0 as digital I/O by ADS, ADDS1, or ADDS0.
- 3. If data is written to ADPC0, a wait cycle is generated. Do not write data to ADPC0 when the CPU is operating on the subsystem clock and the peripheral hardware clock is stopped. For details, see CHAPTER 29 CAUTIONS FOR WAIT.

А

А

А

А

А

D

D

А

А

А

А

D

D

D

А

А

А

D

D

D

D

А

А

D

D

D

D

D

А

D

D

D

D

D

D

4. If pins ANI0/P20/SEG21 to ANI5/P25/SEG16 are set to segment output via the PF2 register, output is set to segment output, regardless of the ADPC0 setting.

0

0

0

0

1

1

1

0

0

1

1

0

0

1

Other than above

0

1

0

1

0

1

0

(2) Asynchronous serial interface reception error status register 6 (ASIS6)

This register indicates an error status on completion of reception by serial interface UART6. It includes three error flag bits (PE6, FE6, OVE6).

This register is read-only by an 8-bit memory manipulation instruction.

Reset signal generation, or clearing bit 7 (POWER6) or bit 5 (RXE6) of ASIM6 to 0 clears this register to 00H. 00H is read when this register is read. If a reception error occurs, read ASIS6 and then read receive buffer register 6 (RXB6) to clear the error flag.

Figure 14-6. Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6)

Address: FF53H After reset: 00H R

Symbol	7

Symbol	7	6	5	4	3	2	1	0
ASIS6	0	0	0	0	0	PE6	FE6	OVE6

PE6	Status flag indicating parity error								
0	If POWER6 = 0 or RXE6 = 0, or if ASIS6 register is read								
1	If the parity of transmit data does not match the parity bit on completion of reception								

FE6	Status flag indicating framing error								
0	If POWER6 = 0 or RXE6 = 0, or if ASIS6 register is read								
1	If the stop bit is not detected on completion of reception								

OVE6	Status flag indicating overrun error
0	If POWER6 = 0 or RXE6 = 0, or if ASIS6 register is read
1	If receive data is set to the RXB6 register and the next reception operation is completed before the data is read.

- Cautions 1. The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of asynchronous serial interface operation mode register 6 (ASIM6).
 - 2. For the stop bit of the receive data, only the first stop bit is checked regardless of the number of stop bits.
 - 3. If an overrun error occurs, the next receive data is not written to receive buffer register 6 (RXB6) but discarded.
 - 4. If data is read from ASIS6, a wait cycle is generated. Do not read data from ASIS6 when the CPU is operating on the subsystem clock and the peripheral hardware clock is stopped. For details, see CHAPTER 29 CAUTIONS FOR WAIT.

14.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and an 8-bit programmable counter, and generates a serial clock for transmission/reception of UART6.

Separate 8-bit counters are provided for transmission and reception.

(1) Configuration of baud rate generator

Base clock

The clock selected by bits 3 to 0 (TPS63 to TPS60) of clock selection register 6 (CKSR6) is supplied to each module when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is 1. This clock is called the base clock and its frequency is called f_{XCLK6} . The base clock is fixed to low level when POWER6 = 0.

• Transmission counter

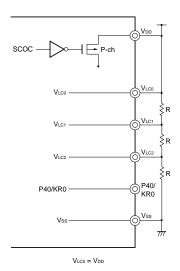
This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.

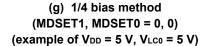
It starts counting when POWER6 = 1 and TXE6 = 1.

The counter is cleared to 0 when the first data transmitted is written to transmit buffer register 6 (TXB6).

If data are continuously transmitted, the counter is cleared to 0 again when one frame of data has been completely transmitted. If there is no data to be transmitted next, the counter is not cleared to 0 and continues counting until POWER6 or TXE6 is cleared to 0.

Reception counter


This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 5 (RXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.


It starts counting when the start bit has been detected.

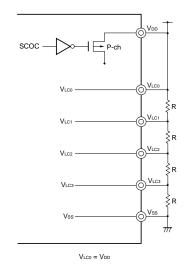
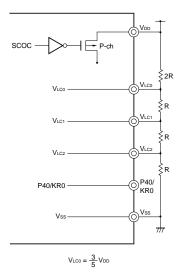
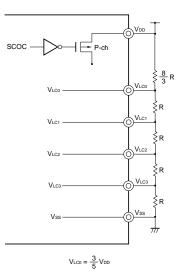
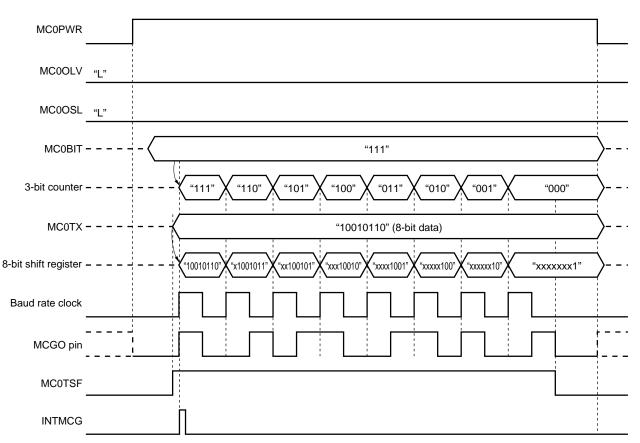
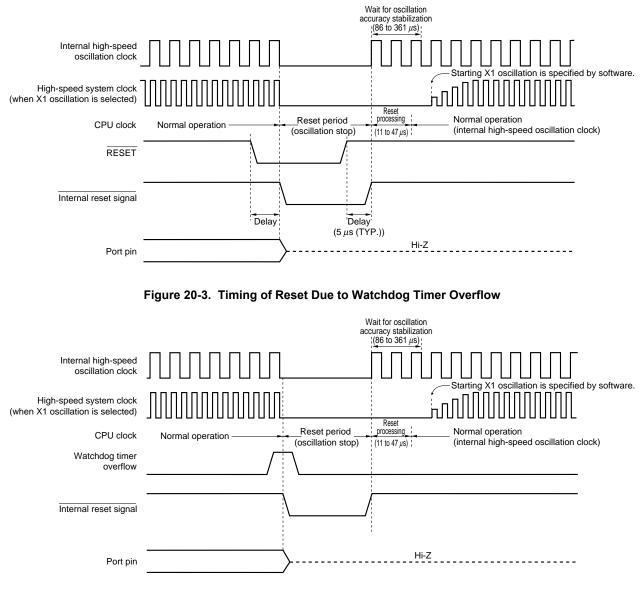

The counter stops operation after one frame has been received, until the next start bit is detected.

Figure 15-24. Examples of LCD Drive Power Connections (External Resistance Division Method) (2/2)


(e) 1/3 bias method (MDSET1, MDSET0 = 0, 0) (example of V_{DD} = 5 V, V_{LC0} = 5 V)




(f) 1/3 bias method (MDSET1, MDSET0 = 0, 0) (example of V_{DD} = 5 V, V_{LC0} = 3 V)


(h) 1/4 bias method
 (MDSET1, MDSET0 = 0, 0)
 (example of V_{DD} = 5 V, V_{LC0} = 3 V)

(2) Transmit timing (MC0OLV = 0, total transmit bit length = 8 bits)

Figure 20-2. Timing of Reset by RESET Input

Caution A watchdog timer internal reset resets the watchdog timer.

Instruction	Mnemonic	Operands	Bvtes	Clo	ocks	Operation	ł	Flag	ļ
Group	winemonic	Operatios	Dytes	Note 1	Note 2	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ $PC \leftarrow addr16, SP \leftarrow SP - 2$		AC	CY
Call/return	CALL	!addr16	3	7	_				
	CALLF	!addr11	2	5	_	$\begin{split} (SP-1) \leftarrow (PC+2)_{H}, (SP-2) \leftarrow (PC+2)_{L}, \\ PC_{15-11} \leftarrow 00001, \ PC_{10-0} \leftarrow addr11, \\ SP \leftarrow SP-2 \end{split}$			
	CALLT	[addr5]	1	6	-	$\begin{split} (SP-1) &\leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L}, \\ PC_{H} &\leftarrow (00000000, addr5+1), \\ PC_{L} &\leftarrow (00000000, addr5), \\ SP &\leftarrow SP-2 \end{split}$			
	BRK		1	6	_	$\begin{split} (SP-1) &\leftarrow PSW, (SP-2) \leftarrow (PC+1)_{H}, \\ (SP-3) \leftarrow (PC+1)_{L}, PC_{H} \leftarrow (003FH), \\ PC_{L} \leftarrow (003EH), SP \leftarrow SP-3, IE \leftarrow 0 \end{split}$			
	RET		1	6	-	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$			
	RETI		1	6	-	PC _H ← (SP + 1), PC _L ← (SP), PSW ← (SP + 2), SP ← SP + 3	R	R	R
	RETB		1	6	-	PC _H ← (SP + 1), PC _L ← (SP), PSW ← (SP + 2), SP ← SP + 3	R	R	R
Stack	PUSH	PSW	1	2	-	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$			
manipulate		rp	1	4	-	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L,$ $SP \leftarrow SP - 2$			
	POP	PSW	1	2	-	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	R	R
		rp	1	4	-	$rp_{H} \leftarrow (SP + 1), rp_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$			
	MOVW	SP, #word	4	-	10	$SP \leftarrow word$			
		SP, AX	2	-	8	$SP \leftarrow AX$			
		AX, SP	2	-	8	$AX \leftarrow SP$			
Unconditional	BR	!addr16	3	6	-	$PC \leftarrow addr16$			
branch		\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$			
		AX	2	8	_	$PCH \leftarrow A, PC_{L} \leftarrow X$			
Conditional	вс	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$			
branch	BNC	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$			
	BZ	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8$ if Z = 1			
	BNZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$			

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.

Standard products

(2) Manchester code generator

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					250	kbps

(3) Serial interface

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(a) UART6 (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(b) UART0 (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

LCD Characteristics

(1) Resistance division method

(a) Static display mode (T_A = -40 to +85°C, 1.8 V \leq V_{LCD} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)^{Note 3}

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD	Note 3			Vdd	V
LCD divider resistor ^{Note 1}	RLCD		60	100	150	kΩ
LCD output resistor ^{Note 2} (Common)	Rodc				40	kΩ
LCD output resistor ^{Note 2} (Segment)	Rods				200	kΩ

(b) 1/3 bias method (T_A = -40 to +85°C, 1.8 V \leq V_{LCD} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)^{Note 3}

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD	Note 3			Vdd	V
LCD divider resistor ^{Note 1}	RLCD		60	100	150	kΩ
LCD output resistor ^{Note 2} (Common)	Rodc				40	kΩ
LCD output resistor ^{Note 2} (Segment)	Rods				200	kΩ

(c) 1/2 bias method (T_A = -40 to +85°C, 1.8 V \leq V_{LCD} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)^{Note 3} 1/4 bias method (T_A = -40 to +85°C, 4.5 V \leq V_{LCD} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)^{Note 3}

		,				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD	Note 3			Vdd	V
LCD divider resistor ^{Note 1}	RLCD		60	100	150	kΩ
LCD output resistor ^{Note 2} (Common)	Rodc				40	kΩ
LCD output resistor ^{Note 2} (Segment)	Rods				200	kΩ

Notes 1. Internal resistance division method only.

- 2. The output resistor is a resistor connected between one of the VLC0, VLC1, VLC2 and Vss pins, and either of the SEG and COM pins.
- Set VAON based on the following conditions.
 <When set to the static display mode>
 - When $2.0V \le V_{LCD} \le V_{DD} \le 5.5 \text{ V}$: VAON = 0
 - When $1.8V \le V_{LCD} \le V_{DD} \le 3.6 \text{ V}$: VAON = 1
 - <When set to the 1/3 bias method>
 - When $2.5V \le V_{LCD} \le V_{DD} \le 5.5 \text{ V}$: VAON = 0
 - When $1.8V \le V_{LCD} \le V_{DD} \le 3.6 \text{ V}$: VAON = 1

<When set to the 1/2 bias method>

- When $2.7V \le V_{LCD} \le V_{DD} \le 5.5 \text{ V}$: VAON = 0
- When $1.8V \le V_{LCD} \le V_{DD} \le 3.6 \text{ V}$: VAON = 1

<When set to the 1/4 bias method>

• When $4.5V \le V_{LCD} \le V_{DD} \le 5.5 \text{ V}$: VAON = 0