E. Renesas Electronics America Inc - UPD78F0412GA-GAM-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0412ga-gam-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

INTRODUCTION

Readers	This manual is intended for user engineers who wish to understand the functions of the 78K0/LC3 and design and develop application systems and programs for these devices. The target products are as follows.						
	78K0/LC3: μPD78F0400, 7 μPD78F0410, 7	8F0401, 78F0402, 78F0403 8F0411, 78F0412, 78F0413					
Purpose	This manual is intended to g Organization below.	jive users an understanding of the functions described in the					
Organization	The 78K0/LC3 manual is s edition (common to the 78K	eparated into two parts: this manual and the instructions 0 microcontrollers).					
	78K0/LC3 User's Manua (This Manual	78K/0 Series User's Manual Instructions					
	 Pin functions Internal block functions Interrupts Other on-chip peripheral f Electrical specifications 	 CPU functions Instruction set Explanation of each instruction 					
How to Read This Manual	It is assumed that the rea engineering, logic circuits, a	ders of this manual have general knowledge of electrical nd microcontrollers.					
	 To gain a general unders Read this manual in th How to interpret the regis → For a bit number erreserved word in the #pragma sfr directive To know details of the 78 → Refer to the separate (U12326E). 	atanding of functions: the order of the CONTENTS . Ster format: inclosed in angle brackets, the bit name is defined as a e RA78K0, and is defined as an sfr variable using the in the CC78K0. SKO microcontroller instructions: the document 78K/0 Series Instructions User's Manual					
Conventions	Data significance: Active low representations: Note: Caution: Remark: Numerical representations:	Higher digits on the left and lower digits on the right \overrightarrow{xxx} (overscore over pin and signal name)Footnote for item marked with Note in the textInformation requiring particular attentionSupplementary informationBinary $\cdots \times \times \times$ Decimal $\cdots \times \times \times$					

13.4.4 Calculation of baud rate	
CHAPTER 14 SERIAL INTERFACE UART6	335
14.1 Functions of Serial Interface UART6	335
14.2 Configuration of Serial Interface UART6	339
14.3 Registers Controlling Serial Interface UART6	
14.4 Operation of Serial Interface UART6	353
- 14.4.1 Operation stop mode	
14.4.2 Asynchronous serial interface (UART) mode	
14.4.3 Dedicated baud rate generator	
14.4.4 Calculation of baud rate	
CHAPTER 15 LCD CONTROLLER/DRIVER	
15.1 Functions of LCD Controller/Driver	
15.2 Configuration of LCD Controller/Driver	
15.3 Registers Controlling LCD Controller/Driver	
15.4 Setting LCD Controller/Driver	
15.5 LCD Display Data Memory	386
15.6 Common and Segment Signals	387
15.7 Display Modes	393
15.7.1. Static display example	393
15.7.2 Two-time-slice display example	
15.7.3 Three-time-slice display example	300
15.7.4 Four time slice display example	۰۰۰۰۰۵۵۵ ۸۵3
15.8 Supplying I CD Drive Voltages Vice, Vice Vice and Vice	405
15.8.1 Internal resistance division method	406
15.9.2 External resistance division method	400
CHAPTER 16 MANCHESTER CODE GENERATOR	410
16.1 Functions of Manchester Code Generator	410
16.2 Configuration of Manchester Code Generator	410
16.3 Registers Controlling Manchester Code Generator	413
16.4 Operation of Manchester Code Generator	416
16.4.1 Operation stop mode	416
16.4.2 Manchester code generator mode	417
16.4.3 Bit sequential buffer mode	
CHAPTER 17 INTERRUPT FUNCTIONS	435
17.1 Interrupt Function Types	435
17.2 Interrupt Sources and Configuration	435
17.3 Registers Controlling Interrupt Functions	440
17.4 Interrupt Servicing Operations	447
17.4.1 Maskable interrupt acknowledgment	
17.4.2 Software interrupt request acknowledgment	
17.4.3 Multiple interrupt servicing	
17.4.4 Interrupt request hold	

	The	list of functions in t	he 78	BK0/Lx	3 Mic	rocor	troller	s is sh	iown b	below.								(1/3)
/	/	Part Number				78K	0/LC3				78K0/LD3							
			μPD78F040x μPD78F041x μPD					μPD78	D78F042x μPD78F043x					(
Ite	m			48 Pins 52 Pins														
Fla	sh i	memory (KB)	8	16	24	32	8	16	24	32	8	16	24	32	8	16	24	32
RA	М (KB)	0.5	0.75	1	1	0.5	0.75	1	1	0.5	0.75	1	1	0.5	0.75	1	1
Po	wer	supply voltage				1		1	V	DD = 1.8	3 to 5.5	δV			1	1		
Re	gula	ator								Prov	vided							
Mi	nimu	im instruction			0.2	2 <i>μ</i> s (1	0 MHz	:: Vdd =	2.7 to	5.5 V)	/ 0.4 µ	s (5 MI	Hz: Vd	d = 1.8	3 to 5.5	5 V)		
ex	ecut	ion time																
	lain	High-speed system clock					10 MH	IZ: VDD	= 2.7 t	0 5.5 \	//5 MH	z: VDD	= 1.8 t	o 5.5 \	V			
Clock	2	Internal high-speed oscillation clock						8 N	1Hz (T	YP.): V	'dd = 1	.8 to 5.	5 V					
	Su	bclock						32.76	8 kHz	(TYP.)	: Vdd =	= 1.8 to	5.5 V					
	Int os	ernal low-speed cillation clock						240	kHz (1	'YP.): '	V _{DD} = 1	1.8 to 5	.5 V					
Port	То	tal				:	30							3	34			
	16	bits (TM0)								1	ch							
5	8 k	its (TM5)								3	ch							
Ш.	8 t	its (TMH)								3	ch							
	RT	C								1	ch							
	W	Т								1	ch							
g	3-\	vire CSI	– 1 ch ^{Note 1}															
erfa	UA	RT				1	ch							1 cł	Note 1			
I int	UA	RT supporting LIN-				1 cl	ו ^{Note 2}							1 cł	Note 3			
Seria	bu	5																
	Ту	pe			Exte	ernal r	esistan	ce divis	sion an	d inter	nal res	istance	divisio	on are	switch	able.		
Ľ	Se	gment signal				22 (1	8) ^{Note 4}				Nata 4			24 (2	$0)^{\text{Note 4}}$			
	Со	mmon signal					1			4 (8)	Note 4				1			
10	bit :			-	-			6	ch		-				6 ch			
ар 16	hit	$\sqrt{\Gamma}$																
-10	Fr									F	5							
dn.	Int	ernal		1	7		1	1	8		,	1	9			2	0	
nter									Ũ				•			-	0	
Ke	y in	errupt	3 ch 5 ch															
	RE	SET pin	Provided															
et	PC	, C	$1.59 \text{ V} \pm 0.15 \text{ V}$ (Time for rising up to $1.8 \text{ V} \pm 3.6 \text{ ms}$ (MAX))															
Res	IV	-				The d	atection	n level	of the	supply	voltan	م او وما	ectabl	e in 16	3 stens			
_	W	' Т								Prov	voltag	0 13 301	CCIADI		5 51005			
Clo	ock (1101	_							
Bu	778									Prov	vided							
Re	mot	e controller receiver					_							Prov	vided			
MC	G									Prov	vided			-				
On	-chi	p debug function								Prov	vided							
Ор	erati	ambient temperature $T_A = -40$ to $+85^{\circ}C$																

Notes 1. Since 3-wire CSI and UART are used as alternate-function pins, they must be assigned to either of the functions for use.

The LIN-bus supporting UART pins can be changed to the UART pins (pin numbers 47 and 48).
 The LIN-bus supporting UART pins can be changed to the 3-wire CSI/UART pins (pin numbers 50 and 51).
 The values in parentheses are the number of signal outputs when 8com is used.

Figure 3-1. Memory Map (µPD78F0400, 78F0410)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H, and the on-chip debug security IDs to 0085H to 008EH.

When boot swap is used:

Set the option bytes to 0080H to 0084H and 1080H to 1084H, and the on-chip debug security IDs to 0085H to 008EH and 1085H to 108EH.

- Writing boot cluster 0 can be prohibited depending on the setting of security (see 24.7 Security Setting).
- **Remark** The flash memory is divided into blocks (one block = 1 KB). For the address values and block numbers, see **Table 3-2 Correspondence Between Address Values and Block Numbers in Flash Memory**.

Function Name	I/O	Function	After Reset	Alternate Function
P12	I/O	Port 1.	Input port	RxD0/KR3/ <rxd6></rxd6>
P13		2-bit I/O port.		TxD0/KR4/ <txd6></txd6>
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		
P20	I/O	Port 2.	Digital	SEG21/ANI0 ^{Note}
P21		hout/output can be specified in 1-bit units.	input port	SEG20/ANI1 ^{Note}
P22				SEG19/ANI2 ^{Note}
P23				SEG18/ANI3 ^{Note}
P24				SEG17/ANI4 ^{Note}
P25				SEG16/ANI5 ^{Note}
P31	I/O	Port 3.	Input port	TOH1/INTP3
P32	_	4-bit I/O port.		TOH0/MCGO
P33		Use of an on-chip pull-up resistor can be specified by a software setting.		TI000/RTCDIV/ RTCCL/BUZ/INTP2
P34				TI52/TI010/TO00/ RTC1HZ/INTP1
P40	I/O	Port 4. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	Vlc3/KR0
P100, P101	I/O	Port 10. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG4, SEG5
P112	I/O	Port 11.	Input port	SEG6/TxD6
P113		2-bit I/O port.		SEG7/RxD6
		Input/output can be specified in 1-bit units.		
P120	1/0	Port 12	Input port	INTP0/FXI VI
P121	Input	1-bit I/O port and 4-bit input port.		X1/OCD0A
P122		Only for P120, use of an on-chip pull-up resistor can be specified by a		X2/EXCLK/OCD0B
P123		software setting.		XT1
P124				XT2
P140 to P143	I/O	Port 14. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG8 to SEG11
P150 to P153	I/O	Port 15. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG12 to SEG15

Table	4-2.	Port	Functions
I GOIO			i anotiono

Note μ PD78F041x only.

Remark The functions within arrowheads (< >) can be assigned by setting the input switch control register (ISC).

(9) Internal high-speed oscillation trimming register (HIOTRM)

This register corrects the accuracy of the internal high-speed oscillator. The accuracy can be corrected by selfmeasuring the frequency of the internal high-speed oscillator, using a subsystem clock using a crystal resonator or using a timer with high-accuracy external clock input, such as a real-time counter.

HIOTRM can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets HIOTRM to 10H.

Caution If the temperature or V_{DD} pin voltage is changed after accuracy correction, the frequency will fluctuate. Also, if a value other than the initial value (10H) is set to the HIOTRM register, the oscillation accuracy of the internal high-speed oscillation clock may exceed the MIN. and MAX. values described in CHAPTER 27 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) due to the subsequent fluctuation in the temperature or V_{DD} voltage, or HIOTRM register setting value. If the temperature or V_{DD} voltage fluctuates, accuracy correction must be executed either before frequency accuracy will be required or regularly.

Set Value Before Switchover	Set Value After Switchover			
MCM0	МСМО			
	0	1		
0		1 + 2f _{RH} /f _{XH} clock		
1	1 + 2fхн/fкн clock			

Table 5-8. Maximum Time Required for Main System Clock Switchover

Caution When switching the internal high-speed oscillation clock to the high-speed system clock, bit 2 (XSEL) of MCM must be set to 1 in advance. The value of XSEL can be changed only once after a reset release.

2. Calculate the number of clocks in Table 5-8 by removing the decimal portion.

Example When switching the main system clock from the internal high-speed oscillation clock to the high-speed system clock (@ oscillation with $f_{RH} = 8$ MHz, $f_{XH} = 10$ MHz) 1 + 2 $f_{RH}/f_{XH} = 1 + 2 \times 8/10 = 1 + 2 \times 0.8 = 1 + 1.6 = 2.6 \rightarrow 2$ clocks

5.6.9 Conditions before clock oscillation is stopped

The following lists the register flag settings for stopping the clock oscillation (disabling external clock input) and conditions before the clock oscillation is stopped.

Clock	Conditions Before Clock Oscillation Is Stopped (External Clock Input Disabled)	Flag Settings of SFR Register
Internal high-speed oscillation clock	MCS = 1 or CLS = 1 (The CPU is operating on a clock other than the internal high-speed oscillation clock)	RSTOP = 1
X1 clock External main system clock	MCS = 0 or CLS = 1 (The CPU is operating on a clock other than the high-speed system clock)	MSTOP = 1
XT1 clock	CLS = 0 (The CPU is operating on a clock other than the subsystem clock)	OSCSELS = 0

Table 5-9. Conditions Before the Clock Oscillation Is Stopped and Flag Settings

Remarks 1. The number of clocks listed in Table 5-8 is the number of main system clocks before switchover.

- Cautions 1. When TMHE0 = 1, setting the other bits of TMHMD0 is prohibited. However, TMHMD0 can be refreshed (the same value is written).
 - In the PWM output mode, be sure to set the 8-bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHE0 = 1) after the timer count operation was stopped (TMHE0 = 0) (be sure to set again even if setting the same value to CMP10).
 - 3. The actual TOH0/P32/MCGO pin output is determined depending on PM32 and P32, besides TOH0 output.

Remark fprs: Peripheral hardware clock frequency

Figure 8-14. Operation Timing in PWM Output Mode (4/4)

- <1> The count operation is enabled by setting TMHEn = 1. Start 8-bit timer counter Hn by masking one count clock to count up. At this time, PWM output outputs an inactive level.
- <2> The CMP1n register value can be changed during timer counter operation. This operation is asynchronous to the count clock.
- <3> When the values of 8-bit timer counter Hn and the CMP0n register match, the value of 8-bit timer counter Hn is cleared, an active level is output, and the INTTMHn signal is output.

<4> If the CMP1n register value is changed, the value is latched and not transferred to the register. When the values of the 8-bit timer counter Hn and the CMP1n register before the change match, the value is transferred to the CMP1n register and the CMP1n register value is changed (<2>'). However, three count clocks or more are required from when the CMP1n register value is changed to when the value is transferred to the register. If a match signal is generated within three count clocks, the changed value cannot be transferred to the register.

- <5> When the values of 8-bit timer counter Hn and the CMP1n register after the change match, an inactive level is output. 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- <6> Clearing the TMHEn bit to 0 during timer Hn operation sets the INTTMHn signal to the default and PWM output to an inactive level.

Remark n = 0 to 2, however, TOH0 and TOH1 only for TOHn

11.2 Configuration of Buzzer Output Controller

The buzzer output controller includes the following hardware.

Item	Configuration
Control registers	Clock output selection register (CKS)
	Port mode register 3 (PM3)
	Port register 3 (P3)

11.3 Registers Controlling Buzzer Output Controller

The following two registers are used to control the buzzer output controller.

- Clock output selection register (CKS)
- Port mode register 3 (PM3)

(1) Clock output selection register (CKS)

This register sets output enable/disable for the buzzer frequency output (BUZ), and sets the output clock. CKS is set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears CKS to 00H.

(5) Port mode register 1 (PM1)

This register sets port 1 input/output in 1-bit units.

When using the P13/TxD0/KR4/<TxD6> pin for serial interface data output, clear PM13 to 0. The output latch of P13 at this time may be 0 or 1.

When using the P12/RxD0/KR3/<RxD6> pin for serial interface data input, set PM12 to 1. The output latch of P12 at this time may be 0 or 1.

PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to FFH.

Remark The functions within arrowheads (< >) can be assigned by setting the input switch control register (ISC).

Figure 13-6. Format of Port Mode Register 1 (PM1)

Address: FF21H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM1	1	1	1	1	PM13	PM12	1	1

F	PM1n	P1n pin I/O mode selection (n = 2, 3)				
	0	utput mode (output buffer on)				
	1 Input mode (output buffer off)					

(6) Asynchronous serial interface control register 6 (ASICL6)

This register controls the serial communication operations of serial interface UART6. ASICL6 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets this register to 16H.

Caution ASICL6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 = 1 or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1). However, do not set both SBRT6 and SBTT6 to 1 by a refresh operation during SBF reception (SBRT6 = 1) or SBF transmission (until INTST6 occurs since SBTT6 has been set (1)), because it may re-trigger SBF reception or SBF transmission.

Figure 14-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (1/2)

Address: FF58H After reset: 16H R/WNote

Symbol	<7>	<6>	5	4	3	2	1	0
ASICL6	SBRF6	SBRT6	SBTT6	SBL62	SBL61	SBL60	DIR6	TXDLV6

SBRF6	SBF reception status flag
0	If POWER6 = 0 and RXE6 = 0 or if SBF reception has been completed correctly
1	SBF reception in progress

SBRT6	SBF reception trigger
0	_
1	SBF reception trigger

SBTT6	SBF transmission trigger
0	_
1	SBF transmission trigger

Note Bit 7 is read-only.

Figure 15-18. Three-Time-Slice LCD Drive Waveform Examples (1/2 Bias Method)

(2) HALT mode release

The HALT mode can be released by the following two sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Note The wait time is as follows:

- When vectored interrupt servicing is carried out:
 8 or 9 clocks
- When vectored interrupt servicing is not carried out: 2 or 3 clocks
- **Remark** The broken lines indicate the case when the interrupt request which has released the standby mode is acknowledged.

24.5.3 RESET pin

If the reset signal of the dedicated flash memory programmer is connected to the RESET pin that is connected to the reset signal generator on the board, signal collision takes place. To prevent this collision, isolate the connection with the reset signal generator.

If the reset signal is input from the user system while the flash memory programming mode is set, the flash memory will not be correctly programmed. Do not input any signal other than the reset signal of the dedicated flash memory programmer.

In the flash memory programming mode, the signal output by the reset signal generator collides with the signal output by the dedicated flash memory programmer. Therefore, isolate the signal of the reset signal generator.

24.5.4 Port pins

When the flash memory programming mode is set, all the pins not used for flash memory programming enter the same status as that immediately after reset. If external devices connected to the ports do not recognize the port status immediately after reset, the port pin must be connected to V_{DD} or V_{SS} via a resistor.

24.5.5 REGC pin

Connect the REGC pin to GND via a capacitor (0.47 to 1 μ F: recommended) in the same manner as during normal operation.

24.6.3 Selecting communication mode

In the 78K0/LC3, a communication mode is selected by inputting pulses to the FLMD0 pin after the dedicated flash memory programming mode is entered. These FLMD0 pulses are generated by the flash memory programmer.

The following table shows the relationship between the number of pulses and communication modes.

Table 24-6. Communication Mo

Communication		Standard Set	Pins Used	Peripheral	Number of		
Mode	Port	Speed	Frequency	Multiply Rate		Clock	FLMD0
							Pulses
UART	UART-Ext-Osc	115,200 bps ^{Note 3}	2 to 10 MHz ^{Note 2}	1.0	TxD6, RxD6	fx	0
(UART6)	UART-Ext-FP4CK					f exclk	3

Notes 1. Selection items for Standard settings on GUI of the flash memory programmer.

- 2. The possible setting range differs depending on the voltage. For details, see CHAPTER 27 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS).
- **3.** Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.
- Caution When UART6 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash memory programmer after the FLMD0 pulse has been received.
- Remark fx: X1 clock

fexclk: External main system clock

Standard products

Absolute Maximum Ratings (T_A = 25°C) (2/2)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P12, P13, P31 to P34, P40, P100, P101, P112, P113, P120, P140 to P143, P150 to P153	-10	mA
		Total of all pins –35 mA	P12, P13, P31 to P34, P40, P120	-25	mA
			P100, P101, P112, P113, P140 to P143, P150 to P153	-10	mA
	Іон2	Per pin	P20 to P25	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol	Per pin	P12, P13, P31 to P34, P40, P100, P101, P112, P113, P120, P140 to P143, P150 to P153	30	mA
		Total of all pins 80 mA	P12, P13, P31 to P34, P40, P120	40	mA
			P100, P101, P112, P113, P140 to P143, P150 to P153	40	mA
		Per pin	P20 to P25	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation mode		-40 to +85	°C
temperature		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Standard products

DC Characteristics (1/5)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output current, high ^{Note1}	Іон1	Per pin for P12, P13, P31 to P34, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-2.5	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-1.0	mA
		Per pin for P100, P101, P112, P113, P140 to P143, P150 to P153	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1	mA
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			-0.1	mA
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-0.1	mA
		Total ^{Note3} of P12, P13,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-20.0	mA
		P31 to P34, P40, P120	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total ^{Note3} of P100, P101,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-2.8	mA
		P112, P113, P140 to P143,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-2.8	mA
		P 150 10 P 155	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-2.8	mA
		Total ^{Note3} of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-22.8	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-12.8	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-7.8	mA
	Іон2	Per pin for P20 to P25	AV _{REF} = V _{DD}			-0.1	mA
Output current, low ^{Note2}	IOL1	Per pin for P12, P13, P31 to P34, P40, P120 Per pin for P100, P101, P112, P113, P140 to P143, P150 to P153	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			8.5	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			5.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			2.0	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			0.4	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			0.4	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			0.4	mA
		Total ^{Note3} of P12, P13, P31 to P34, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
		Total ^{Note3} of P100, P101,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			11.2	mA
		P112, P113, P140 to P143, P150 to P153 Total ^{Note3} of all pins	$2.7~V \leq V_{\text{DD}} < 4.0~V$			11.2	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			11.2	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			31.2	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			26.2	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			20.2	mA
	IOL2	Per pin for P20 to P25	AV _{REF} = V _{DD}			0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from V_{DD} to an output pin.

2. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.

- **3.** Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times t$ and time for which current is not output is $0.3 \times t$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.
 - Where the duty factor of IoH is n%: Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where the duty factor is 50%, IoH = 20.0 mA

Total output current of pins = $(20.0 \times 0.7)/(50 \times 0.01)$ = 28.0 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Standard products

DC Characteristics (2/5) $(T_A = -40 \text{ to } +85^\circ\text{C}, \ 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \ \text{AV}_{\text{REF}} \le V_{DD}, \ \text{Vss} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P32, P100, P101, P1 P140 to P143, P150 t	12, P121 to P124, o P153	0.7Vdd		Vdd	V
	VIH2	P12, P13, P31, P33, RESET, EXCLK	P34, P40, P113, P120,	0.8Vdd		Vdd	V
	Vінз	P20 to P25	AV _{REF} = V _{DD}	0.7AV _{REF}		AVREF	V
Input voltage, low	VIL1	P32, P100, P101, P112, P121 to P124, P140 to P143, P150 to P153		0		0.3VDD	V
	VIL2	P12, P13, P31, P33, RESET, EXCLK	P34, P40, P113, P120,	0		0.2V _{DD}	V
	VIL3	P20 to P25	AV _{REF} = V _{DD}	0		0.3AV _{REF}	V
Output voltage, high	Voh1	P12, P13, P31 to P34, P40, P120	4.0 V \leq V _{DD} \leq 5.5 V, I _{OH1} = -3.0 mA	Vdd - 0.7			V
			2.7 V ≤ V _{DD} < 4.0 V, Іон1 = −2.5 mA	Vdd - 0.5			V
			1.8 V ≤ V _{DD} < 2.7 V, Іон1 = −1.0 mA	Vdd - 0.5			V
		P100, P101, P112, P113, P140 to P143, P150 to P153	Iон1 = -0.1 mA	V _{DD} - 0.5			V
	Vон2	P20 to P25	AV _{REF} = V _{DD} , Іон2 = -0.1 mA	Vdd - 0.5			V
Output voltage, low	Voll P12, P13, P31 to P34, P40, P120 P100, P101, P P113, P140 to P143, P150 to P153	P12, P13, P31 to P34, P40, P120	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$ Iol1 = 5.0 mA			0.7	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V},$ $I_{\text{OL1}} = 2.0 \text{ mA}$			0.5	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V},$ $I_{\text{OL1}} = 1.0 \text{ mA}$			0.5	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V},$ $I_{\text{OL1}} = 0.5 \text{ mA}$			0.4	V
		P100, P101, P112, P113, P140 to P143, P150 to P153	Iol1 = 0.4 mA			0.4	V
	Vol2	P20 to P25	AV _{REF} = V _{DD} , Iol2 = 0.4 mA			0.4	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The high-level and low-level input voltages of P122/EXCLK vary between the input port mode and external clock mode.

48-PIN PLASTIC LQFP (FINE PITCH) (7x7)

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

© NEC Electronics Corporation 2005

P48GA-50-GAM