
NXP USA Inc. - S9S08QD4J1CSC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 16MHz

Connectivity -

Peripherals LVD, POR, PWM, WDT

Number of I/O 4

Program Memory Size 4KB (4K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 4x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 8-SOIC (0.154", 3.90mm Width)

Supplier Device Package 8-SOIC

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08qd4j1csc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/s9s08qd4j1csc-4418717
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers




Chapter 2 External Signal Description
MC9S08QD4 Series MCU Data Sheet, Rev. 6

24 Freescale Semiconductor
 



Chapter 3 Modes of Operation
the CPU executes a STOP instruction, the MCU will not enter either of the stop modes and an illegal 
opcode reset is forced. The stop modes are selected by setting the appropriate bits in SPMSC2.

HCS08 devices that are designed for low voltage operation (1.8V to 3.6V) also include stop1 mode. The 
MC9S08QD4 series does not include stop1 mode.

Table 3-1 summarizes the behavior of the MCU in each of the stop modes.

3.6.1 Stop2 Mode

The stop2 mode provides very low standby power consumption and maintains the contents of RAM and 
the current state of all of the I/O pins. To enter stop2, the user must execute a STOP instruction with stop2 
selected (PPDC = 1) and stop mode enabled (STOPE = 1). In addition, the LVD must not be enabled to 
operate in stop (LVDSE = 0 or LVDE = 0). If the LVD is enabled in stop, then the MCU enters stop3 upon 
the execution of the STOP instruction regardless of the state of PPDC.

Before entering stop2 mode, the user must save the contents of the I/O port registers, as well as any other 
memory-mapped registers which they want to restore after exit of stop2, to locations in RAM. Upon exit 
of stop2, these values can be restored by user software before pin latches are opened.

When the MCU is in stop2 mode, all internal circuits that are powered from the voltage regulator are turned 
off, except for the RAM. The voltage regulator is in a low-power standby state, as is the ADC. Upon entry 
into stop2, the states of the I/O pins are latched. The states are held while in stop2 mode and after exiting 
stop2 mode until a logic 1 is written to PPDACK in SPMSC2.

Exit from stop2 is done by asserting either of the wake-up pins: RESET or IRQ, or by an RTI interrupt. 
IRQ is always an active low input when the MCU is in stop2, regardless of how it was configured before 
entering stop2. 

NOTE
Although this IRQ pin is automatically configured as active low input, the 
pullup associated with the IRQ pin is not automatically enabled. Therefore, 
if an external pullup is not used, the internal pullup must be enabled by 
setting IRQPE in IRQSC.

Upon wake-up from stop2 mode, the MCU will start up as from a power-on reset (POR) except pin states 
remain latched. The CPU will take the reset vector. The system and all peripherals will be in their default 
reset states and must be initialized.

Table 3-1. Stop Mode Behavior

Mode PPDC
CPU, Digital 
Peripherals, 

Flash
RAM ICS ADC1 Regulator I/O Pins RTI

Stop2 1 Off Standby Off Disabled Standby States held Optionally on

Stop3 0 Standby Standby Off1

1 ICS can be configured to run in stop3. Please see the ICS registers.

Optionally on Standby States held Optionally on
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 27
 



Chapter 4 Memory Map and Register Definition
Aborting a command in this way sets the FACCERR access error flag which must be cleared before 
starting a new command.

A strictly monitored procedure must be obeyed or the command will not be accepted. This minimizes the 
possibility of any unintended changes to the flash memory contents. The command complete flag (FCCF) 
indicates when a command is complete. The command sequence must be completed by clearing FCBEF 
to launch the command. Figure 4-2 is a flowchart for executing all of the commands except for burst 
programming. The FCDIV register must be initialized following any reset before using any flash 
commands.

Figure 4-2. Flash Program and Erase Flowchart

4.5.4 Burst Program Execution

The burst program command is used to program sequential bytes of data in less time than would be 
required using the standard program command. This is possible because the high voltage to the flash array 
does not need to be disabled between program operations. Ordinarily, when a program or erase command 
is issued, an internal charge pump associated with the flash memory must be enabled to supply high 
voltage to the array. Upon completion of the command, the charge pump is turned off. When a burst 

START

WRITE TO FLASH
TO BUFFER ADDRESS AND DATA

WRITE COMMAND TO FCMD

NO

YES
FPVIO OR 

WRITE 1 TO FCBEF
TO LAUNCH COMMAND 
AND CLEAR FCBEF (2)

1

0
FCCF ?

ERROR EXIT

DONE

(2) Wait at least four bus cycles before 
checking FCBEF or FCCF.

0
FACCERR ?

CLEAR ERROR

FACCERR ?

WRITE TO FCDIV(1) (1) Required only once
after reset.
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 39
 



Chapter 5 Resets, Interrupts, and General System Control
5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine 
(ISR), and then restore the CPU status so processing resumes where it was before the interrupt. Other than 
the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events 
such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI 
under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The 
CPU will not respond until and unless the local interrupt enable is a 1 to enable the interrupt. The I bit in 
the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset 
which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer and 
performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding 
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction 
and consists of:

• Saving the CPU registers on the stack
• Setting the I bit in the CCR to mask further interrupts
• Fetching the interrupt vector for the highest-priority interrupt that is currently pending
• Filling the instruction queue with the first three bytes of program information starting from the 

address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of 
another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is 
restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit 
can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other 
interrupts can be serviced without waiting for the first service routine to finish. This practice is not 
recommended for anyone other than the most experienced programmers because it can lead to subtle 
program errors that are difficult to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR, 
A, X, and PC registers to their pre-interrupt values by reading the previously saved information off the 
stack. 

NOTE
For compatibility with M68HC08 devices, the H register is not 
automatically saved and restored. It is good programming practice to push 
H onto the stack at the start of the interrupt service routine (ISR) and restore 
it immediately before the RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced 
first (see Table 5-2).
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 53
 



Chapter 5 Resets, Interrupts, and General System Control
5.6 Low-Voltage Detect (LVD) System
The MC9S08QD4 series includes a system to protect against low voltage conditions in order to protect 
memory contents and control MCU system states during supply voltage variations. The system is 
comprised of a power-on reset (POR) circuit and an LVD circuit with a user selectable trip voltage, either 
high (VLVDH) or low (VLVDL). The LVD circuit is enabled when LVDE in SPMSC1 is high and the trip 
voltage is selected by LVDV in SPMSC2. The LVD is disabled upon entering any of the stop modes unless 
LVDSE is set in SPMSC1. If LVDSE and LVDE are both set, then the MCU cannot enter stop1 or stop2, 
and the current consumption in stop3 with the LVD enabled will be greater.

Table 5-2. Vector Summary

Vector 
Priority

Vector 
Number

Address
(High:Low)

Vector Name Module Source Enable Description

Lower

Higher

31
through

24

0xFFC0:FFC1 
through 

0xFFCE:FFCF

Unused Vector Space
 (available for user program)

23 0xFFD0:FFD1 Vrti 
System
control

RTIF RTIE Real-time interrupt

22 0xFFD2:FFD3 — — — — —

21 0xFFD4:FFD5 — — — — —

20 0xFFD6:FFD7 — — — — —
19 0xFFD8:FFD9 Vadc1 ADC1 COCO AIEN ADC1

18 0xFFDA:FFDB Vkeyboard1 KBI1 KBF KBIE Keyboard pins

17 0xFFDC:FFDD — — — — —
16 0xFFDE:FFDF — — — — —

15 0xFFE0:FFE1 — — — — —

14 0xFFE2:FFE3 — — — — —
13 0xFFE4:FFE5 — — — — —

12 0xFFE6:FFE7 — — — — —

11 0xFFE8:FFE9 — — — — —
10 0xFFEA:FFEB Vtpm2ovf TPM2 TOF TOIE TPM2 overflow

9 0xFFEC:FFED — — — — —

8 0xFFEE:FFEF Vtpm2ch0 TPM2 CH0F CH0IE TPM2 channel 0
7 0xFFF0:FFF1 Vtpm1ovf TPM1 TOF TOIE TPM1 overflow

6 0xFFF2:FFF3 Vtpm1ch1 TPM1 CH1F CH1IE TPM1 channel 1

5 0xFFF4:FFF5 Vtpm1ch0 TPM1 CH0F CH0IE TPM1 channel 0
4 0xFFF6:FFF7 — — — — —

3 0xFFF8:FFF9 Virq IRQ IRRQF IRQIE IRQ pin

2 0xFFFA:FFFB Vlvd 
System 
control

LVDF LVDIE Low voltage detect

1 0xFFFC:FFFD Vswi CPU
SWI 

Instruction
— Software interrupt

0 0xFFFE:FFFF Vreset
System
control

COP
LVD

RESET pin
Illegal opcode
Illegal address

POR

COPE
LVDRE
RSTPE

—
—
—

Watchdog timer
Low-voltage detect

External pin
Illegal opcode
Illegal address
power-on-reset
MC9S08QD4 Series MCU Data Sheet, Rev. 6

56 Freescale Semiconductor
 



Chapter 6 Parallel Input/Output Control
• In stop1 mode, all internal registers including parallel I/O control and data registers are powered 
off. Each of the pins assumes its default reset state (output buffer and internal pullup disabled). 
Upon exit from stop1, all pins must be re-configured the same as if the MCU had been reset.

• Stop2 mode is a partial power-down mode, whereby latches maintain the pin state as before the 
STOP instruction was executed. CPU register status and the state of I/O registers must be saved in 
RAM before the STOP instruction is executed to place the MCU in stop2 mode. Upon recovery 
from stop2 mode, before accessing any I/O, the user must examine the state of the PPDF bit in the 
SPMSC2 register. If the PPDF bit is 0, I/O must be initialized as if a power on reset had occurred. 
If the PPDF bit is 1, I/O data previously stored in RAM, before the STOP instruction was executed, 
peripherals previously enabled will require being initialized and restored to their pre-stop 
condition. The user must then write a 1 to the PPDACK bit in the SPMSC2 register. Access of pins 
is now permitted again in the user’s application program.

• In stop3 mode, all pin states are maintained because internal logic stays powered up. Upon 
recovery, all pin functions are the same as before entering stop3.

6.4 Parallel I/O Registers

6.4.1 Port A Registers

This section provides information about the registers associated with the parallel I/O ports.

Refer to tables in Chapter 4, “Memory Map and Register Definition,” for the absolute address assignments 
for all parallel I/O. This section refers to registers and control bits only by their names. A Freescale 
Semiconductor-provided equate or header file normally is used to translate these names into the 
appropriate absolute addresses.

6.4.1.1 Port A Data (PTAD)

 7 6 5 4 3 2 1 0

R 0 0
PTAD51 PTAD42 PTAD3 PTAD2 PTAD1 PTAD0

W

Reset: 0 0 0 0 0 0 0 0

1 Reads of bit PTAD5 always return the pin value of PTA5, regardless of the value stored in bit PTADD5.

2 Reads of bit PTAD4 always return the contents of PTAD4, regardless of the value stored in bit PTADD4.

Figure 6-2. Port A Data Register (PTAD)
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 69
 



Chapter 6 Parallel Input/Output Control
6.4.2.3 Port A Drive Strength Select (PTADS)

An output pin can be selected to have high output drive strength by setting the corresponding bit in the 
drive strength select register (PTADSn). When high drive is selected a pin is capable of sourcing and 
sinking greater current. Even though every I/O pin can be selected as high drive, the user must ensure that 
the total current source and sink limits for the chip are not exceeded. Drive strength selection is intended 
to affect the DC behavior of I/O pins. However, the AC behavior is also affected. High drive allows a pin 
to drive a greater load with the same switching speed as a low drive enabled pin into a smaller load. 
Because of this the EMC emissions may be affected by enabling pins as high drive.

6.4.2.4 Port A Drive Strength Select (PTADS)

 7 6 5 4 3 2 1 0

R 0 0
PTADS51 PTADS4 PTADS3 PTADS2 PTADS1 PTADS0

W

Reset: 0 0 0 0 0 0 0 0

1 PTADS5 has no effect on the input-only PTA5 pin.

Figure 6-6. Drive Strength Selection for Port A Register (PTADS)

Table 6-5. PTADS Register Field Descriptions

Field Description

5:0
PTADS[5:0]

Output Drive Strength Selection for Port A Bits — Each of these control bits selects between low and high 
output drive for the associated PTA pin. For port A pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port A bit n.
1 High output drive strength selected for port A bit n.
MC9S08QD4 Series MCU Data Sheet, Rev. 6

72 Freescale Semiconductor
 



Chapter 7 Central Processor Unit (S08CPUV2)
7.3.6.7 SP-Relative, 16-Bit Offset (SP2)

This variation of indexed addressing uses the 16-bit value in the stack pointer (SP) plus a 16-bit offset 
included in the instruction as the address of the operand needed to complete the instruction.

7.4 Special Operations
The CPU performs a few special operations that are similar to instructions but do not have opcodes like 
other CPU instructions. In addition, a few instructions such as STOP and WAIT directly affect other MCU 
circuitry. This section provides additional information about these operations.

7.4.1 Reset Sequence

Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer 
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event 
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction 
boundary before responding to a reset event). For a more detailed discussion about how the MCU 
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration 
chapter.

The reset event is considered concluded when the sequence to determine whether the reset came from an 
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the 
CPU performs a 6-cycle sequence to fetch the reset vector from 0xFFFE and 0xFFFF and to fill the 
instruction queue in preparation for execution of the first program instruction.

7.4.2 Interrupt Sequence

When an interrupt is requested, the CPU completes the current instruction before responding to the 
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where 
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the 
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the 
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence 
started.

The CPU sequence for an interrupt is: 
1. Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.
2. Set the I bit in the CCR.
3. Fetch the high-order half of the interrupt vector.
4. Fetch the low-order half of the interrupt vector.
5. Delay for one free bus cycle.
6. Fetch three bytes of program information starting at the address indicated by the interrupt vector 

to fill the instruction queue in preparation for execution of the first instruction in the interrupt 
service routine. 

After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts 
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the 
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 79
 



Chapter 7 Central Processor Unit (S08CPUV2)
7.4.5 BGND Instruction

The BGND instruction is new to the HCS08 compared to the M68HC08. BGND would not be used in 
normal user programs because it forces the CPU to stop processing user instructions and enter the active 
background mode. The only way to resume execution of the user program is through reset or by a host 
debug system issuing a GO, TRACE1, or TAGGO serial command through the background debug 
interface. 

Software-based breakpoints can be set by replacing an opcode at the desired breakpoint address with the 
BGND opcode. When the program reaches this breakpoint address, the CPU is forced to active 
background mode rather than continuing the user program. 
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 81
 



Analog-to-Digital Converter (S08ADC10V1)
are too fast, then the clock must be divided to the appropriate frequency. This divider is specified by the 
ADIV bits and can be divide-by 1, 2, 4, or 8.

8.4.2 Input Select and Pin Control

The pin control registers (APCTL3, APCTL2, and APCTL1) are used to disable the I/O port control of the 
pins used as analog inputs.When a pin control register bit is set, the following conditions are forced for the 
associated MCU pin:

• The output buffer is forced to its high impedance state.
• The input buffer is disabled. A read of the I/O port returns a zero for any pin with its input buffer 

disabled.
• The pullup is disabled.

8.4.3 Hardware Trigger

The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled 
when the ADTRG bit is set. This source is not available on all MCUs. Consult the module introduction for 
information on the ADHWT source specific to this MCU. 

When ADHWT source is available and hardware trigger is enabled (ADTRG=1), a conversion is initiated 
on the rising edge of ADHWT. If a conversion is in progress when a rising edge occurs, the rising edge is 
ignored. In continuous convert configuration, only the initial rising edge to launch continuous conversions 
is observed. The hardware trigger function operates in conjunction with any of the conversion modes and 
configurations.

8.4.4 Conversion Control

Conversions can be performed in either 10-bit mode or 8-bit mode as determined by the MODE bits. 
Conversions can be initiated by either a software or hardware trigger. In addition, the ADC module can be 
configured for low power operation, long sample time, continuous conversion, and automatic compare of 
the conversion result to a software determined compare value.

8.4.4.1 Initiating Conversions

A conversion is initiated:
• Following a write to ADCSC1 (with ADCH bits not all 1s) if software triggered operation is 

selected.
• Following a hardware trigger (ADHWT) event if hardware triggered operation is selected.
• Following the transfer of the result to the data registers when continuous conversion is enabled.

If continuous conversions are enabled a new conversion is automatically initiated after the completion of 
the current conversion. In software triggered operation, continuous conversions begin after ADCSC1 is 
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a 
hardware trigger event and continue until aborted.
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 109
 



Analog-to-Digital Converter (S08ADC10V1) 
2. Update status and control register 2 (ADCSC2) to select the conversion trigger (hardware or 
software) and compare function options, if enabled.

3. Update status and control register 1 (ADCSC1) to select whether conversions will be continuous 
or completed only once, and to enable or disable conversion complete interrupts. The input channel 
on which conversions will be performed is also selected here.

8.5.1.2 Pseudo — Code Example

In this example, the ADC module will be set up with interrupts enabled to perform a single 10-bit 
conversion at low power with a long sample time on input channel 1, where the internal ADCK clock will 
be derived from the bus clock divided by 1.

ADCCFG = 0x98 (%10011000) 
Bit 7 ADLPC 1 Configures for low power (lowers maximum clock speed)
Bit 6:5 ADIV 00 Sets the ADCK to the input clock ÷ 1
Bit 4 ADLSMP 1 Configures for long sample time
Bit 3:2 MODE 10 Sets mode at 10-bit conversions
Bit 1:0 ADICLK 00 Selects bus clock as input clock source

ADCSC2 = 0x00 (%00000000)
Bit 7 ADACT 0 Flag indicates if a conversion is in progress
Bit 6 ADTRG 0 Software trigger selected
Bit 5 ACFE 0 Compare function disabled
Bit 4 ACFGT 0 Not used in this example
Bit 3:2 00 Unimplemented or reserved, always reads zero
Bit 1:0 00 Reserved for Freescale’s internal use; always write zero

ADCSC1 = 0x41 (%01000001)
Bit 7 COCO 0 Read-only flag which is set when a conversion completes
Bit 6 AIEN 1 Conversion complete interrupt enabled
Bit 5 ADCO 0 One conversion only (continuous conversions disabled)
Bit 4:0 ADCH 00001 Input channel 1 selected as ADC input channel

ADCRH/L = 0xxx
Holds results of conversion. Read high byte (ADCRH) before low byte (ADCRL) so that conversion 

data cannot be overwritten with data from the next conversion.

ADCCVH/L = 0xxx
Holds compare value when compare function enabled

APCTL1=0x02 
AD1 pin I/O control disabled. All other AD pins remain general purpose I/O pins

APCTL2=0x00
All other AD pins remain general purpose I/O pins
MC9S08QD4 Series MCU Data Sheet, Rev. 6

114 Freescale Semiconductor
 



Analog-to-Digital Converter (S08ADC10V1)
converter yields the lower code (and vice-versa). However, even very small amounts of system noise can 
cause the converter to be indeterminate (between two codes) for a range of input voltages around the 
transition voltage. This range is normally around ±1/2 LSB and will increase with noise. This error may be 
reduced by repeatedly sampling the input and averaging the result. Additionally the techniques discussed 
in Section 8.6.2.3, “Noise-Induced Errors,” will reduce this error.

Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a 
higher input voltage. Missing codes are those values which are never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and to have no missing codes.
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 119
 



Internal Clock Source (S08ICSV1)
9.2 External Signal Description
There are no ICS signals that connect off chip.

9.3 Register Definition

9.3.1 ICS Control Register 1 (ICSC1)

 7 6 5 4 3 2 1 0

R
CLKS RDIV IREFS IRCLKEN IREFSTEN

W

Reset: 0 0 0 0 0 1 0 0

Figure 9-3. ICS Control Register 1 (ICSC1)

Table 9-1. ICS Control Register 1 Field Descriptions

Field Description

7:6
CLKS

Clock Source Select — Selects the clock source that controls the bus frequency. The actual bus frequency 
depends on the value of the BDIV bits.
00 Output of FLL is selected.
01 Internal reference clock is selected.
10 External reference clock is selected.
11 Reserved, defaults to 00.

5:3
RDIV

Reference Divider — Selects the amount to divide down the FLL reference clock selected by the IREFS bits. 
Resulting frequency must be in the range 31.25 kHz to 39.0625 kHz.
000 Encoding 0 — Divides reference clock by 1 (reset default)
001 Encoding 1 — Divides reference clock by 2
010 Encoding 2 — Divides reference clock by 4
011 Encoding 3 — Divides reference clock by 8
100 Encoding 4 — Divides reference clock by 16
101 Encoding 5 — Divides reference clock by 32
110 Encoding 6 — Divides reference clock by 64
111 Encoding 7 — Divides reference clock by 128

2
IREFS

Internal Reference Select — The IREFS bit selects the reference clock source for the FLL.
1 Internal reference clock selected
0 External reference clock selected

1
IRCLKEN

Internal Reference Clock Enable — The IRCLKEN bit enables the internal reference clock for use as 
ICSIRCLK.
1 ICSIRCLK active
0 ICSIRCLK inactive

0
IREFSTEN

Internal Reference Stop Enable — The IREFSTEN bit controls whether or not the internal reference clock 
remains enabled when the ICS enters stop mode.
1 Internal reference clock stays enabled in stop if IRCLKEN is set or if ICS is in FEI, FBI, or FBILP mode before 

entering stop
0 Internal reference clock is disabled in stop
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 125
 



Internal Clock Source (S08ICSV1) 
9.4 Functional Description

9.4.1 Operational Modes

Figure 9-7. Clock Switching Modes

The seven states of the ICS are shown as a state diagram and are described below. The arrows indicate the 
allowed movements between the states.

9.4.1.1 FLL Engaged Internal (FEI)

FLL engaged internal (FEI) is the default mode of operation and is entered when all the following 
conditions occur:

• CLKS bits are written to 00
• IREFS bit is written to 1
• RDIV bits are written to divide trimmed reference clock to be within the range of 31.25 kHz to 

39.0625 kHz.

In FLL engaged internal mode, the ICSOUT clock is derived from the FLL clock, which is controlled by 
the internal reference clock. The FLL loop will lock the frequency to 512 times the filter frequency, as 
selected by the RDIV bits. The ICSLCLK is available for BDC communications, and the internal reference 
clock is enabled.

FLL Bypassed 
Internal Low 
Power(FBILP)

IREFS=1
CLKS=00

Entered from any state 
when MCU enters stop

FLL Engaged 
Internal (FEI)

FLL Bypassed 
Internal (FBI)

FLL Bypassed 
External (FBE)

FLL Engaged 
External (FEE)

FLL Bypassed 
External Low 
Power(FBELP)

IREFS=0
CLKS=00

IREFS=0
CLKS=10
BDM Enabled
or LP =0

Returns to state that was active 
before MCU entered stop, unless 
reset occurs while in stop.

IREFS=0
CLKS=10
BDM Disabled
and LP=1 

IREFS=1
CLKS=01
BDM Enabled
or LP=0

IREFS=1
CLKS=01
BDM Disabled
and LP=1

Stop
MC9S08QD4 Series MCU Data Sheet, Rev. 6

128 Freescale Semiconductor
 



Keyboard Interrupts (S08KBIV2)
KBISC provided all enabled keyboard inputs are at their deasserted levels. KBF will remain set if any 
enabled KBI pin is asserted while attempting to clear by writing a 1 to KBACK.

10.4.3 KBI Pullup/Pulldown Resistors

The KBI pins can be configured to use an internal pullup/pulldown resistor using the associated I/O port 
pullup enable register. If an internal resistor is enabled, the KBIES register is used to select whether the 
resistor is a pullup (KBEDGn = 0) or a pulldown (KBEDGn = 1). 

10.4.4 KBI Initialization

When a keyboard interrupt pin is first enabled it is possible to get a false keyboard interrupt flag. To 
prevent a false interrupt request during keyboard initialization, the user must do the following:

1. Mask keyboard interrupts by clearing KBIE in KBISC.
2. Enable the KBI polarity by setting the appropriate KBEDGn bits in KBIES.
3. If using internal pullup/pulldown device, configure the associated pullup enable bits in PTxPE.
4. Enable the KBI pins by setting the appropriate KBIPEn bits in KBIPE.
5. Write to KBACK in KBISC to clear any false interrupts.
6. Set KBIE in KBISC to enable interrupts.
MC9S08QD4 Series MCU Data Sheet, Rev. 6

Freescale Semiconductor 141
 



Timer/Pulse-Width Modulator (S08TPMV2) 
11.4.3 Center-Aligned PWM Mode

This type of PWM output uses the up-/down-counting mode of the timer counter (CPWMS = 1). The 
output compare value in TPMxCnVH:TPMxCnVL determines the pulse width (duty cycle) of the PWM 
signal and the period is determined by the value in TPMxMODH:TPMxMODL. 
TPMxMODH:TPMxMODL must be kept in the range of 0x0001 to 0x7FFF because values outside this 
range can produce ambiguous results. ELSnA will determine the polarity of the CPWM output.

pulse width = 2 x (TPMxCnVH:TPMxCnVL) Eqn. 11-1

period = 2 x (TPMxMODH:TPMxMODL); 
for TPMxMODH:TPMxMODL = 0x0001–0x7FFF Eqn. 11-2

If the channel value register TPMxCnVH:TPMxCnVL is zero or negative (bit 15 set), the duty cycle will 
be 0%. If TPMxCnVH:TPMxCnVL is a positive value (bit 15 clear) and is greater than the (nonzero) 
modulus setting, the duty cycle will be 100% because the duty cycle compare will never occur. This 
implies the usable range of periods set by the modulus register is 0x0001 through 0x7FFE (0x7FFF if 
generation of 100% duty cycle is not necessary). This is not a significant limitation because the resulting 
period is much longer than required for normal applications.

TPMxMODH:TPMxMODL = 0x0000 is a special case that must not be used with center-aligned PWM 
mode. When CPWMS = 0, this case corresponds to the counter running free from 0x0000 through 0xFFFF, 
but when CPWMS = 1 the counter needs a valid match to the modulus register somewhere other than at 
0x0000 in order to change directions from up-counting to down-counting.

Figure 11-12 shows the output compare value in the TPM channel registers (multiplied by 2), which 
determines the pulse width (duty cycle) of the CPWM signal. If ELSnA = 0, the compare match while 
counting up forces the CPWM output signal low and a compare match while counting down forces the 
output high. The counter counts up until it reaches the modulo setting in TPMxMODH:TPMxMODL, then 
counts down until it reaches zero. This sets the period equal to two times TPMxMODH:TPMxMODL.

Figure 11-12. CPWM Period and Pulse Width (ELSnA = 0)

Center-aligned PWM outputs typically produce less noise than edge-aligned PWMs because fewer I/O pin 
transitions are lined up at the same system clock edge. This type of PWM is also required for some types 
of motor drives.

Because the HCS08 is a family of 8-bit MCUs, the settings in the timer channel registers are buffered to 
ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers, 
TPMxMODH, TPMxMODL, TPMxCnVH, and TPMxCnVL, actually write to buffer registers. Values are 

PERIOD

PULSE WIDTH

COUNT =

COUNT = 0
OUTPUT

COMPARE
(COUNT UP)

OUTPUT
COMPARE

(COUNT DOWN)
COUNT =

TPMxMODH:TPMx

TPM1C

TPMxMODH:TPMx

2 x 

2 x 
MC9S08QD4 Series MCU Data Sheet, Rev. 6

156 Freescale Semiconductor
 



Development Support 
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU 
system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed. 

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the 
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source. 

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams 
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but 
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting 
cycles.

Figure 12-2 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target HCS08 MCU. 
The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge 
to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target 
senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin 
during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD 
pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal 
during this period.

Figure 12-2. BDC Host-to-Target Serial Bit Timing

Figure 12-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is 
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on 
BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long 
enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive 
before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the 
bit time. The host must sample the bit level about 10 cycles after it started the bit time.

EARLIEST START

TARGET SENSES BIT LEVEL

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

BDC CLOCK
(TARGET MCU)

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED START
OF BIT TIME

OF NEXT BIT
MC9S08QD4 Series MCU Data Sheet, Rev. 6

162 Freescale Semiconductor
 



Appendix A Electrical Characteristics
Figure A-1. Typical Low-Side Driver (Sink) Characteristics
Low Drive (PTxDSn = 0), VDD = 5.0V, VOL vs. IOL

Figure A-2. Typical Low-Side Driver (Sink) Characteristics
Low Drive (PTxDSn = 0), VDD = 3.0 V, VOL vs. IOL

7 Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current 
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result 
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection 
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if 
clock rate is very low (which would reduce overall power consumption).

14

12

10

8

6

4

2

0

0 0.4 0.8 1.2 1.6 2 2.4 2.8

VOL/V

I O
L/

m
A

–40

0

25

85

125

Typical Low-side Driver (LDS) Characteristics,
VDD = 5.0 V, PORTA

105

–40

25

85

105

–1.61.21 1.40.80.60.40.20
VOL/V

0

1

2

3

4

5

6

I O
L/

m
A

Typical Low-side Driver (LDS) Characteristics,
VDD = 3.0 V, PORTA

0

125
MC9S08QD4 Series MCU Data Sheet, Rev. 6

178 Freescale Semiconductor
 



Appendix A Electrical Characteristics
MC9S08QD4 Series MCU Data Sheet, Rev. 6

190 Freescale Semiconductor
 


