E·XFL

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l041g6u7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. STM32L041x4/6 block diagram

DocID027301 Rev 4

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM[®] Cortex[®]-M4, including ARM[®] Cortex[®]-M3 and ARM[®] Cortex[®]-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 Ultra-low-power series are the best solution for applications such as gas/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L041x4/6 supports dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

• Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event

3.15.2 Low-power Timer (LPTIM)

The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one shot mode
- Selectable software / hardware input trigger
- Selectable clock source
 - Internal clock source: LSE, LSI, HSI or APB clock
 - External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- Programmable digital glitch filter
- Encoder mode

3.15.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches '0'.

3.15.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.15.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.16 Communication interfaces

3.16.1 I²C bus

One I²C interface (I2C1) can operate in multimaster or slave modes. The I²C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

The I²C interface supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 10.	Comparison	of I2C analog	a and diaital	filters
		•••••••	g	

In addition, I2C1 provides hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C interface can be served by the DMA controller.

Refer to *Table 11* for the supported modes and features of I2C interface.

Table 11. STM32L041x4/6 I²C implementation

I2C features ⁽¹⁾	I2C1
7-bit addressing mode	Х
10-bit addressing mode	Х
Standard mode (up to 100 kbit/s)	Х
Fast mode (up to 400 kbit/s)	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	X ⁽²⁾
Independent clock	Х
SMBus	Х
Wakeup from STOP	Х

1. X = supported.

2. See Table 15: Pin definitions on page 38 for the list of I/Os that feature Fast Mode Plus capability

Table 1	5. Pin	definitions	(continued)

		Pir	n num	ber										
TSSOP20	WLCSP25	UFQFPN28	UFQFPN28 (STM32L041GxUxS only)	LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions		
-	-	-	-	-	-	35	VSS	S	-	-	-	-		
-	D1	-	-	-	-	36	VDD	S	-	-	-	-		
20	A2	22	22	24	24	37	PA14	I/O	FT	-	SWCLK, LPTIM1_OUT, I2C1_SMBA, USART2_TX, LPUART1_TX	-		
-	_	23	23	25	25	38	PA15	I/O	FT	-	SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1			
I	B2	24	24	26	26	39	PB3	I/O	FT	-	SPI1_SCK, TIM2_CH2, EVENTOUT	COMP2_INN		
-	-	-	25	27	27	40	PB4	I/O	FT	-	SPI1_MISO, EVENTOUT, TIM22_CH1	COMP2_INP		
-	-	-	26	28	28	41	PB5	I/O	FT	-	SPI1_MOSI, LPTIM1_IN1, I2C1_SMBA, TIM22_CH2	COMP2_INP		
-	A3	25	27	29	29	42	PB6	I/O	FTf	-	USART2_TX, I2C1_SCL, LPTIM1_ETR, TIM21_CH1	COMP2_INP		
-	A4	26	28	30	30	43	PB7	I/O	FTf	-	USART2_RX, I2C1_SDA, LPTIM1_IN2	COMP2_INP, VREF_PVD_IN		

6.1.6 Power supply scheme

Figure 13. Power supply scheme

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise.

The current consumption values are derived from the tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions* unless otherwise specified.

The MCU is placed under the following conditions:

- All I/O pins are configured in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance unless otherwise specified.
- When the peripherals are enabled f_{APB1} = f_{APB2} = f_{APB}
- When PLL is on, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used)
- The HSE user clock is applied to OSCI_IN input (LQFP48 package) and to CK_IN (other packages). It follows the characteristic specified in *Table 37: High-speed* external user clock characteristics
- For maximum current consumption $V_{DD} = V_{DDA} = 3.6$ V is applied to all supply pins
- For typical current consumption V_{DD} = V_{DDA} = 3.0 V is applied to all supply pins if not specified otherwise

The parameters given in *Table 44*, *Table 20* and *Table 21* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Figure 15. I_{DD} vs V_{DD} , at T_A = 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE = 16 MHz, 1WS

Figure 16. I_{DD} vs V_{DD}, at T_A= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
				T_A = -40 °C to 25 °C	6.3	8.4	
			MSI clock, 65 kHz	T _A = 85 °C	9.15	13	
			f _{HCLK} = 32 kHz	T _A = 105 °C	12.5	19	
		All		T _A = 125 °C	20.5	36	
		peripherals off. code		T_A =-40 °C to 25 °C	9.45	12	
		executed	MSI clock, 65 kHz	T _A = 85 °C	12.5	15	
		from RAM, Flash	f _{HCLK} = 65 kHz	T _A = 105 °C	16	22	
		memory		T _A = 125 °C	24	38	
		from 1.65 V		T_A = -40 °C to 25 °C	17	20	
		to 3.6 V	MSI clock, 131 kHz f _{HCLK} = 131 kHz	T _A = 55 °C	19	21	μA
	Supply current in			T _A = 85 °C	20.5	24	
				T _A = 105 °C	23.5	28	
I _{DD}				T _A = 125 °C	31.5	46	
(LP Run)	Low-power	Δ 11	MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	18.5	23	
	Turi mode			T _A = 85 °C	23	27	
				T _A = 105 °C	27	33	
				T _A = 125 °C	36	52	
		peripherals		T_A = -40 °C to 25 °C	22.5	26	
		off, code executed	MSI clock, 65 kHz	T _A = 85 °C	27.5	31	-
		from Flash	f _{HCLK} = 65 kHz	T _A = 105 °C	31	38	
		memory, V _{DD} from		T _A = 125 °C	40.5	56	
		1.65 V to		T_A = -40 °C to 25 °C	32	36	
		3.0 V		T _A = 55 °C	35	37	
			MSI clock, 131 kHz f _{HCLK} = 131 kHz	T _A = 85 °C	37.5	42	
				T _A = 105 °C	41	47	
				T _A = 125 °C	50	65	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

Currence al	Devenueter		11		
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-		±600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μΑ

Table 44. PLL characteristics (continued)

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

RAM memory

Table 45. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Table 46. Flash memory and data EEPROM characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
t _{prog}	Programming time for	Erasing	-	3.28	3.94	me
	word or half-page	Programming	-	3.28	3.94	1115
I _{DD}	Average current during the whole programming / erase operation	[.] T _A = 25 °C, V _{DD} = 3.6 V	-	500	700	μA
	Maximum current (peak) during the whole programming / erase operation		-	1.5	2.5	mA

1. Guaranteed by design.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. f _{OSC} /f _{CPU} 8 MHz/32 MHz	Unit
S _{EMI}	Peak level	$V_{DD} = 3.6 V,$ $T_A = 25 °C,$ LQFP48 package conforming to IEC61967-2	0.1 to 30 MHz	-10	
			30 to 130 MHz	5	dBµV
			130 MHz to 1GHz	-5	
			EMI Level	1.5	-

Table 49. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C},$ conforming to ANSI/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C},$ conforming to ANSI/ESD STM5.3.1.	C4	500	~

 Table 50. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

Figure 25. V_{IH}/V_{IL} versus VDD (CMOS I/Os)

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 15 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 54*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 18*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 18*).

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 55*, respectively.

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions		Max ⁽²⁾	Unit		
	f	Maximum frequency ⁽³⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		400	kH7		
00	'max(IO)out		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	50 pF, V _{DD} = 1.65 V to 2.7 V -				
00	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ne		
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	320			
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	МНт		
01	'max(IO)out		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	0.6			
01	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30			
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	65	- 115		
	F	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	МНт		
10	rmax(IO)out		C _L = 50 pF, V _{DD} = 1.65 V to 2.7 V -		2	101112		
10	t _{f(IO)out} t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	13	ne		
			C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	28			
	E	Maximum fraguanay ⁽³⁾	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	35			
11	rmax(IO)out		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	10			
11	t _{f(IO)out}	Output rise and fall time	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	6	- ns		
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	17			
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz		
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DD} = 2.5 V to 3.6 V		10			
Fm+	t _{r(IO)out}	Output rise time		-	30	ns		
configuration ⁽⁴⁾	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	350	KHz		
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DD} = 1.65 V to 3.6 V	-	15			
	t _{r(IO)out}	Output rise time		-	60	115		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns		

 Table 55. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure* 27.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration.

		R_{AIN} max for standard channels (k Ω)							
T _s (cycles)	T _s t _S (cycles) (μs)	fast channels (kΩ)	V _{DD} > 2.7 V	V _{DD} > 2.4 V	V _{DD} > 2.0 V	V _{DD} > 1.8 V	V _{DD} > 1.75 V	V _{DD} > 1.65 V and T _A > -10 °C	V _{DD} > 1.65 V and T _A > 25 °C
1.5	0.09	0.5	< 0.1	NA	NA	NA	NA	NA	NA
3.5	0.22	1	0.2	< 0.1	NA	NA	NA	NA	NA
7.5	0.47	2.5	1.7	1.5	< 0.1	NA	NA	NA	NA
12.5	0.78	4	3.2	3	1	NA	NA	NA	NA
19.5	1.22	6.5	5.7	5.5	3.5	NA	NA	NA	< 0.1
39.5	2.47	13	12.2	12	10	NA	NA	NA	5
79.5	4.97	27	26.2	26	24	< 0.1	NA	NA	19
160.5	10.03	50	49.2	49	47	32	< 0.1	< 0.1	42

Table 58. R_{AIN} max for $f_{ADC} = 16 \text{ MHz}^{(1)}$

1. Guaranteed by design.

Table 59. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error		-	1.5	2.5	
ED	Differential linearity error		-	1	1.5	
	Effective number of bits	$1.65 V < V_{DDA} < 3.6 V_{range}$	10.2	11		
ENOB	Effective number of bits (16-bit mode oversampling with ratio =256) ⁽⁴⁾	1/2/3	11.3	12.1	-	bits
SINAD	Signal-to-noise distortion		63	69	-	
	Signal-to-noise ratio		63	69	-	
SNR	Signal-to-noise ratio (16-bit mode oversampling with ratio =256) ⁽⁴⁾		70	76	-	dB
THD	Total harmonic distortion		-	-85	-73	

1. ADC DC accuracy values are measured after internal calibration.

2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input All Accuracy vs. Negative injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in *Section 6.3.12* does not affect the ADC accuracy.

3. Better performance may be achieved in restricted $\mathrm{V}_{\mathrm{DDA}}$, frequency and temperature ranges.

4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			8	
f _{SCK}	SPI clock frequency	Slave mode Transmitter 1.65 <v<sub>DD<3.6V</v<sub>	-	-	8	MHz
""C(SCK)		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>			8 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input actus time	Master mode	12	-	-	
t _{su(SI)}	Data input setup time	Slave mode	11	-	-	
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	
t _{h(SI)}		Slave mode	2	-	-	ns
t _{a(SO}	Data output access time	Slave mode	18	-	52	
t _{dis(SO)}	Data output disable time	Slave mode	12	-	42	
t _{v(SO)}	Data output valid time	Slave mode	-	40	55	
		Master mode	-	16	26	
t _{v(MO)}	Data autput hold time	Slave mode	12	-	-	1
t _{h(SO)}		Master mode	4	-	-	1

Table 68	SPI	characteristics	in	voltage	Range	2 (1)
		characteristics		vonage	Range	4

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SQ)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

1. Dimensions are expressed in millimeters.

7.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter Value						
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	57	°CAN				
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60					
Θ _{JA}	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	39					
	Thermal resistance junction-ambient UFQFPN28 - 4 x 4 mm / 0.5 mm pitch	120	0/10				
	Thermal resistance junction-ambient WLCSP25 - 0.4 mm pitch	70					
	Thermal resistance junction-ambient TSSOP20 - 169 mils	60					

Table	77.	Thermal	characteris	stics
10010		1110111101	onaraotorit	2000

8 Part numbering

Table 78. STM32L041x4	/6 orderin	g inforn	nation	schem	ne		
Example:	STM32 L	041	К	6	Т 6		TR
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
L = Low power							
Device subfamily							
041 = Access line with AES							
Pin count							
C = 48 pins							
K = 32 pins							
G = 28 pins							
E = 25 pins							
F = 20 pins							
Flash memory size							
4 = 16 Kbytes							
6 = 32 Kbytes							
Package							
T = LQFP							
U = UFQFPN							
Y = WLCSP							
P = TSSOP							
Temperature range							
$6 = $ Industrial temperature range -40 to $85 ^{\circ}C$							
7 = Industrial temperature range, -40 to 105 °C							
3 = Industrial temperature range, -40 to 125 °C							
Number of UFQFPN28 power pairs							
S = one power pair ⁽¹⁾							
No character = Two power pairs							
Options							
No character = V_{DD} range: 1.8 to 3.6 V and BOR en	abled						
D = V_{DD} range: 1.65 to 3.6 V and BOR disabled							
Packing							
TR			-	-		-	

TR = tape and reel No character = tray or tube

1. This option is available only on STM32L041GxUxS part number. Contact your nearest ST sales office for availability.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Date	Revision	Changes
12-Apr-2016	3	 <i>Features</i>: Change minimum comparator supply voltage to 1.65 V. Updated current consumptions in Standby, Stop and Stop with RTC ON modes. Removed note related to preliminary consumption values in <i>Table 5: Functionalities depending on the working mode (from Run/active down to standby)</i>. Added number of fast and standard channels in <i>Section 3.10: Analog-to-digital converter (ADC)</i>. Added baudrate allowing to wake up the MCU from Stop mode in <i>Section 3.16:2: Universal synchronous/asynchronous receiver transmitter (USART)</i> and <i>Section 3.16:3: Low-power universal asynchronous receiver transmitter (USART)</i> and <i>Section 3.16:2: General operating conditions</i>. Added I_{REFINT} value for V_{DD}=1.8 V in <i>Table 20: General operating conditions</i>. Added I_{REFINT} value for V_{DD}=1.8 V in <i>Table 35: Peripheral current consumption in Stop and Standby mode</i>. <i>Section 6.3.15: 12-bit ADC characteristics</i>: <i>Table 57: ADC characteristics</i>: Distinction made between V_{DDA} for fast and standard channels; added note 1. Added note 4. related to R_{ADC}. Updated t_S and t_{CONV}. Updated <i>Table 58: RAIN max for fADC = 16 MHz</i> for f_{ADC} = 16 MHz and distinction made between fast and standard channels.
01-Dec-2016	4	Added STM32L041E6 part number. Added STM32L041E6 part number. Added reference to optional marking or inset/upset marks in all package device marking sections. Removed note related to WLCSP25 preliminary ballout in <i>Table 15: Pin definitions</i> . Changed aaa, bbb, ccc, ddd and eee data from minimum to maximum values in <i>Table 74: WLCSP25 -</i> 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data. Added LQFP48 device marking, LQFP32 device marking, UFQFPN28 device marking and TSSOP20 device marking.

Table 79. Document revision history

