

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l041k6u7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The access line ultra-low-power STM32L041x4/6 family incorporates the high-performance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, high-speed embedded memories (up to 32 Kbytes of Flash program memory, 1 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L041x4/6 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L041x4/6 devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, AES, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L041x4/6 devices embed standard and advanced communication interfaces: one I2C, one SPI, one USART, and a low-power UART (LPUART).

The STM32L041x4/6 also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L041x4/6 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM[®] Cortex[®]-M4, including ARM[®] Cortex[®]-M3 and ARM[®] Cortex[®]-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 Ultra-low-power series are the best solution for applications such as gas/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L041x4/6 supports dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

• Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event

Operating power supply	Functionalities depending on the operating power supply range					
range	ADC operation	Dynamic voltage scaling range	I/O operation			
V _{DD} = 1.65 to 1.71 V	Conversion time up to 570 ksps	Range 2 or range 3	Degraded speed performance			
V _{DD} = 1.71 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 MspsRange 1, range 2 range 3		Degraded speed performance			
V _{DD} = 2.0 to 2.4 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation			
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation			

 CPU frequency changes from initial to final must respect the condition: f_{CPU initial} <4f_{CPU initial}. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
32 kHz to 4.2 MHz (0ws)	Range 3

Table 5. Functionalities depending on the working mode(from Run/active down to standby) ⁽¹⁾

			Low-	Low-		Stop	Standby	
IPs	Run/Active	ctive Sleep power power run sleep		power sleep		Wakeup capability		Wakeup capability
CPU	Y		Y					
Flash memory	0	0	0	0				
RAM	Y	Y	Y	Y	Y			
Backup registers	Y	Y	Y	Y	Y		Y	
EEPROM	0	0	0	0				
Brown-out reset (BOR)	0	О	0	0	0	0	0	0
DMA	0	0	0	0				
Programmable Voltage Detector (PVD)	0	0	О	О	0	0	-	

3.8 Memories

The STM32L041x4/6 devices have the following features:

- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 16 or 32 Kbytes of embedded Flash program memory
 - 1 Kbytes of data EEPROM
 - Information block containing 32 user and factory options bytes plus 4 Kbytes of system memory

The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no protection
- Level 1: memory readout protected.

The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected

• Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.9 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: AES, SPI, I²C, USART, LPUART, general-purpose timers, and ADC.

3.10 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L041x4/6 devices. It has up to 10 external channels and 3 internal channels (temperature sensor, voltage reference). Three channel are fast channel, PA0, PA4 and PA5, while the others are standard channels.

It performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~200 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

Pin number												
TSSOP20	WLCSP25	UFQFPN28	UFQFPN28 (STM32L041GxUxS only)	LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	-	-	2	PC13- ANTI_TAMP	I/O	FT	-	-	TAMP1/WKUP2
2	B5	2	2	2	2	3	PC14- OSC32_IN	I/O	тс	-	-	OSC32_IN
3	C5	3	3	3	3	4	PC15- OSC32_OUT	I/O	тс	-	-	OSC32_OUT
-	-	-	-	-	-	5	PH0-OSC_IN	I/O	тс	-	-	-
-	-	-	-	-	-	6	PH1- OSC_OUT	I/O	тс	-	-	-
4	D5	4	4	4	4	7	NRST	I/O	-	-	-	-
-	-	-	-	-	-	1	PC0	I/O	FT	-	LPTIM1_IN1, EVENTOUT, LPUART1_RX	-
-	E1	-	-	-	"0"	8	VSSA	S	-	-	-	-
5	C4	5	5	5	5	9	VDDA	S	-	-	-	-
6	E5	6	6	6	6	-	PA0-CK_IN	I/O	тс	-	LPTIM1_IN1, TIM2_CH1, USART2_CTS, TIM2_ETR, COMP1_OUT	COMP1_INM6, ADC_IN0, RTC_TAMP2/WKUP1
-	-	-	-	-	-	10	PA0	I/O	тс	-	LPTIM1_IN1, TIM2_CH1, USART2_CTS, TIM2_ETR, COMP1_OUT	COMP1_INM6, ADC_IN0, RTC_TAMP2/WKUP1

Table	15.	Pin	definit	ions	(conti	nued)

		Pir	n num	ber								
TSSOP20	WLCSP25	UFQFPN28	UFQFPN28 (STM32L041GxUxS only)	LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	-	-	27	PB14	I/O	FT	-	SPI1_MISO, RTC_OUT, TIM21_CH2, LPUART1_RTS	-
-	-	-	-	-	-	28	PB15	I/O	FT	-	SPI1_MOSI, RTC_REFIN	-
-	C1	18	18	18	18	29	PA8	I/O	FT	-	MCO, LPTIM1_IN1, EVENTOUT, USART2_CK, TIM2_CH1	-
17	B1	19	19	19	19	30	PA9	I/O	FTf	-	MCO, I2C1_SCL, USART2_TX, TIM22_CH1	-
18	C2	20	20	20	20	31	PA10	I/O	FTf	-	I2C1_SDA, USART2_RX, TIM22_CH2	-
-	-	-	-	21	21	32	PA11	I/O	FT	-	SPI1_MISO, EVENTOUT, USART2_CTS, TIM21_CH2, COMP1_OUT	-
-	-	-	-	22	22	33	PA12	I/O	FT	-	SPI1_MOSI, EVENTOUT, USART2_RTS, COMP2_OUT	-
19	A1	21	21	23	23	34	PA13	I/O	FT	-	SWDIO, LPTIM1_ETR, LPUART1_RX	-

Table 16. Alternate functions (continued)										
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
Ports		SPI1/USART2 /LPTIM/TIM21 /EVENTOUT/ SYS_AF	SPI1/I2C1/ LPTIM	LPTIM/TIM2/ EVENTOUT/ SYS_AF	I2C1/ EVENTOUT	I2C1/USART2/ LPUART1/ TIM22/ EVENTOUT	TIM2/21/22	LPUART1/ EVENTOUT	COMP1/2	
	PB0	EVENTOUT	SPI1_MISO	-	-	USART2_RTS	TIM2_CH3	-	-	
	PB1	USART2_CK	SPI1_MOSI	-	-	LPUART1_RTS	TIM2_CH4	-	-	
	PB2	-	-	LPTIM1_OUT	-	-	-	-	-	
	PB3	SPI1_SCK	-	TIM2_CH2	-	EVENTOUT	-	-	-	
	PB4	SPI1_MISO	-	EVENTOUT	-	TIM22_CH1	-	-	-	
	PB5 SPI1_N	SPI1_MOSI	-	LPTIM1_IN1	I2C1_SMBA	TIM22_CH2	-	-	-	
	PB6	USART2_TX	I2C1_SCL	LPTIM1_ETR	-	-	TIM21_CH1	-	-	
Port P	PB7	USART2_RX	I2C1_SDA	LPTIM1_IN2	-	-	-	-	-	
FUILD	PB8	-	-	-	-	I2C1_SCL	-	-	-	
	PB9	-	-	EVENTOUT	-	I2C1_SDA	-	-	-	
	PB10	-	-	TIM2_CH3	-	-	-	LPUART1_TX	-	
	PB11	EVENTOUT	-	TIM2_CH4	-	-	-	LPUART1_RX	-	
	PB12	SPI1_NSS	-	-	-	-	-	EVENTOUT	-	
	PB13	SPI1_SCK	-	MCO	-	-	TIM21_CH1	LPUART1_CTS	-	
	PB14	SPI1_MISO	-	RTC_OUT	-	-	TIM21_CH2	LPUART1_RTS	-	
	PB15	SPI1_MOSI	-	RTC_REFIN	-	-	-	-	-	
Port C	PC0	LPTIM1_IN1	-	EVENTOUT	-	-	-	LPUART1_RX	-	
Dort L	PH0	-	-	-	-	-	-	-	-	
POILH	PH1	-	-	-	-	-	-	-	-	

DocID027301 Rev 4

5

45/119

STM32L041x4/6

Pin descriptions

6.1.6 Power supply scheme

Figure 13. Power supply scheme

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

6.3.3 Embedded internal reference voltage

The parameters given in *Table 23* are based on characterization results, unless otherwise specified.

Calibration value name	Description	Memory address		
VREFINT_CAL	Raw data acquired at temperature of 25 °C, V_{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
Avref_meas	Accuracy of factory-measured V _{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽⁴⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽⁴⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽⁴⁾	1/2 reference voltage	-	49	50	51	% V _{REEINT}
V _{REFINT_DIV3} ⁽⁴⁾	3/4 reference voltage	-	74	75	76	

Table 23. Embedded internal reference voltage⁽¹⁾

1. Refer to *Table 35: Peripheral current consumption in Stop and Standby mode* for the value of the internal reference current consumption (I_{REFINT}).

2. Guaranteed by test in production.

3. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

4. Guaranteed by design.

5. Shortest sampling time can be determined in the application by multiple iterations.

6. To guarantee less than 1% VREF_OUT deviation.

DocID027301 Rev 4

O maked	Symbol Devenator Conditions f Typ May(1) Uni								
Symbol	Parameter	Conditions		THCLK	тур	max ⁽¹⁾	Unit		
				1 MHz	140	200			
			Range 3, V _{CORE} =1.2 V VOS[1:0]=11	2 MHz	245	310	μA		
				4 MHz	460	540			
		f _{HSE} = f _{HCLK} up to		4 MHz	0.56	0.63			
Supply I _{DD} current ir (Run Run moo		16 MHz included, fuse = fucur/2 above	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10.	8 MHz	1.1	1.2	mA		
	Supply	16 MHz (PLL on) ⁽²⁾		16 MHz	2.1	2.3			
	current in		Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	8 MHz	1.25	1.4			
	Run mode,			16 MHz	2.5	2.7			
Flash)	executed			32 MHz	5	5.6			
fi	from Flash	from Flash		Range 2, V _{CORE} =1.5 V, VOS[1:0]=10,	16 MHz	2.1	2.4]	
		HSI CIOCK	Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	5.1	5.7			
		MSI clock Ra		65 kHz	34.5	110			
			Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	524 kHz	86	150	μA		
				4.2 MHz	505	570			

Table 24. Current consumption in Run mode, code with data processing running from Flash memory

1. Guaranteed by characterization results at 125 $^\circ\text{C},$ unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 25. Current consumption in Run mode vs code type,
code with data processing running from Flash memory

Symbol	Parameter		Conditions		f _{HCLK}	Тур	Unit
			Dhrystone		460		
				CoreMark		455	
			Range 3, V _{CORE} =1.2 V.	Fibonacci	4 MHz	330	ΠΑ
Supply current in I _{DD} Run mode,	f _{HSE} = f _{HCLK} up to 16 MHz included,	VOS[1:0]=11	while(1)		305		
			while(1), prefetch OFF		320		
from Flash)	executed	f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL ON) ⁽¹⁾		Dhrystone		5	
1 10311)	from Flash			CoreMark	1	5.15	1
memory		Range 1, VOS[1:0]=01,	Fibonacci	32 MHz	5	mA	
			V _{CORE} =1.8 V	while(1)	-	4.35	-
				while(1), prefetch OFF		3.85	

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Figure 15. I_{DD} vs V_{DD} , at T_A = 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE = 16 MHz, 1WS

Figure 16. I_{DD} vs V_{DD}, at T_A= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS

6.3.7 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

High-speed internal 16 MHz (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
(1)(2)	HSI16 user-	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	trimmed resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI16 oscillator	V_{DDA} = 3.0 V, T_A = 0 to 55 °C	-1.5	-	1.5	%
ACC _{HSI16}		V_{DDA} = 3.0 V, T_A = -10 to 70 °C		-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V _{DDA} = 3.0 V, T _A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 125 °C	-5.45	-	3.25	%
t _{SU(HSI16)} ⁽²⁾	HSI16 oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-	-	100	140	μA

Table 41. 16 MHz HSI16 oscillator characteristics

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Figure 24. HSI16 minimum and maximum value versus temperature

Figure 29. ADC accuracy characteristics

^{1.} Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC.

C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

6.3.16 Temperature sensor characteristics

Table 60. Temperature sensor calibration values

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B
TS_CAL2	TS ADC raw data acquired at temperature of 130 °C V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₃₀	Voltage at 130°C ±5°C ⁽²⁾	640	670	700	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

Table 61. Temperature sensor characteristics

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.

3. Guaranteed by design.

4. Shortest sampling time can be determined in the application by multiple iterations.

6.3.17 Comparators

<u> </u>	– <i>–</i>		··· (1)	-	aa (1)		
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit	
V_{DDA}	Analog supply voltage	-	1.65		3.6	V	
R _{400K}	R _{400K} value	-	-	400	-	kO	
R _{10K}	R _{10K} value	-	-	10	-	KΩ	
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V	
t _{START}	Comparator startup time	-	-	7	10	116	
td	Propagation delay ⁽²⁾	-	-	3	10	μο	
Voffset	Comparator offset	-	-	±3	±10	mV	
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 °C$	0	1.5	10	mV/1000 h	
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA	

Table 62. Comparator 1 characteristics

1. Guaranteed by characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

LQFP32 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.3 UFQFPN32 package information

Figure 40. UFQFPN32, 5 x 5 mm, 32-pin package outline

1. Drawing is not to scale.

Table 72. UFQFPN32, 5 x 5 mm, 32-pin package mechanical data

Sympol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.200	-	-	0.0079	-	
b	0.180	0.250	0.300	0.0071	0.0098	0.0118	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D2	3.200	3.450	3.700	0.1260	0.1358	0.1457	
E	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E2	3.200	3.450	3.700	0.1260	0.1358	0.1457	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Table 74. WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data (continued)

Symbol	Milimeters			Inches ⁽¹⁾		
зупрог	Min	Тур	Мах	Min	Тур	Мах
ааа	-	-	0.1000	-	-	0.0039
bbb	-	-	0.1000	-	-	0.0039
ссс	-	-	0.1000	-	-	0.0039
ddd	-	-	0.0500	-	-	0.0020
eee	-	-	0.0500	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Table 75. WLCSP25	recommended PCE	design rules
-------------------	-----------------	--------------

Dimension	Recommended values
Pitch	0.4 mm
Dpad	260 μm max. (circular) 220 μm recommended
Dsm	300 μm min. (for 260 μm diameter pad)
PCB pad design	Non-solder mask defined via underbump allowed

Date	Revision	Changes
12-Apr-2016	3	 <i>Features</i>: Change minimum comparator supply voltage to 1.65 V. Updated current consumptions in Standby, Stop and Stop with RTC ON modes. Removed note related to preliminary consumption values in <i>Table 5: Functionalities depending on the working mode (from Run/active down to standby)</i>. Added number of fast and standard channels in <i>Section 3.10: Analog-to-digital converter (ADC)</i>. Added baudrate allowing to wake up the MCU from Stop mode in <i>Section 3.16:2: Universal synchronous/asynchronous receiver transmitter (USART)</i> and <i>Section 3.16:3: Low-power universal asynchronous receiver transmitter (USART)</i> and <i>Section 3.16:2: General operating conditions</i>. Added I_{REFINT} value for V_{DD}=1.8 V in <i>Table 20: General operating conditions</i>. Added I_{REFINT} value for V_{DD}=1.8 V in <i>Table 35: Peripheral current consumption in Stop and Standby mode</i>. <i>Section 6.3.15: 12-bit ADC characteristics</i>: <i>Table 57: ADC characteristics</i>: Distinction made between V_{DDA} for fast and standard channels; added note 1. Added note 4. related to R_{ADC}. Updated t_S and t_{CONV}. Updated <i>Table 58: RAIN max for fADC = 16 MHz</i> for f_{ADC} = 16 MHz and distinction made between fast and standard channels.
01-Dec-2016	4	Added STM32L041E6 part number. Added reference to optional marking or inset/upset marks in all package device marking sections. Removed note related to WLCSP25 preliminary ballout in <i>Table 15: Pin definitions</i> . Changed aaa, bbb, ccc, ddd and eee data from minimum to maximum values in <i>Table 74: WLCSP25 -</i> 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data. Added LQFP48 device marking, LQFP32 device marking, UFQFPN28 device marking and TSSOP20 device marking.

Table 79. Document revision history

