

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b40l3b3e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5	Ordering information	106
Appendix	A Abbreviations	107
Revision	history	108

		Table	e 2. SPC56)B40x/50x	and SPC56	0C40x/50x	device co	mparison ⁽¹)		
						Device					
Feature	SPC560B 40L1	SPC560B 40L3	SPC560B 40L5	SPC560C 40L1	SPC560C 40L3	SPC560B 50L1	SPC560B 50L3	SPC560B 50L5	SPC560C 50L1	SPC560C 50L3	SPC560B 50B2
CPU			L	L	•	e200z0h	•	•	•	•	
Execution speed ⁽²⁾					Stat	ic – up to 64	MHz				
Code Flash			256 KB					512	2 KB		
Data Flash					64	KB (4 × 16	KB)				
RAM		24 KB		32	KB		32 KB			48 KB	
MPU						8-entry					
ADC (10-bit)	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	36 ch
СТИ						Yes					
Total timer I/O ⁽³⁾ eMIOS	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit
- PWM + MC + IC/OC ⁽⁴⁾	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	10 ch
- PWM + IC/OC ⁽⁴⁾	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch
- IC/OC ⁽⁴⁾		3 ch	6 ch		3 ch		3 ch	6 ch		3 ch	6 ch
SCI (LINFlex)		3 ⁽⁵⁾						4			
SPI (DSPI)	2	:	3	2	3	2	;	3	2	:	3
CAN (FlexCAN)		2 ⁽⁶⁾		5	6		3 ⁽⁷⁾		5		6
I ² C				1		1					
32 kHz oscillator						Yes					
GPIO ⁽⁸⁾	45	79	123	45	79	45	79	123	45	79	123

9/116

SPC560B40x/50x, SPC560C40x/50x

Introduction

3.5 System pins

The system pins are listed in Table 5.

					I	Pin nu	umbe	r
System pin	Function	I/O direction	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽¹⁾
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	М	Input, weak pull-up only after PHASE2	9	17	21	J1
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. ⁽²⁾	I/O	х	Tristate	27	36	50	N8
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. ⁽²⁾	I	х	Tristate	25	34	48	P8

Tahlo	5	System	nin	descri	ntions
rable	э.	System	pin	aescri	ptions

1. LBGA208 available only as development package for Nexus2+

2. See the relevant section of the datasheet

3.6 Functional ports

The functional port pins are listed in *Table 6*.

c. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).

									Pin nu	umber	-
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT — WKPU[19] ⁽⁴⁾	SIUL eMIOS_0 CGL — WKPU	I/O I/O O I	М	Tristate	5	12	16	G4
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁽⁵⁾ WKPU[2] ⁽⁴⁾	SIUL eMIOS_0 — — WKPU WKPU WKPU	/O /O - 	S	Tristate	4	7	11	F3
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — — WKPU[3] ⁽⁴⁾	SIUL eMIOS_0 — WKPU	I/O I/O — I	S	Tristate	3	5	9	F2
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — — EIRQ[0]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	43	68	90	K15
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — — WKPU[9] ⁽⁴⁾	SIUL eMIOS_0 — WKPU	I/O I/O — I	S	Tristate	20	29	43	N6
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	79	118	C11
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — — EIRQ[1]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	52	80	119	D11

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 — EIRQ[4]	SIUL DSPI_0 DSPI_0 — SIUL	I/O I/O I/O I	М	Tristate	19	28	42	P6
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 — WKPU[10] ⁽⁴⁾	SIUL DSPI_0 DSPI_0 — WKPU	I/O I/O I/O I	М	Tristate	18	27	40	R6
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX — —	SIUL FlexCAN_0 —	I/O O —	Μ	Tristate	14	23	31	N3
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 —	GPIO[17] — — WKPU[4] ⁽⁴⁾ CAN0RX	SIUL — — WKPU FlexCAN_0	I/O — — — — —	S	Tristate	15	24	32	N1
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LINOTX SDA —	SIUL LINFlex_0 I2C_0 —	I/O O I/O —	М	Tristate	64	100	144	B2
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 —	GPIO[19] — SCL — WKPU[11] ⁽⁴⁾ LIN0RX	SIUL — I2C_0 — WKPU LINFlex_0	I/O — I/O — I I	S	Tristate	1	1	1	C3
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 —	GPIO[20] — — — GPI[0]	SIUL — — — ADC	 	I	Tristate	32	50	72	T16

Table 6. Functional port pin descriptions (continued)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPIO[21] — — — GPI[1]	SIUL — — ADC	 - - 	I	Tristate	35	53	75	R16
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPIO[22] — — — GPI[2]	SIUL — — ADC	 - - 	I	Tristate	36	54	76	P15
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPIO[23] — — — GPI[3]	SIUL — — ADC	 - - 	I	Tristate	37	55	77	P16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 	GPIO[24] — — ANS[0] OSC32K_XTAL ⁽⁷⁾	SIUL - ADC SXOSC	 	I	Tristate	30	39	53	R9
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 —	GPIO[25] — — ANS[1] OSC32K_EXTAL ⁽ ⁷⁾	SIUL — — ADC SXOSC	 	I	Tristate	29	38	52	Т9
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 	GPIO[26] — — ANS[2] WKPU[8] ⁽⁴⁾	SIUL — — ADC WKPU	/O 	J	Tristate	31	40	54	P9

Table 6. Functional port pin descriptions (continued)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PC[15]	PCR[47]	AF0 AF1 AF2 AF3	GPIO[47] E0UC[15] CS0_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O I/O —	М	Tristate	_	4	4	D3
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] — — GPI[4]	SIUL — — ADC	 - 	I	Tristate	_	41	63	P12
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — GPI[5]	SIUL - ADC	 - 	I	Tristate		42	64	T12
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — — GPI[6]	SIUL — — ADC	 - 	I	Tristate	_	43	65	R12
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — — GPI[7]	SIUL — — ADC	 - 	I	Tristate	_	44	66	P13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — GPI[8]	SIUL ADC	 _ 	I	Tristate	Ι	45	67	R13
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — GPI[9]	SIUL — — ADC	 	Ι	Tristate	_	46	68	T13

Table 6. Functional port pin descriptions (continued)

									Pin nı	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX ⁽¹¹⁾ E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O	Μ	Tristate	_		98	E14
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] — E1UC[24] — CAN5RX ⁽¹¹⁾ EIRQ[14]	SIUL — eMIOS_1 — FlexCAN_5 SIUL	⊻ ⊻	S	Tristate	Ι	l	97	E13
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] —	SIUL eMIOS_1 — —	I/O I/O 	Μ	Tristate	_	_	8	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] — WKPU[17] ⁽⁴⁾	SIUL eMIOS_1 — — WKPU	⊻⊻∣∣−	S	Tristate			7	E3
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] —	SIUL eMIOS_1 —	I/O I/O	Μ	Tristate		_	6	E1
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKPU[18] ⁽⁴⁾	SIUL eMIOS_1 — WKPU	I/O I/O I	S	Tristate	_		5	E2
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_	_	30	M2

Table 6. Functional port pin descriptions (continued)

- 11. Available only on SPC560Cx versions and SPC560B50B2 devices
- 12. Not available on SPC560B40L3 and SPC560B40L5 devices
- 13. Not available in 100 LQFP package
- 14. Available only on SPC560B50B2 devices
- 15. Not available on SPC560B44L3 devices

3.7 Nexus 2+ pins

In the LBGA208 package, eight additional debug pins are available (see Table 7).

		1/0		Function	Pin number			
Debug pin	Function	direction	Pad type	after reset	LQFP 100	LQFP 144	LBGA 208 ⁽¹⁾	
MCKO	Message clock out	0	F	—	—	—	T4	
MDO0	Message data out 0	0	М	—	_	—	H15	
MDO1	Message data out 1	0	М	—	_	—	H16	
MDO2	Message data out 2	0	М	—	_	—	H14	
MDO3	Message data out 3	0	М	—	_	—	H13	
EVTI	Event in	I	М	Pull-up	_	—	K1	
EVTO	Event out	0	М	—	_	—	L4	
MSEO	Message start/end out	0	М	—	_	—	G16	

Table 7. Nexus 2+ pin descriptions

1. LBGA208 available only as development package for Nexus2+.

3.8 Electrical characteristics

3.9 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

Caution: All LQFP64 information is indicative and must be confirmed during silicon validation.

3.10 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 8* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

Note: The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.11 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

3.11.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. *Table 9* shows how NVUSRO[PAD3V5V] controls the device configuration.

Value ⁽¹⁾	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

Table 9. PAD3V5V field description

1. Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

Symbol		_		Ň		
		Parameter	Conditions	Min	Max	Unit
V	еD	Voltage on any GPIO pin with respect to	—	-0.3	6.0	V
VIN	SK	ground (V _{SS})	Relative to V _{DD}	—	V _{DD} +0.3	v
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-10	10	m۸
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	mA
		Sum of all the static I/O current within a	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	70	m۸
I _{AVGSEG} S	SK	supply segment	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	64	mA
I _{CORELV}	SR	Low voltage static current sink through VDD_BV	—	—	150	mA
T _{STORAGE}	SR	Storage temperature	—	-55	150	°C

Table 12. Absolute maximum ratings (continued)

Note: Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$), the voltage on pins with respect to ground (V_{SS}) must not exceed the recommended values.

3.13 Recommended operating conditions

Symbol		Parameter	Conditions	Va	Linit	
		Farameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ⁽¹⁾	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	_	3.0	3.6	V
V _{SS_LV} ⁽²⁾	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V (3)		Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
VDD_BV`	31	respect to ground (V_{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	v
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
) <i>(</i> 4)	СD	Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁽⁵⁾	3.6	V
♥DD_ADC`´	JA	with respect to ground (V _{SS})	Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	v

Table 13. Recommended operating conditions (3.3 V)

 $\text{ESR}_{\text{STDBY}}(\text{MAX}) = |\Delta_{\text{VDD}(\text{STDBY})}|/(I_{\text{DD}_{\text{BV}}} - 200 \text{ mA}) = (30 \text{ mV})/(100 \text{ mA}) = 0.3 \Omega$

 $C_{STDBY}(MIN) = (I_{DD_BV} - 200 \text{ mA})/dVDD(STDBY)/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu\text{s}) = 6.7 \mu\text{F}$

In case optimization is required, $C_{STDBY}(MIN)$ and $ESR_{STDBY}(MAX)$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

3.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{-LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 12. Low voltage detector vs reset

Note:

Figure 12: Low voltage detector vs reset does not apply to LVDHV5 low voltage detector because LVDHV5 is automatically disabled during reset and it must be enabled by software again. Once the device is forced to reset by LVDHV5, the LVDHV5 is disabled and reset is

Figure 13. Crystal oscillator and resonator connection scheme

Table 37. Crystal description Shunt Crystal Load on capacitance Crystal Crystal Nominal equivalent xtalin/xtalout NDK crystal motional motional between frequency series C1 = C2reference capacitance inductance xtalout (MHz) resistance (pF)⁽¹⁾ and xtalin (C_m) fF (L_m) mH **ESR** Ω C0⁽²⁾ (pF) 4 NX8045GB 300 2.68 591.0 21 2.93 8 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 NX5032GA 120 3.11 56.5 15 2.93 120 3.00 16 3.90 25.3 10

1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Symbol		~	Parameter	Conditions ⁽¹⁾		Unit		
Symbo	Зутьої				Min	Тур	Max	Unit
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	$0.65 V_{DD}$	—	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	_	0.35V _{DD}	V

Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals)

3.22 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 15. Crystal oscillator and resonator connection scheme

During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., (41 + 5) * f_{periph.}

No	No. Oranitad		~	Doromoto	P			DSPI0/DSPI1			2									
NO.	Symbo	01		Paramete		Min	Тур	Max	Min	Тур	Max									
0	4	SR		Data actus timo for insute	Master mode	43	_	—	145	_	—									
9	ISUI		эк	SK	эк			Slave mode	5	_	_	5	—	_	ns					
10	+	e D		Data hald time for inputs	Master mode	0	—	—	0	_	—									
10	ЧІ			UIX		Data noid time for inputs		Slave mode	2 ⁽⁶⁾	—	—	2 ⁽⁶⁾	—	—	115					
11	+ (7)	00		Data valid after SCK adda	Master mode	—	—	32	—	—	50									
								00	00	00			Slave mode	—	—	52	—	—	160	115
12	12 t _{HO} ⁽⁷⁾ CC D	t (7)	~		Dete held time for extende	Master mode	0	—	—	0	—	—								
					Slave mode	8	_	_	13	_	_	115								

1. Operating conditions: $C_L = 10$ to 50 pF, $Slew_{IN} = 3.5$ to 15 ns.

2. Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available.

3. Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.

The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{CSC} to ensure positive t_{CSCext}.

The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{ASC} to ensure positive t_{ASCext}.

6. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.

7. SCK and SOUT configured as MEDIUM pad

Figure 26. DSPI classic SPI timing – slave, CPHA = 1

Figure 27. DSPI modified transfer format timing – master, CPHA = 0

4 Package characteristics

4.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 Package mechanical data

4.2.1 LQFP64

Figure 34. LQFP64 package mechanical drawing

Table 50. LQFP64 mechanical data

Symbol		mm		inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	—	—	1.6	—	—	0.063
A1	0.05	—	0.15	0.002	—	0.0059
A2	1.35	1.4	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09	_	0.2	0.0035	_	0.0079
D	11.8	12	12.2	0.4646	0.4724	0.4803

Symbol		mm		inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Мах		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	—	12.000	—	_	0.4724			
е	—	0.500	_	_	0.0197	_		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	—	1.000	—	—	0.0394	—		
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °		
Tolerance	mm				inches			
CCC	0.080				0.0031			

Table 51. LQFP100 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

4.2.3 LQFP144

Figure 36. LQFP144 package mechanical drawing

Date	Revision	Changes
18-Jan-2013	11	In the cover feature list, replaced "System watchdog timer" with "Software watchdog timer" Table 3 (SPC560B40x/50x and SPC560C40x/50x series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture) Table 6 (Functional port pin descriptions), replaced VDD with VDD_HV Figure 9 (Voltage regulator capacitance connection), updated pin name apperence Renamed Figure 10 (V _{DD_HV} and V _{DD_BV} maximum slope) (was "VDD and VDD_BV maximum slope") and replaced VDD_HV(MIN) with VPORH(MAX) Renamed Figure 11 (V _{DD_HV} and V _{DD_BV} supply constraints during STANDBY mode exit) (was "VDD and VDD_BV supply constraints during STANDBY mode exit") Table 13 (Recommended operating conditions (3.3 V)), added minimum value of T _{VDD} and footnote about it. Table 14 (Recommended operating conditions (5.0 V)), added minimum value of T _{VDD} and footnote about it. Section 3.17.1, Voltage regulator electrical characteristics: replaced "slew rate of V _{DD} /V _{DD_BV} " with "slew rate of both V _{DD_HV} and V _{DD_BV} " replaced "When STANDBY mode is used, further constraints apply to the V _{DD} /V _{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints are applied to the both V _{DD_HV} and V _{DD_BV} in order to guarantee correct regulator function during STANDBY exit." Table 28 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I _{DDMAX} and I _{DDRUN} stating that both currents are drawn only from the V _{DD_BV} pin. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V _{DD_BV} and V _{DD_HV} and V _{DD_HV} and VDD_BV, VDD_HV and VDD_HV_ADC Updated Section 3.26.2, Input impedance and ADC accuracy Table 47 (DSPI characteristics), modified symbol for t _{PCSC} and t _{PASC}
18-Sep-2013	12	Updated Disclaimer.
03-Feb-2015	13	In <i>Table 2: SPC560B40x/50x and SPC560C40x/50x device comparison</i> : – changed the MPC5604BxLH entry for CAN (FlexCAN) from 3 ⁷ to 2 ⁶ . – updated tablenote 7. In <i>Table 14: Recommended operating conditions (5.0 V)</i> , updated tablenote 5 to: "1 µF (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between V _{DD_ADC} /V _{SS_ADC} pair. Another ceramic cap of 10nF with low inductance package can be added". In <i>Section 3.17.2: Low voltage detector electrical characteristics</i> , added a note on LVHVD5 detector. In <i>Section 5: Ordering information</i> , added a note: "Not all options are available on all devices".

Table 55. Document revision history (continued)

