

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b40l3b6e0y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction	
	1.1	Docum	ent overview
	1.2	Descrip	btion
2	Bloc	k diagra	ım
3	Pack	age pin	outs and signal descriptions
	3.1	Packag	ge pinouts
	3.2	Pad co	nfiguration during reset phases
	3.3	Voltage	e supply pins
	3.4	Pad typ	bes
	3.5	System	n pins
	3.6	Functio	onal ports
	3.7	Nexus	2+ pins
	3.8	Electric	al characteristics
	3.9	Introdu	ction
	3.10	Parame	eter classification
	3.11	NVUSF	RO register
		3.11.1	NVUSRO[PAD3V5V] field description
		3.11.2	NVUSRO[OSCILLATOR_MARGIN] field description
		3.11.3	NVUSRO[WATCHDOG_EN] field description
	3.12	Absolu	te maximum ratings 41
	3.13	Recom	mended operating conditions 42
	3.14	Therma	al characteristics
		3.14.1	Package thermal characteristics
		3.14.2	Power considerations
	3.15	I/O pad	l electrical characteristics
		3.15.1	I/O pad types
		3.15.2	I/O input DC characteristics
		3.15.3	I/O output DC characteristics
		3.15.4	Output pin transition times
		3.15.5	I/O pad current specification51

3.16	RESET	۲ electrical characteristics 5	7
3.17	Power	management electrical characteristics	0
	3.17.1	Voltage regulator electrical characteristics	0
	3.17.2	Low voltage detector electrical characteristics	5
3.18	Power	consumption	6
3.19	Flash r	nemory electrical characteristics6	8
	3.19.1	Program/Erase characteristics 6	8
	3.19.2	Flash power supply DC characteristics6	9
	3.19.3	Start-up/Switch-off timings7	0
3.20	Electro	magnetic compatibility (EMC) characteristics	0
	3.20.1	Designing hardened software to avoid noise problems7	0
	3.20.2	Electromagnetic interference (EMI)7	1
	3.20.3	Absolute maximum ratings (electrical sensitivity)7	1
3.21	Fast ex	cternal crystal oscillator (4 to 16 MHz) electrical characteristics 7	2
3.22	Slow e	xternal crystal oscillator (32 kHz) electrical characteristics 7	5
3.23	FMPLL	electrical characteristics	7
3.24	Fast in	ternal RC oscillator (16 MHz) electrical characteristics	8
3.25	Slow in	nternal RC oscillator (128 kHz) electrical characteristics	9
3.26	ADC el	lectrical characteristics	0
	3.26.1	Introduction	0
	3.26.2	Input impedance and ADC accuracy8	0
	3.26.3	ADC electrical characteristics	5
3.27	On-chi	p peripherals	7
	3.27.1	Current consumption	7
	3.27.2	DSPI characteristics8	8
	3.27.3	Nexus characteristics9	6
	3.27.4	JTAG characteristics9	8
Pack	age cha	aracteristics	9
4.1	ECOP	ACK®	9
4.2	Packag	ge mechanical data	9
	4.2.1		
	4.2.2	LQFP100	1
	4.2.3	LQFP144	2
	4.2.4	LBGA208	4

4

DocID14619 Rev 13

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

1.2 Description

The SPC560B40x/50x and SPC560C40x/50x is a family of next generation microcontrollers built on the Power Architecture embedded category.

The SPC560B40x/50x and SPC560C40x/50x family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT — WKPU[19] ⁽⁴⁾	SIUL eMIOS_0 CGL — WKPU	I/O I/O O I	М	Tristate	5	12	16	G4
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁽⁵⁾ WKPU[2] ⁽⁴⁾	SIUL eMIOS_0 — WKPU WKPU WKPU	/O /O 	S	Tristate	4	7	11	F3
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — — WKPU[3] ⁽⁴⁾	SIUL eMIOS_0 — — WKPU	I/O I/O — I	S	Tristate	3	5	9	F2
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — — EIRQ[0]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	43	68	90	K15
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — — WKPU[9] ⁽⁴⁾	SIUL eMIOS_0 — — WKPU	I/O I/O — I	S	Tristate	20	29	43	N6
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	79	118	C11
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — — EIRQ[1]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	52	80	119	D11

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2]	SIUL eMIOS_0 LINFlex_3 — SIUL	I/O I/O O I	S	Tristate	44	71	104	D16
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁽⁶⁾ —	GPIO[8] E0UC[8] — EIRQ[3] ABS[0] LIN3RX	SIUL eMIOS_0 — SIUL BAM LINFlex_3	/O /O 	S	Input, weak pull-up	45	72	105	C16
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁽⁶⁾	GPIO[9] E0UC[9] — FAB	SIUL eMIOS_0 — BAM	I/O I/O — I	S	Pull-down	46	73	106	C15
PA[10]	PCR[10]	AF0 AF1 AF2 AF3	GPIO[10] E0UC[10] SDA —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O —	S	Tristate	47	74	107	B16
PA[11]	PCR[11]	AF0 AF1 AF2 AF3	GPIO[11] E0UC[11] SCL —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O	S	Tristate	48	75	108	B15
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — SIN_0	SIUL — — DSPI0	I/O I	S	Tristate	22	31	45	Τ7
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 —	SIUL DSPI_0 —	I/O O —	М	Tristate	21	30	44	R7

Table 6. Functional port pin descriptions (continued)

						-			Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX —	SIUL LINFlex_2 —	I/O O —	S	Tristate	63	99	143	A1
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — — LIN2RX WKPU[13] ⁽⁴⁾	SIUL — — LINFlex_2 WKPU	⊻	S	Tristate	2	2	2	B1
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX ⁽¹¹⁾ MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC	I/O O O O	М	Tristate	13	22	28	М3
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — — CAN1RX CAN4RX ⁽¹¹⁾ WKPU[5] ⁽⁴⁾	SIUL — — FlexCAN_1 FlexCAN_4 WKPU	/O - 	S	Tristate		21	27	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — SIN_2	SIUL eMIOS_0 — DSPI_2	I/O I/O 	М	Tristate		97	141	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate		98	142	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I	S	Tristate		3	3	C1

Table 6. Functional	port pin	descriptions	(continued)
	portpin	accomptionic	(oominaoa)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PD[13]	PCR[61]	AF0 AF1 AF2 AF3 —	GPIO[61] CS0_1 E0UC[25] — ANS[5]	SIUL DSPI_1 eMIOS_0 — ADC	I/O I/O I/O I	J	Tristate		62	84	M14
PD[14]	PCR[62]	AF0 AF1 AF2 AF3 —	GPIO[62] CS1_1 E0UC[26] — ANS[6]	SIUL DSPI_1 eMIOS_0 — ADC	I∕O O I∕O −	J	Tristate	_	64	86	L15
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 —	GPIO[63] CS2_1 E0UC[27] — ANS[7]	SIUL DSPI_1 eMIOS_0 — ADC	⊻ 0 ⊻ − −	J	Tristate		66	88	L14
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 	GPIO[64] E0UC[16] — CAN5RX ⁽¹¹⁾ WKPU[6] ⁽⁴⁾	SIUL eMIOS_0 — FlexCAN_5 WKPU		S	Tristate		6	10	F1
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX ⁽¹¹⁾ —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O	М	Tristate	_	8	12	F4
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — SIN_1	SIUL eMIOS_0 — DSPI_1	I/O I/O — —	Μ	Tristate		89	128	D7
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	М	Tristate		90	129	C7

Table 6. Functional port pin descriptions (continued)

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

Caution: All LQFP64 information is indicative and must be confirmed during silicon validation.

3.10 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 8* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

Note: The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.11 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

3.11.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. *Table 9* shows how NVUSRO[PAD3V5V] controls the device configuration.

Value ⁽¹⁾	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

Table 9. PAD3V5V field description

1. Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. *Table 10* shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Value ⁽¹⁾	Description
0	Low consumption configuration (4 MHz/8 MHz)
1	High margin configuration (4 MHz/16 MHz)

Table 10. OSCILLATOR_MARGIN field description

1. Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. *Table 11* shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 11. WATCHDOG_EN field description

Value ⁽¹⁾	Description					
0	Disable after reset					
1	Enable after reset					

1. Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.12 Absolute maximum ratings

Table 12. Absolute maximum ratings

Symbo	.1	Doromotor	Conditions	v	alue	l Init
Symbol		Parameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD}	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	—	-0.3	6.0	V
V _{SS_LV}		Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V	SR	Voltage on VDD_BV pin (regulator	—	-0.3	6.0	V
V _{DD_BV}	SK	supply) with respect to ground (V_{SS})	Relative to V _{DD}	-0.3	V _{DD} +0.3	v
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC}	SD	Voltage on VDD_HV_ADC pin (ADC	—	-0.3	6.0	V
VDD_ADC		reference) with respect to ground (V _{SS})	Relative to V _{DD}	V _{DD} -0.3	V _{DD} +0.3	

S 14	mhal	~	Deremeter		Conditions ⁽¹⁾		Value)	Unit											
Зу	Symbol C		Parameter		Conditions			Max	Unit											
		D		C _L = 25 pF		—	—	10												
	t _{tr} CC	Т		C _L = 50 pF		—	—	20												
		Output transition time output	C _L = 100 pF	SIUL.PCRx.SRC = 1	_	_	40													
۲tr			C _L = 25 pF		—	—	12	ns												
		Т	C	C _L = 50 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1	_	—	25												
		D		C _L = 100 pF		_	_	40												
				C _L = 25 pF		—	—	4												
								C _L = 50 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	6								
+	сс											Output transition time output pin ⁽²⁾	C _L = 100 pF		_	—	12	20		
t _{tr}			FAST configuration	C _L = 25 pF		—	—	4	ns											
															C _L = 50 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	7	
								C _L = 100 pF		_	_	12								

Table 21.	Output	pin transition	times ((continued)
	e aip ai j			

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. C_L includes device and package capacitances (C_{PKG} < 5 pF).

3.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 22*.

Deekere	Supply segment							
Package	1	2	3	4	5	6		
LBGA208 ⁽¹⁾	Equival	ent to LQFP144	МСКО	MDOn/MSEO				
LQFP144	pin20–pin49	pin51–pin99	pin100-pin122	pin 123–pin19	—	—		
LQFP100	pin16–pin35	pin37–pin69	pin70–pin83	pin 84–pin15	—	—		
LQFP64 ⁽²⁾	pin8–pin26	pin28–pin55	pin56–pin7	—	_	—		

Table 22. I/O supply segment

1. LBGA208 available only as development package for Nexus2+

2. All LQFP64 information is indicative and must be confirmed during silicon validation.

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the $I_{\rm AVGSEG}$ maximum value.

Table 26. Voltage regulator electrical characteristics									
Symbol		с	Parameter	Conditions ⁽¹⁾		Value		Unit	
эуший			r ai ailleter	Conditions	Min	Тур	Max	Unit	
C _{REGn}	SR		Internal voltage regulator external capacitance	_	200	—	500	nF	
R _{REG}	SR	_	Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	W	
C	SR		Decoupling capacitance ⁽²⁾ ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 (3)	470 ⁽⁴⁾	-	nF	
C _{DEC1}	SK			V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400	470	_		
C _{DEC2}	SR	_	Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF	
$\frac{d}{dt}$ VDD	SR		Maximum slope on V _{DD}		_	_	250	mV/µs	
Δ _{VDD(STDBY)}	SR	_	Maximum instant variation on V _{DD} during standby exit		_	—	30	mV	
$\frac{d}{dt}$ VDD(STDBY)	SR		Maximum slope on V _{DD} during standby exit		_	_	15	mV/µs	
V _{MREG}	сс	Т	Main regulator output voltage	Before exiting from reset	_	1.32	_	v	
		Ρ		After trimming	1.16	1.28	_		
I _{MREG}	SR		Main regulator current provided to V _{DD_LV} domain	_		—	150	mA	
I _{MREGINT}	сс	D	Main regulator module current	I _{MREG} = 200 mA	—	—	2	mA	
			consumption	I _{MREG} = 0 mA	—		1		
V _{LPREG}	сс	Ρ	Low power regulator output voltage	After trimming	1.16	1.28	—	V	
I _{LPREG}	SR	—	Low power regulator current provided to V _{DD_LV} domain	_	_		15	mA	
I _{LPREGINT}	сс	D	Low power regulator module	I _{LPREG} = 15 mA; T _A = 55 °C	_		600	600 μA	
		—	current consumption	I _{LPREG} = 0 mA; T _A = 55 °C	_	5	—	F., ,	
V _{ULPREG}	сс	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V	

Table 26. Voltage regulator electrical characteristics

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

Symbo	1	с	Parameter	Condit	tions ⁽¹⁾		Value		Uni	
Symbol		J	Farameter	Condi		Min	Тур	Мах	t	
	0			Current injection on	V _{DD} = 3.3 V ± 10%	-5		5		
I _{INJ}	S R	_	Input current Injection one ADC input, different from the converted one $V_{DD} = 5.0 \text{ V} \pm 10\%$	different from the converted	-5	_	5	mA		
INL	C C	Т	Absolute value for integral non-linearity	No overload		_	0.5	1.5	LSB	
DNL	C C	Т	Absolute differential non-linearity	No overload		_	0.5	1.0	LSB	
E _O	C C	Т	Absolute offset error	_	_	_	0.5	_	LSB	
E _G	C C	Т	Absolute gain error	_	_	_	0.6	_	LSB	
		Ρ	Total unadjusted	Without current	injection	-2	0.6	2		
	C C	C C	Т	error ⁽⁷⁾ for precise channels, input only pins	With current inje	ection	-3		3	LSB
	С	Т	Total unadjusted	Without current	injection	-3	1	3		
IUEX	TUEx $\begin{bmatrix} C \\ C \end{bmatrix}$ error ⁽⁷⁾ for extended channel			With current inje	ection	-4		4	LSB	

Table 45. ADC conversion characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. Analog and digital V_{SS} must be common (to be tied together externally).

- V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.
- Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- 5. During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sampling time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_s depend on programming.
- 6. This parameter does not include the sampling time t_s, but only the time for determining the digital result and the time to load the result's register with the conversion result.
- 7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

3.27 On-chip peripherals

3.27.1 Current consumption

Figure 28. DSPI modified transfer format timing – master, CPHA = 1

Figure 29. DSPI modified transfer format timing – slave, CPHA = 0

DocID14619 Rev 13

Na	Cumh	-1	ol C Parameter		Value			
No.	Symbol		C	Parameter	Min	Тур	Max	Unit
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid	—	—	8	ns
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid	—	—	8	ns
10	t _{NTDIS}	CC	D	TDI data setup time	15	—	_	ns
10	t _{NTMSS}	CC	D	TMS data setup time	15	—		ns
11	t _{NTDIH}	CC	D	TDI data hold time	5	—	_	ns
	t _{NTMSH}	CC	D	TMS data hold time	5	—		ns
12	t _{TDOV}	CC	CC D TCK low to TDO data valid		35	—	_	ns
13	t _{TDOI}	СС	D	TCK low to TDO data invalid	6	_		ns

Table 48. Nexus characteristics (continued)

Figure 32. Nexus TDI, TMS, TDO timing

		mm			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max		
D1	9.8	10	10.2	0.3858	0.3937	0.4016		
D3	_	7.5	—	_	0.2953	—		
Е	11.8	12	12.2	0.4646	0.4724	0.4803		
E1	9.8	10	10.2	0.3858	0.3937	0.4016		
E3	_	7.5	—	—	0.2953	—		
е	_	0.5	—	—	0.0197	—		
L	0.45	0.6	0.75	0.0177	0.0236	0.0295		
L1	_	1	_	_	0.0394	_		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
CCC	_	_	0.08	_	_	0.0031		

Table 50. LQFP64 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Cumhal		mm			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	_	—	1.600		—	0.0630
A1	0.050	—	0.150	0.0020	—	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	—	0.200	0.0035	—	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	_	17.500	_	_	0.6890	_
Е	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	_	17.500	—	_	0.6890	—
е	_	0.500	—	—	0.0197	—
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	—	1.000	—	—	0.0394	—
k	0.0 °	3.5 °	7.0°	3.5 °	0.0 °	7.0 °
Tolerance		mm	•		inches	
CCC		0.0031				

Table 52	LQFP144	mechanical	data
----------	---------	------------	------

1. Values in inches are converted from mm and rounded to 4 decimal digits.

5 Ordering information

Figure 38. Commercial product code structure

Date	Revision	Changes
06-Mar-2009	Revision 2 (continued)	Changes Updated tables: - "I/O input DC electrical characteristics" - "I/O pull-up/pull-down DC electrical characteristics" - "SLOW configuration output buffer electrical characteristics" - "MEDIUM configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" Added "Output pin transition times" section Updated "I/O consumption" table Updated "Reset electrical characteristics" table "Voltage regulator electrical characteristics" section: - Amended description of LV_PLL "Voltage regulator capacitance connection" figure: - Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated tables" - "Voltage regulator electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor vs reset" figure Updated "Low voltage monitor vs reset" figure Updated "Low voltage monitor vs reset" figure Updated "Low voltage monitor vs reset" figure
		 Exchanged position of symbols C_{DEC1} and C_{DEC2} Updated tables" "Voltage regulator electrical characteristics" "Low voltage monitor electrical characteristics" "Low voltage power domain electrical characteristics" Added "Low voltage monitor vs reset" figure
		Updated "Fast external crystal oscillator (4 to 16 MHz) electrical characteristics" section Updated "Slow external crystal oscillator (32 kHz) electrical characteristics" section Updated tables: – "FMPLL electrical characteristics" – "Fast internal RC oscillator (16 MHz) electrical characteristics" – "Slow internal RC oscillator (128 kHz) electrical characteristics" Added "On-chip peripherals" section Added "ADC input leakage current" table Updated "ADC conversion characteristics" table Updated "ECOPACK®" section Corrected inverted column headings for typical and minimum dimensions in "LQFP64
		mechanical data" and "LQFP100 mechanical data" tables Added "Abbrevation" appendix
03-Jun-2009	3	Corrected "Commercial product code structure" figure

Table 55. Document revision history (continued)

Date	Revision	Changes
22-Jul-2010		Table "Start-up time/Switch-off time"
	7 (continued)	- Entirely updated
		Figures "Crystal oscillator and resonator connection scheme"
		- Relocated a note
		Table "Slow external crystal oscillator (32 kHz) electrical characteristics"
		- Removed g _{mSXOSC} row
		- Inserted values of I _{SXOSCBIAS}
		Table "FMPLL electrical characteristics"
		- Rounded the values of f _{VCO}
		Table "Fast internal RC oscillator (16 MHz) electrical characteristics"
		- Entirely updated.
		Table "ADC conversion characteristics"
		- Updated the description of the conditions of t_{ADC_PU} and t_{ADC_S} .
		- Added "I _{ADCPWD} " and "I _{ADCRUN} " rows
		Table "DSPI characteristics"
		- Entirely updated.
		Updated "Order codes" table.
		Figure "Commercial product code structure"
		– Replaced PowerPC with "Power Architecture™" in the product identifier
		- Removed the note about the condition from "Flash read access timing" table
		- Removed the notes that assert the values need to be confirmed before validation
		 Exchanged the order of "LQFP 100-pin configuration" and "LQFP 144-pin configuration"
		 Exchanged the order of "LQFP 100-pin package mechanical drawing" and "LQFP
		144-pin package mechanical drawing"
25-Nov-2010	8	Editorial changes and improvements.
		In the "SPC560B40x/50x and SPC560C40x/50x device comparison" table, changed
		the temperature value from 105 to 125 °C, in the footnote regarding "Execution
		speed".
		In the "LQFP thermal characteristics" table, added values concerning LQFP64
		package.
		In the "MEDIUM configuration output buffer electrical characteristics" table: fixed a typo
		in last row of conditions column, there was I _{OH} that now is I _{OL} .
		In the "Reset electrical characteristics" table, changed the parameter classification tag
		for V _{OL} and I _{WPU} .
		In the "Low voltage monitor electrical characteristics" table, changed the max value of V _{LVDLVCORL} from 1.5V to 1.15V.
		In the "Program and erase specifications" table, replaced "T _{eslat} " with "T _{esus} ".
		In the "FMPLL electrical characteristics" table, changed the parameter classification
		tag for f _{VCO} .

Table 55. Document revision history (continued)

