

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b40l3c6e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction	
	1.1	Docum	ent overview
	1.2	Descrip	btion
2	Bloc	k diagra	ım
3	Pack	age pin	outs and signal descriptions
	3.1	Packag	ge pinouts
	3.2	Pad co	nfiguration during reset phases
	3.3	Voltage	e supply pins
	3.4	Pad typ	bes
	3.5	System	n pins
	3.6	Functio	onal ports
	3.7	Nexus	2+ pins
	3.8	Electric	al characteristics
	3.9	Introdu	ction
	3.10	Parame	eter classification
	3.11	NVUSF	RO register
		3.11.1	NVUSRO[PAD3V5V] field description
		3.11.2	NVUSRO[OSCILLATOR_MARGIN] field description
		3.11.3	NVUSRO[WATCHDOG_EN] field description
	3.12	Absolu	te maximum ratings 41
	3.13	Recom	mended operating conditions 42
	3.14	Therma	al characteristics
		3.14.1	Package thermal characteristics
		3.14.2	Power considerations
	3.15	I/O pad	l electrical characteristics
		3.15.1	I/O pad types
		3.15.2	I/O input DC characteristics
		3.15.3	I/O output DC characteristics
		3.15.4	Output pin transition times
		3.15.5	I/O pad current specification51

List of figures

Figure 1.	SPC560B40x/50x and SPC560C40x/50x block diagram	12
Figure 2.	LQFP 64-pin configuration	15
Figure 3.	LQFP 100-pin configuration	16
Figure 4.	LQFP 144-pin configuration	17
Figure 5.	LBGA208 configuration.	18
Figure 6.	I/O input DC electrical characteristics definition	47
Figure 7.	Start-up reset requirements	58
Figure 8.	Noise filtering on reset signal	58
Figure 9.	Voltage regulator capacitance connection	61
Figure 10.	V _{DD HV} and V _{DD BV} maximum slope	62
Figure 11.	V _{DD HV} and V _{DD BV} supply constraints during STANDBY mode exit	62
Figure 12.	Low voltage detector vs reset	65
Figure 13.	Crystal oscillator and resonator connection scheme	73
Figure 14.	Fast external crystal oscillator (4 to 16 MHz) timing diagram	74
Figure 15.	Crystal oscillator and resonator connection scheme	75
Figure 16.	Equivalent circuit of a quartz crystal	76
Figure 17.	Slow external crystal oscillator (32 kHz) timing diagram	77
Figure 18.	ADC characteristic and error definitions	80
Figure 19.	Input equivalent circuit (precise channels)	82
Figure 20.	Input equivalent circuit (extended channels)	82
Figure 21.	Transient behavior during sampling phase	83
Figure 22.	Spectral representation of input signal	84
Figure 23.	DSPI classic SPI timing – master, CPHA = 0	92
Figure 24.	DSPI classic SPI timing – master, CPHA = 1	93
Figure 25.	DSPI classic SPI timing – slave, CPHA = 0	93
Figure 26.	DSPI classic SPI timing – slave, CPHA = 1	94
Figure 27.	DSPI modified transfer format timing – master, CPHA = 0	94
Figure 28.	DSPI modified transfer format timing – master, CPHA = 1	95
Figure 29.	DSPI modified transfer format timing – slave, CPHA = 0	95
Figure 30.	DSPI modified transfer format timing – slave, CPHA = 1	96
Figure 31.	DSPI PCS strobe (PCSS) timing	96
Figure 32.	Nexus TDI, TMS, TDO timing	97
Figure 33.	Timing diagram – JTAG boundary scan	98
Figure 34.	LQFP64 package mechanical drawing	99
Figure 35.	LQFP100 package mechanical drawing 10	01
Figure 36.	LQFP144 package mechanical drawing 10	02
Figure 37.	LBGA208 package mechanical drawing10	04
Figure 38.	Commercial product code structure	06

Table 2. SPC560B40x/50x and SPC560C40x/50x device comparison⁽¹⁾ (continued)

						Device					
Feature	SPC560B 40L1	SPC560B 40L3	SPC560B 40L5	SPC560C 40L1	SPC560C 40L3	SPC560B 50L1	SPC560B 50L3	SPC560B 50L5	SPC560C 50L1	SPC560C 50L3	SPC560B 50B2
Debug					JT	AG					Nexus2+
Package	LQFP64 ⁽⁹⁾	LQFP100	LQFP144	LQFP64 ⁽⁹⁾	LQFP100	LQFP64 ⁽⁹⁾	LQFP100	LQFP144	LQFP64 ⁽⁹⁾	LQFP100	LBGA208 (10)

1. Feature set dependent on selected peripheral multiplexing-table shows example implementation.

2. Based on 125 °C ambient operating temperature.

3. See the eMIOS section of the device reference manual for information on the channel configuration and functions.

4. IC - Input Capture; OC - Output Compare; PWM - Pulse Width Modulation; MC - Modulus counter.

5. SCI0, SCI1 and SCI2 are available. SCI3 is not available.

6. CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.

7. CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.

8. I/O count based on multiplexing with peripherals.

9. All LQFP64 information is indicative and must be confirmed during silicon validation.

10. LBGA208 available only as development package for Nexus2+.

10/116

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPIO[21] — — — GPI[1]	SIUL — — ADC	 - - 	I	Tristate	35	53	75	R16
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPIO[22] — — — GPI[2]	SIUL — — ADC	 - - 	I	Tristate	36	54	76	P15
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPIO[23] — — — GPI[3]	SIUL — — ADC	 - - 	I	Tristate	37	55	77	P16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 	GPIO[24] — — ANS[0] OSC32K_XTAL ⁽⁷⁾	SIUL - ADC SXOSC	 	I	Tristate	30	39	53	R9
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 —	GPIO[25] — — ANS[1] OSC32K_EXTAL ⁽ ⁷⁾	SIUL — — ADC SXOSC	 	I	Tristate	29	38	52	Т9
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 	GPIO[26] — — ANS[2] WKPU[8] ⁽⁴⁾	SIUL — — ADC WKPU	/O 	J	Tristate	31	40	54	P9

Table 6. Functional port pin descriptions (continued)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] — CS4_1 — LIN3RX WKPU[14] ⁽⁴⁾	SIUL — DSPI_1 — LINFlex_3 WKPU	I/O — 0 — 1	S	Tristate	_	13	17	H2
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 —	GPIO[76] — E1UC[19] ⁽¹³⁾ — SIN_2 EIRQ[11]	SIUL — eMIOS_1 — DSPI_2 SIUL	/O /O 	S	Tristate	_	76	109	C14
PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate	_	_	103	D15
PE[14]	PCR[78]	AF0 AF1 AF2 AF3 —	GPIO[78] SCK_2 E1UC[21] — EIRQ[12]	SIUL DSPI_2 eMIOS_1 — SIUL	/O /O /O 	S	Tristate	_	_	112	C13
PE[15]	PCR[79]	AF0 AF1 AF2 AF3	GPIO[79] CS0_2 E1UC[22] —	SIUL DSPI_2 eMIOS_1 —	I/O I/O I/O —	Μ	Tristate	_	_	113	A13
PF[0]	PCR[80]	AF0 AF1 AF2 AF3 —	GPIO[80] E0UC[10] CS3_1 — ANS[8]	SIUL eMIOS_0 DSPI_1 — ADC	I/O I/O O I	J	Tristate	_	_	55	N10
PF[1]	PCR[81]	AF0 AF1 AF2 AF3 —	GPIO[81] E0UC[11] CS4_1 — ANS[9]	SIUL eMIOS_0 DSPI_1 — I	I/O I/O O _ I	J	Tristate	_	_	56	P10

									Pin nu	umber	
Port pin	ЯЭЧ	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC	I∕O I∕O O	Μ	Tristate	_		137	C5
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC	⊻ ⊻ o o	Μ	Tristate	_	_	138	A5
PH[9] ⁽⁹⁾	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	⊻ -	S	Input, weak pull-up	60	88	127	B8
PH[10] ⁽ 9)	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	/0 - 	S	Input, weak pull-up	53	81	120	В9

Table 6. Functional	port pin	descriptions	(continued)
			· /

 Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

3. LBGA208 available only as development package for Nexus2+

4. All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.

5. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

6. "Not applicable" because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details.

- 7. Value of PCR.IBE bit must be 0
- Be aware that this pad is used on the SPC560B64L3 and SPC560B64L5 to provide VDD_HV_ADC and VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between SPC560B40x/50x and SPC560C40x/50x and SPC560B64.
- Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.
- 10. The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 kΩ should be added between the TDO pin and VDD_HV. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin and GND instead.

C				LQFP144/LQFP100 LQFP64 ⁽					P64 ⁽²⁾	64 ⁽²⁾		
Sup	piy seg	ment	Pad	Weigl	nt 5 V	Weigh	t 3.3 V	Weight 5 V Weight 3			t 3.3 V	
LQFP 144	LQFP 100	LQFP 64		SRC ⁽³⁾ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
			PA[5]	5%	7%	6%	6%	6%	8%	7%	7%	
2	2	2	PA[6]	5%	—	6%	_	5%	—	6%	—	
3	3	2	PH[10]	4%	6%	5%	5%	5%	7%	6%	6%	
			PC[1]	5%	—	5%	_	5%	—	5%	—	
		2	PC[0]	6%	9%	7%	8%	6%	9%	7%	8%	
		3	PH[9]	7	7	8	8	7	7	8	8	
		—	PE[2]	7%	10%	9%	9%	—	—	—	—	
	1	_	PE[3]	8%	11%	9%	9%	—	—	—	—	
	4	2	PC[5]	8%	11%	9%	10%	8%	11%	9%	10%	
		3	PC[4]	8%	12%	10%	10%	8%	12%	10%	10%	
		_	PE[4]	8%	12%	10%	11%	—	—	—	—	
		—	PE[5]	9%	12%	10%	11%	—	—	—	—	
	_	_	PH[4]	9%	13%	11%	11%	—	—	—	—	
4	—	_	PH[5]	9%	—	11%		—	—	—	—	
	—	—	PH[6]	9%	13%	11%	12%	—	—	—	—	
	—	_	PH[7]	9%	13%	11%	12%	—	—	—	—	
	—	_	PH[8]	10%	14%	11%	12%	—	—	—	—	
			PE[6]	10%	14%	12%	12%	—	—	—	—	
			PE[7]	10%	14%	12%	12%	_	—	—	_	
	л		PC[12]	10%	14%	12%	13%	_	—	—	_	
	4		PC[13]	10%	_	12%			_	_		
		2	PC[8]	10%	—	12%	_	10%	—	12%	_	
		3	PB[2]	10%	15%	12%	13%	10%	15%	12%	13%	

Table 24. I/O weight⁽¹⁾ (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to125 °C, unless otherwise specified

2. All LQFP64 information is indicative and must be confirmed during silicon validation.

3. SRC: "Slew Rate Control" bit in SIU_PCR

3.16 **RESET** electrical characteristics

The device implements a dedicated bidirectional $\overline{\text{RESET}}$ pin.

0	- 1		Demonster	O an distance (1)		Value		Unit
Symb	01	C	Parameter	Conditions	Min	Тур	Max	Unit
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	—	0.1V _{DD}		_	V
		Ρ		Push Pull, $I_{OL} = 2mA$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_	_	0.1V _{DD}	
V _{OL}	сс	С	Output low level	Push Pull, I_{OL} = 1mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	_		0.1V _{DD}	V
		с		Push Pull, I_{OL} = 1mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_		0.5	
				C _L = 25pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	10	
				C _L = 50pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	20	
+	<u> </u>		Output transition time	C _L = 100pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	40	
^L tr			output pin ⁽³⁾	C _L = 25pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		12	115
				C _L = 50pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	25	
				C _L = 100pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	_	_		40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	1000		_	ns
		Ρ		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10		150	
I _{WPU}	сс	D	Weak pull-up current absolute value	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	_	150	μA
		Ρ		$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	10	—	250	

Table 25. Reset electrical characteristics (continued)
--

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

2. This transient configuration does not occurs when device is used in the V_{DD} = 3.3 V \pm 10% range.

3. CL includes device and package capacitance (CPKG < 5 pF).

Figure 10. V_{DD HV} and V_{DD BV} maximum slope

When STANDBY mode is used, further constraints are applied to the both $V_{DD HV}$ and V_{DD_BV} in order to guarantee correct regulator function during STANDBY exit. This is described on *Figure 11*.

STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on application board (capacitance and ESR typical values), but would actually depend on exact characteristics of application external regulator.

Figure 11. V_{DD HV} and V_{DD BV} supply constraints during STANDBY mode exit

DocID14619 Rev 13

Sumbal				a 111 (1)		Value		11
Symbol		С	Parameter	Conditions	Min	Тур	Max	Unit
C _{REGn}	SR		Internal voltage regulator external capacitance	_	200	_	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	w
	00			V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 4.5 V$ to 5.5 V	100 (3)	470(4)	_	-5
C _{DEC1}	SK		Decoupling capacitance , ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400	470(**	_	nr
C _{DEC2}	SR	—	Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF
$\frac{d}{dt}$ VDD	SR		Maximum slope on V _{DD}		_	_	250	mV/µs
∆ _{VDD(STDBY)}	SR		Maximum instant variation on V _{DD} during standby exit		_	_	30	mV
$\frac{d}{dt}$ VDD(STDBY)	SR		Maximum slope on V _{DD} during standby exit				15	mV/µs
V _{MREG}	сс	т	Main regulator output voltage	Before exiting from reset	_	1.32	_	v
		Ρ		After trimming	1.16	1.28	—	
I _{MREG}	SR	—	Main regulator current provided to V_{DD_LV} domain	_	—	—	150	mA
hipponit	CC	П	Main regulator module current	I _{MREG} = 200 mA	—		2	mΔ
IMREGINI	00		consumption	I _{MREG} = 0 mA	—		1	117.
V _{LPREG}	сс	Ρ	Low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{LPREG}	SR		Low power regulator current provided to V _{DD_LV} domain	_	_	_	15	mA
	<u> </u>	D	Low power regulator module	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	
ILPREGINT		—	current consumption	I _{LPREG} = 0 mA; T _A = 55 °C	_	5	_	
V _{ULPREG}	сс	Р	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V

Table 26. Voltage regulator electrical characteristics

released as soon as internal reset sequence is completed regardless of LVDHV5H threshold.

Symbol		C	Parameter	Conditions ⁽¹⁾	Value			Unit
		C	Farameter	Conditions	Min	Тур	Max	Sint
V _{PORUP}	SR	Ρ	Supply for functional POR module	—	1.0	—	5.5	
V _{PORH} CC		Ρ	Power-on reset threshold	T _A = 25 °C, after trimming	1.5	_	2.6	
		Т		—	1.5	_	2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold		—	—	2.95	
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6	_	2.9	V
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold		_	—	4.5	
V _{LVDHV5L}	СС	Ρ	LVDHV5 low voltage detector low threshold		3.8	_	4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold		1.08	—	1.16	
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold		1.08	_	1.16	

Table 27. Low voltage detector electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

3.18 Power consumption

Table 28 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Symbol		C Parameter		Conditions ⁽¹⁾	Value			Unit					
		0	Farameter			Min	Тур	Max	onne				
I _{DDMAX} ⁽²⁾	сс	D	RUN mode maximum average current	—			115	140 ⁽³⁾	mA				
		Т		f _{CPU} = 8 MHz	_	7	_						
			Т		f _{CPU} = 16 MHz			18	_				
I _{DDRUN} ⁽⁴⁾	сс	Т	RUN mode typical average current ⁽⁵⁾	f _{CPU} = 32 MHz			29	_	mA				
		Ρ		f _{CPU} = 48 MHz	_	40	100						
		Ρ		f _{CPU} = 64 MHz			51	125					
I _{DDHALT}	cc	сс	cc-	сс	С	HALT mode current ⁽⁶⁾	Slow internal RC oscillator	T _A = 25 °C		8	15	mΔ	
					CC	CC	CC	CC			Ρ		(128 kHz) running

 Table 28. Power consumption on VDD_BV and VDD_HV

3.19.3 Start-up/Switch-off timings

Symbol		C	Parameter	Conditions ⁽¹⁾	Value			Unit
		C	Farameter	Conditions	Min	Тур	Max	Onit
T _{FLARSTEXIT}	<u> </u>	Т	Delay for Elash module to exit reset mode	Code Flash	—	—	125	
	00	Т		Data Flash	_	—	125	
T _{FLALPEXIT}	сс	Т	Delay for Flash module to exit low-power	Code Flash		—	0.5	
		Т	mode	Data Flash	_	—	0.5	
т	сс	Т	Delay for Flash module to exit power-down	Code Flash	_	—	30	
' FLAPDEXIT		Т	mode	Data Flash		—	30	μs
т	<u> </u>	Т	Delay for Flash module to enter low-power	Code Flash		—	0.5	
^I FLALPENTRY	00	Т	mode	Data Flash		—	0.5	
T _{FLAPDENTRY}	~	Т	Delay for Flash module to enter power-	Code Flash		—	1.5	
	CC	Т	down mode	Data Flash	_	_	1.5	

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

3.20 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

3.20.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note *Software Techniques For Improving Microcontroller EMC Performance* (AN1015)).

Symbol		~	Parameter	Conditions ⁽¹⁾		Unit		
		J	Falameter	Conditions	Min	Тур	Max	onin
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	$0.65 V_{DD}$	_	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	_	0.35V _{DD}	V

Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals)

3.22 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 15. Crystal oscillator and resonator connection scheme

Table 39. Crystal motional characteristics⁽¹⁾

Symbol	Perometer	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	Onit
L _m	Motional inductance	—	—	11.796	—	KH
C _m	Motional capacitance	—	_	2	_	fF
C1/C2	Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground ⁽²⁾	_	18	_	28	pF
		AC coupled @ C0 = 2.85 $pF^{(4)}$	_	_	65	
R _m ⁽³⁾	Motional resistance	AC coupled @ $C0 = 4.9 \text{ pF}^{(4)}$	_	—	50	kW
		AC coupled @ $C0 = 7.0 \text{ pF}^{(4)}$		—	35	1
		AC coupled @ $C0 = 9.0 \text{ pF}^{(4)}$	_	_	30	

1. Crystal used: Epson Toyocom MC306

2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.

3. Maximum ESR (R_m) of the crystal is 50 k $\!\Omega$

4. C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

3.27.2 DSPI characteristics

Symbol		с	Parameter	Conditions		Typical value ⁽²⁾	Unit
				Bitrate: 500 Kbyte/s	Total (static + dynamic) consumption:	8 * f _{periph} + 85	
I _{DD_BV} (CAN)	СС	т	CAN (FlexCAN) supply current on VDD_BV	Bitrate: 125 Kbyte/s	 FIEXCAN IN loop-back mode XTAL @ 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 * f _{periph} + 27	μA
		T	eMIOS supply current on	Static consu – eMIOS ch – Global pre	mption: annel OFF scaler enabled	29 * f _{periph}	
-DD_BV(emiOS)	00		VDD_BV	Dynamic cor – It does not frequency	nsumption: t change varying the (0.003 mA)	3	μΛ
I _{DD_BV(SCI)}	сс	т	SCI (LINFlex) supply current on VDD_BV	Total (static + dynamic) consumption: – LIN mode – Baudrate: 20 Kbyte/s		5 * f _{periph} + 31	μA
				Ballast statio	consumption (only clocked)	1	
I _{DD_BV} (SPI)	сс	т	SPI (DSPI) supply current on VDD_BV	Ballast dyna (continuous – Baudrate: – Transmiss – Frame: 16	mic consumption communication): 2 Mbit/s ion every 8 μs bits	16 * f _{periph}	μA
					Ballast static consumption (no conversion)	41 * f _{periph}	
I _{DD_BV(ADC)}	СС	Т	VDD_BV	V _{DD} = 5.5 V	Ballast dynamic consumption (continuous conversion) ⁽³⁾	5 * f _{periph}	μA
					Analog static consumption (no conversion)	2 * f _{periph}	
I _{DD_HV_ADC(ADC)}	СС	т	VDD_HV_ADC	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	75 * f _{periph} + 32	μA
I _{DD_HV} (FLASH)	сс	т	Code Flash + Data Flash supply current on VDD_HV	V _{DD} = 5.5 V —		8.21	mA
I _{DD_HV(PLL)}	сс	Т	PLL supply current on VDD_HV	V _{DD} = 5.5 V	_	30 * f _{periph}	μA

Table 46. On-chip peripherals current consumption⁽¹⁾

1. Operating conditions: $T_A = 25 \text{ °C}$, $f_{periph} = 8 \text{ MHz}$ to 64 MHz

2. fperiph is an absolute value.

3.27.4 JTAG characteristics

No	No. Symbol		6	Parameter			Unit	
NO.			C	Farameter	Min	Тур	Мах	Unit
1	t _{JCYC}	СС	D	TCK cycle time	64	—	—	ns
2	t _{TDIS}	CC	D	TDI setup time	15	_	—	ns
3	t _{TDIH}	CC	D	TDI hold time	5	_	—	ns
4	t _{TMSS}	СС	D	TMS setup time	15	_	—	ns
5	t _{TMSH}	CC	D	TMS hold time	5	_	—	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid			33	ns
7	t _{TDOI}	t _{TDOI} CC [TCK low to TDO invalid	6	_	_	ns

Table 49. JTAG characteristics

Figure 33. Timing diagram – JTAG boundary scan

4 Package characteristics

4.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 Package mechanical data

4.2.1 LQFP64

Figure 34. LQFP64 package mechanical drawing

Table 50. LQFP64 mechanical data

Symbol		mm		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
А	—	—	1.6	—	—	0.063	
A1	0.05	—	0.15	0.002	—	0.0059	
A2	1.35	1.4	1.45	0.0531	0.0551	0.0571	
b	0.17	0.22	0.27	0.0067	0.0087	0.0106	
С	0.09	—	0.2	0.0035	—	0.0079	
D	11.8	12	12.2	0.4646	0.4724	0.4803	

DocID14619 Rev 13

Cumhal		mm		inches ⁽¹⁾			
Зутвої	Min	Тур	Мах	Min	Тур	Мах	
A	—	—	1.600	—	—	0.0630	
A1	0.050	—	0.150	0.0020	—	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	—	0.200	0.0035	—	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	—	17.500	—	—	0.6890	—	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	—	17.500	—	—	0.6890	—	
е	—	0.500	—	—	0.0197	—	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	—	1.000	—	—	0.0394	—	
k	0.0 °	3.5 °	7.0°	3.5 °	0.0 °	7.0 °	
Tolerance		mm		inches			
CCC		0.080		0.0031			

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Revision history

Date	Revision	Changes
04-Apr-2008	1	Initial release.
06-Mar-2009	2	Made minor editing and formatting changes to improve readability Harmonized oscillator naming throughout document Modified document title Updated "Feature" on cover page Replaced LFBGA208 with LBGA208 Updated "Description" Section Updated "SPC560B40x/50x and SPC560C40x/50x device comparison" table Added "Block diagram" section Section 3 "Package pinouts and signal descriptions": - Removed signal descriptions (these are found in the device reference manual) Updated "LQFP 144-pin configuration (top view)" figure: - Replaced VPP with VSS_HV on pin 18 - Added MA[1] as AF3 for PC[10] (pin 28) - Added MA[0] as AF2 for PC[3] (pin 116) - Changed description for pin 120 to PH[10] / GPI0[122] / TMS - Changed description for pin 120 to PH[10] / GPI0[121] / TCK - Replaced NMI[0] with NMI on pin 11 Updated "LQFP 100-pin configuration (top view)" figure: - Replaced VPP with VSS_HV on pin 14 - Added MA[1] as AF3 for PC[10] (pin 22) - Added MA[0] as AF2 for PC[3] (pin 77) - Changed description for pin 81 to PH[10] / GPI0[122] / TMS - Changed description for pin 88 to PH[9] / GPI0[121] / TCK - Replaced [11] with WKUP[11] for PB[3] (pin 1) - Replaced NMI[0] with NMI on pin 7 Updated "LBGA208 configuration" figure: - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 89 from TMS to PH[10] - Updated "LBGA208 configuration" figure: - Changed descriptions for balls R9 and T9 Added "Parameter classification" section and tagged parameters in tables where appropriate Added "NVUSRO register" section Updated "Recommended operating conditions" section : - Added note on RAM data retention to end of section Updated "Recommended operating conditions" section Updated "Package thermal characteristics" section Updated "Power considerations" section Updated "Power considerations" section Updated "Power considerations" section

Table 55. Document revision history

