

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	123
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 36x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b40I5b6e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Package pinouts and signal descriptions

3.1 Package pinouts

The available LQFP pinouts and the LBGA208 ballmap are provided in the following figures. For pin signal descriptions, please refer to the device reference manual (RM0017).

Figure 2. LQFP 64-pin configuration^(a)

a. All LQFP64 information is indicative and must be confirmed during silicon validation.

									Pin nu	umber	-
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT — WKPU[19] ⁽⁴⁾	SIUL eMIOS_0 CGL — WKPU	I/O I/O O I	М	Tristate	5	12	16	G4
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁽⁵⁾ WKPU[2] ⁽⁴⁾	SIUL eMIOS_0 — — WKPU WKPU WKPU	/O /O - 	S	Tristate	4	7	11	F3
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — — WKPU[3] ⁽⁴⁾	SIUL eMIOS_0 — WKPU	I/O I/O — I	S	Tristate	3	5	9	F2
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — — EIRQ[0]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	43	68	90	K15
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — — WKPU[9] ⁽⁴⁾	SIUL eMIOS_0 — WKPU	I/O I/O — I	S	Tristate	20	29	43	N6
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	79	118	C11
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — — EIRQ[1]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	52	80	119	D11

								Pin number				
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾	
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 — EIRQ[4]	SIUL DSPI_0 DSPI_0 — SIUL	I/O I/O I/O I	М	Tristate	19	28	42	P6	
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 — WKPU[10] ⁽⁴⁾	SIUL DSPI_0 DSPI_0 — WKPU	I/O I/O I/O I	М	Tristate	18	27	40	R6	
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX — —	SIUL FlexCAN_0 —	I/O O —	М	Tristate	14	23	31	N3	
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 —	GPIO[17] — — WKPU[4] ⁽⁴⁾ CAN0RX	SIUL — — WKPU FlexCAN_0	I/O — — — — —	S	Tristate	15	24	32	N1	
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LINOTX SDA —	SIUL LINFlex_0 I2C_0 —	I/O O I/O —	М	Tristate	64	100	144	B2	
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 —	GPIO[19] — SCL — WKPU[11] ⁽⁴⁾ LIN0RX	SIUL — I2C_0 — WKPU LINFlex_0	I/O — I/O — I I	S	Tristate	1	1	1	C3	
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 —	GPIO[20] — — — GPI[0]	SIUL — — — ADC	 	I	Tristate	32	50	72	T16	

Table 6. Functional port pin descriptions (continued)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPIO[21] — — — GPI[1]	SIUL — — ADC	 - - 	I	Tristate	35	53	75	R16
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPIO[22] — — — GPI[2]	SIUL — — ADC	 - - 	I	Tristate	36	54	76	P15
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPIO[23] — — — GPI[3]	SIUL — — ADC	 - - 	I	Tristate	37	55	77	P16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 	GPIO[24] — — ANS[0] OSC32K_XTAL ⁽⁷⁾	SIUL - ADC SXOSC	 	I	Tristate	30	39	53	R9
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 —	GPIO[25] — — ANS[1] OSC32K_EXTAL ⁽ ⁷⁾	SIUL — — ADC SXOSC	 	I	Tristate	29	38	52	Т9
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 	GPIO[26] — — ANS[2] WKPU[8] ⁽⁴⁾	SIUL — — ADC WKPU	/O 	J	Tristate	31	40	54	P9

Table 6. Functional port pin descriptions (continued)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX ⁽¹¹⁾ — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 — SIUL	I/O I/O O I	М	Tristate	50	78	117	A11
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — —	GPIO[35] CS0_1 MA[0] — CAN1RX CAN4RX ⁽¹¹⁾ EIRQ[6]	SIUL DSPI_1 ADC — FlexCAN_1 FlexCAN_4 SIUL	/0 /0 - 	S	Tristate	49	77	116	B11
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 —	GPIO[36] — — SIN_1 CAN3RX ⁽¹¹⁾	SIUL — — DSPI_1 FlexCAN_3	I/O - - 	М	Tristate	62	92	131	B7
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 —	GPIO[37] SOUT_1 CAN3TX ⁽¹¹⁾ — EIRQ[7]	SIUL DSPI1 FlexCAN_3 — SIUL	⊻ 0 0 -	Μ	Tristate	61	91	130	A7
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX — —	SIUL LINFlex_1 —	⊻o	S	Tristate	16	25	36	R2
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ⁽⁴⁾	SIUL — — LINFlex_1 WKPU	I/O — — — — —	S	Tristate	17	26	37	P3

Table 6. Functional port pin descriptions (continued)

								Pin number				
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾	
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ANS[10]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O I/O I	J	Tristate	_	_	57	T10	
PF[3]	PCR[83]	AF0 AF1 AF2 AF3 —	GPIO[83] E0UC[13] CS1_2 — ANS[11]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O O I	J	Tristate	_	_	58	R10	
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ANS[12]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O O I	J	Tristate	_		59	N11	
PF[5]	PCR[85]	AF0 AF1 AF2 AF3 —	GPIO[85] E0UC[22] CS3_2 — ANS[13]	SIUL eMIOS_0 DSPI_2 — ADC	I∕O I∕O −	J	Tristate			60	P11	
PF[6]	PCR[86]	AF0 AF1 AF2 AF3 —	GPIO[86] E0UC[23] — ANS[14]	SIUL eMIOS_0 — ADC	<u>1</u> 0 <u>1</u> 0 <u>1</u> −	J	Tristate	Ι		61	T11	
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] — — — ANS[15]	SIUL — — ADC	I/O 	J	Tristate	_	_	62	R11	
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ⁽¹⁴⁾ CS4_0 CAN2TX ⁽¹⁵⁾	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	I/O O O O	М	Tristate	—	_	34	P1	

Table 6. Functional port pin descriptions (continued)

Symbol		Parameter	Conditions	Va	Unit	
Symbol		Farameter	Conditions	Min	Max	Unit
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	m۸
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	ШA
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁽⁶⁾	_	3.0 ⁽⁷⁾	250 x 10 ³ (0.25 [V/µs])	V/s

Table 14. Recommended operating conditions (5.0 V) (continued)

1. 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

3. 330 nF capacitance needs to be provided between each $V_{\text{DD}_\text{LV}}/V_{\text{SS}_\text{LV}}$ supply pair.

4. 100 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

5. $1 \,\mu\text{F}$ (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between V_{DD_ADC}/V_{SS_ADC} pair. Another ceramic cap of 10 nF with low inductance package can be added.

- 6. Guaranteed by device validation.
- 7. Minimum value of TV_{DD} must be guaranteed until V_{DD} reaches 2.6 V (maximum value of V_{PORH}).

Note: RAM data retention is guaranteed with V_{DD LV} not below 1.08 V.

3.14 Thermal characteristics

3.14.1 Package thermal characteristics

Sym	Symbol C		Parameter	Conditions ⁽²⁾	Pin count	Value	Unit
					64	60	
			Single-layer board - 1s	100	64		
Б	R _{0JA} CC D	D	Thermal resistance, junction-to-		144	64	°C / M
ĸ _θ ja		D	ambient natural convection ⁽³⁾		64	42	0/10
				Four-layer board - 2s2p	100	51	
					144	49	
					64	24	
				Single-layer board - 1s	100	36	
D	R _{0JB} CC	р	Thermal resistance, junction-to-		144	37	°C/M
rθJB		D	board ⁽⁴⁾		64	24	0/10
				Four-layer board - 2s2p	100	34	
					144	35	

Table 15. LQFP thermal characteristics⁽¹⁾

DocID14619 Rev 13

Figure 7. Start-up reset requirements

Symb	Symbol		Paramatar	Conditions ⁽¹⁾		Unit		
Symb		C	Farameter	Conditions	Min	Тур	Max	Unit
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	$0.65V_{DD}$	_	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	—	-0.4		0.35V _{DD}	V

Symbol		6	Paramatar	Conditions ⁽¹⁾			Value		llnit
Symbol		C	Falameter	Conditions		Min	Тур	Max	Omt
		Ρ			T _A = 25 °C	_	180	700 ⁽⁸⁾	
		D			T _A = 55 °C	_	500		μΑ
I _{DDSTOP}	СС	D	STOP mode current ⁽⁷⁾ (1	Slow internal RC oscillator (128 kHz) running	T _A = 85 °C		1	6 ⁽⁸⁾	
		D			T _A = 105 °C		2	9 ⁽⁸⁾	mA
		Ρ			T _A = 125 °C		4.5	12 ⁽⁸⁾	
		Ρ			T _A = 25 °C		30	100	
		D		Slow internal RC oscillator ((128 kHz) running	T _A = 55 °C		75		
I _{DDSTDBY2}	СС	D	STANDBY2 mode		T _A = 85 °C		180	700	μA
		D			T _A = 105 °C		315	1000	
		Ρ			T _A = 125 °C		560	1700	
		Т			T _A = 25 °C		20	60	
		D			T _A = 55 °C		45		
IDDSTDBY1	СС	D	STANDBY1 mode	Slow internal RC oscillator (128 kHz) running	T _A = 85 °C		100	350	μA
		D	urrent ⁽¹²⁾	(120 Ki iz) rominig	T _A = 105 °C	_	165	500	
		D			T _A = 125 °C		280	900	

Table 28. Power consumption on VDD_BV and VDD_HV (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. I_{DDMAX} is drawn only from the V_{DD_BV} pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- 3. Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26.
- I_{DDRUN} is drawn only from the V_{DD_BV} pin. RUN current measured with typical application with accesses on both flash and RAM.
- Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.
- 7. Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- 8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- 9. Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- 10. ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

Figure 14. Fast external crystal oscillator (4 to 16 MHz) timing diagram

Table 38. Fast external cr	vstal oscillator (4 to 16 MHz)	electrical characteristics
	Jotar ocomator (

Symbol		~	Parameter	Conditions ⁽¹⁾		Value		Unit	
Symbo	eyniael		Falameter	Conditions	Min	Тур	Мах	Unit	
f _{FXOSC}	SR		Fast external crystal oscillator frequency	—	4.0	—	16.0	MHz	
	cc c		$V_{DD} = 3.3 V \pm 10\%$, PAD3V5V = 1 OSCILLATOR_MARGIN		2.2	_	8.2		
0 54000	сс	Ρ	Fast external crystal	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0 OSCILLATOR_MARGIN = 0	2.0	_	7.4	mΔ/\/	
9mFXOSC	сс	С	oscillator transconductance	$V_{DD} = 3.3 V \pm 10\%,$ PAD3V5V = 1 OSCILLATOR_MARGIN = 1	2.7		9.7	111 <i>-</i> 77 V	
	сс	С		$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0 OSCILLATOR_MARGIN = 1	2.5		9.2		
V	<u> </u>	т	Oscillation amplitude at	Dscillation amplitude at		1.3		_	V
♥FXOSC	00		EXTAL	f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	1.3		_	v	
V _{FXOSCOP}	СС	С	Oscillation operating point	—		0.95		V	
I _{FXOSC} ⁽²⁾	сс	Т	Fast external crystal oscillator consumption	—	_	2	3	mA	
t _{FXOSCSU}		т	Fast external crystal	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	_		6	ms	
			oscillator start-up time	f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1		_	1.8	1113	

Symbol		~	Parameter	Conditions ⁽¹⁾		Value		Unit
		J	Falameter	Conditions	Min	Тур	Max	Unit
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	$0.65 V_{DD}$	—	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	_	0.35V _{DD}	V

Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals)

3.22 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 15. Crystal oscillator and resonator connection scheme

Equation 7

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Equation 8

$$t_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

Equation 9

8.5 •
$$\tau_2 = 8.5 • R_L • (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1}, C_{P2} and C_S, then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1}. *Equation 10* must be respected (charge balance assuming now C_S already charged at V_{A1}):

Equation 10

$$V_{A2} \bullet (C_{S} + C_{P1} + C_{P2} + C_{F}) = V_{A} \bullet C_{F} + V_{A1} \bullet (C_{P1} + C_{P2} + C_{S})$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

 $Analog source bandwidth (V_A)$ $Analog source bandwidth (V_A)$ $f_C \leq 2 R_F C_F (conversion rate vs. filter pole)$ $f_F = f_0 (anti-aliasing filtering condition)$ $2 f_0 \leq f_C (Nyquist)$ $Anti-aliasing filter (f_F = RC filter pole)$ $f_F = f_0 (anti-aliasing filtering condition)$ $2 f_0 \leq f_C (Nyquist)$ $Sampled signal spectrum (f_C = conversion rate)$ $f_0 \qquad f_C \qquad f_C$

Figure 22. Spectral representation of input signal

3.27.2 DSPI characteristics

Symbol		с	Parameter		Conditions	Typical value ⁽²⁾	Unit
				Bitrate: 500 Kbyte/s	Total (static + dynamic) consumption:	8 * f _{periph} + 85	
I _{DD_BV} (CAN)	СС	т	CAN (FlexCAN) supply current on VDD_BV	Bitrate: 125 Kbyte/s	 FlexCAN in loop-back mode XTAL @ 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 * f _{periph} + 27	μA
	<u> </u>	T	eMIOS supply current on	Static consu – eMIOS ch – Global pre	mption: annel OFF scaler enabled	29 * f _{periph}	μA
IDD_BV(eMIOS)			VDD_BV	Dynamic cor – It does not frequency	nsumption: t change varying the (0.003 mA)	3	μΛ
I _{DD_BV(SCI)}	сс	т	SCI (LINFlex) supply current on VDD_BV	Total (static - – LIN mode – Baudrate:	+ dynamic) consumption: 20 Kbyte/s	5 * f _{periph} + 31	μA
				Ballast statio	consumption (only clocked)	1	
I _{DD_BV} (SPI)	сс	т	SPI (DSPI) supply current on VDD_BV	Ballast dynamic consumption (continuous communication): – Baudrate: 2 Mbit/s – Transmission every 8 µs – Frame: 16 bits		16 * f _{periph}	μA
					Ballast static consumption (no conversion)	41 * f _{periph}	
I _{DD_BV(ADC)}	СС	Т	VDD_BV	V _{DD} = 5.5 V	Ballast dynamic consumption (continuous conversion) ⁽³⁾	5 * f _{periph}	μA
					Analog static consumption (no conversion)	2 * f _{periph}	
IDD_HV_ADC(ADC)	СС	Т	VDD_HV_ADC	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	75 * f _{periph} + 32	μA
I _{DD_HV} (FLASH)	сс	т	Code Flash + Data Flash supply current on VDD_HV	V _{DD} = 5.5 V —		8.21	mA
I _{DD_HV(PLL)}	сс	т	PLL supply current on VDD_HV	V _{DD} = 5.5 V	_	30 * f _{periph}	μA

Table 46. On-chip peripherals current consumption⁽¹⁾

1. Operating conditions: $T_A = 25 \text{ °C}$, $f_{periph} = 8 \text{ MHz}$ to 64 MHz

2. fperiph is an absolute value.

No	lo. Symbol		~	Doromoto	_	I	DSPI0/DS	PI1		DSPI	2	l Ini4										
NO.				Paramete		Min	Тур	Max	Min	Тур	Max											
0	4	CD.	D	D	D	D	D	D	Data actus timo for insute	Master mode	43	_	—	145	_	—						
9	t _{sui} sr i								Data setup time for inputs	Slave mode	5	_	_	5	—	—	ns					
10	+	e D	D	D	D	D	Data hold time for inputs	Master mode	0	—	—	0	_	—	ne							
10	ЧІ	SK L						Slave mode	2 ⁽⁶⁾	—	—	2 ⁽⁶⁾	—	—	115							
11	+ (7)	D ⁽⁷⁾ CC [Data valid after SCK adda	Master mode	—	—	32	—	—	50											
	'SUO` /					00	00	00	00	00	CC		U	U	Data valid alter SCR edge	Slave mode	—	—	52	—	—	160
12	12 t _{HO} ⁽⁷⁾ CC		Data hold time for outputs	Master mode	0	—	—	0	—	—												
				Data noid time for outputs	Slave mode	8	_	_	13	_	_	– ns										

1. Operating conditions: $C_L = 10$ to 50 pF, $Slew_{IN} = 3.5$ to 15 ns.

2. Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available.

3. Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.

The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{CSC} to ensure positive t_{CSCext}.

The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{ASC} to ensure positive t_{ASCext}.

6. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.

7. SCK and SOUT configured as MEDIUM pad

Figure 23. DSPI classic SPI timing – master, CPHA = 0

3.27.4 JTAG characteristics

No	Symb	Symbol				Parameter		Unit
NO.	Symbol		Symbol C Parameter		Min	Тур	Max	Onit
1	t _{JCYC}	СС	D	TCK cycle time	64	—	—	ns
2	t _{TDIS}	CC	D	TDI setup time	15	_	_	ns
3	t _{TDIH}	CC	D	TDI hold time	5	_	_	ns
4	t _{TMSS}	СС	D	TMS setup time	15	_	_	ns
5	t _{TMSH}	CC	D	TMS hold time	5	_	_	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid			33	ns
7	t _{TDOI}	СС	D	TCK low to TDO invalid	6	_	_	ns

Table 49. JTAG characteristics

Figure 33. Timing diagram – JTAG boundary scan

5 Ordering information

Figure 38. Commercial product code structure

Date	Revision	Changes
06-Mar-2009	2 (continued)	Updated tables: - "I/O input DC electrical characteristics" - "I/O pull-up/pull-down DC electrical characteristics" - "SLOW configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" Added "Output pin transition times" section Updated "I/O consumption" table Updated "Start-up reset requirements" figure Updated "Reset electrical characteristics" table "Voltage regulator electrical characteristics" section: - Amended description of LV_PLL "Voltage regulator capacitance connection" figure: - Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated tables" - "Voltage regulator electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor vs reset" figure Updated "Flash memory electrical characteristics" Added "Low voltage monitor vs reset" figure Updated "Flash memory electrical characteristics" Added "Electromagnetic compatibility (EMC) characteristics" section Updated "Flash memory electrical characteristics" section Updated "Slaw external crystal oscillator (32 kHz) electrical characteristics" section Updated tables: - "FMPLL electrical characteristics" - "Fast internal RC oscillator (128 kHz) electrical characteristics" - "Slow internal RC oscillator (128 kHz) electrical characteristics" - "Slow internal RC oscillator (128 kHz) electrical characteristics" Added "On-chip peripherals" section Added "ADC input leakage current" table Updated "ADC conversion characteristics" table Updated "ADC
03-Jun-2009	3	Corrected "Commercial product code structure" figure

Table 55. Document revision history (continued)

Date	Revision	Changes
		Changes between revisions 5 and 7
		Added LQFP64 package information
		Updated the "Features" section.
		Section "Introduction"
		 Relocated a note
		Table: "SPC560B40x/50x and SPC560C40x/50x device comparison"
		 Added footnote regarding SCI and CAN
		Added eDMA block in the "SPC560B40x/50x and SPC560C40x/50x series block diagram" figure
		Removed alternate function information from "LQFP 100-pin configuration" and "LQFP 100-pin configuration" figures.
		Added "Functional port pin descriptions" table
		Deleted the "NVUSRO[WATCHDOG_EN] field description" section
		Table: "Absolute maximum ratings"
		- Removed the min value of V_{IN} relative tio V_{DD}
		Table "Recommended operating conditions (3.3 V)"
		– TV _{DD} : made single row
		"Recommended operating conditions (5.0 V)"
		- deleted T _{A C} -Grade Part, T _{J C} -Grade Part, T _{A V} -Grade Part, T _{J V} -Grade Part, T _{A M} -Grade Part, T _J
		M-Grade Part rows Table: "LQFP thermal characteristics"
		– Added more rows
		 Rounded the values
22-Jul-2010	7	Removed table "LBGA208 thermal characteristics"
		Table "I/O input DC electrical characteristics"
		 W_{FI}: insered a footnote
		 W_{NFI}: insered a footnote
		Table "I/O consuption"
		 Removed I_{DYNSEG} row
		– Added "I/O weight " table
		Replaced "nRSTIN" with "RESET" in the "RESET electrical characteristics" section.
		Table "Voltage regulator electrical characteristics"
		 Updated the values
		- Removed I _{VREGREF} and I _{VREDLVD12}
		- Added a note about I _{DD_BC}
		Table: "Low voltage monitor electrical characteristics"
		 changed min valueV_{LVDHV3L}, from 2.7 to 2.6
		- Inserted max value of V _{LVDLVCORL}
		- Updated V _{PORH} values
		- Opualed v _{LVDLVCORL} value
		Fable Low voltage power domain electrical characteristics
		Table "Program and erase specifications"
		- Inserted Table row
		Table "Flash power supply DC electrical characteristics"
		- Entirely updated

Table 55. Document revision history (continued)

Date	Revision	Changes
18-Jan-2013	11	In the cover feature list, replaced "System watchdog timer" with "Software watchdog timer" Table 3 (SPC560B40x/50x and SPC560C40x/50x series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture) Table 6 (Functional port pin descriptions), replaced VDD with VDD_HV Figure 9 (Voltage regulator capacitance connection), updated pin name apperence Renamed Figure 10 (V _{DD_HV} and V _{DD_BV} maximum slope) (was "VDD and VDD_BV maximum slope") and replaced VDD_HV(MIN) with VPORH(MAX) Renamed Figure 11 (V _{DD_HV} and V _{DD_BV} supply constraints during STANDBY mode exit) (was "VDD and VDD_BV supply constraints during STANDBY mode exit") Table 13 (Recommended operating conditions (3.3 V)), added minimum value of T _{VDD} and footnote about it. Table 14 (Recommended operating conditions (5.0 V)), added minimum value of T _{VDD} and footnote about it. Section 3.17.1, Voltage regulator electrical characteristics: replaced "slew rate of V _{DD} /V _{DD_BV} " with "slew rate of both V _{DD_HV} and V _{DD_BV} " replaced "When STANDBY mode is used, further constraints apply to the V _{DD} /V _{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints are applied to the both V _{DD_HV} and V _{DD_BV} in order to guarantee correct regulator function during STANDBY exit." Table 28 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I _{DDMAX} and I _{DDRUN} stating that both currents are drawn only from the V _{DD_BV} pin. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V _{DD_BV} and V _{DD_HV} and V _{DD_HV} and VDD_BV, VDD_HV and VDD_HV_ADC Updated Section 3.26.2, Input impedance and ADC accuracy Table 47 (DSPI characteristics), modified symbol for t _{PCSC} and t _{PASC}
18-Sep-2013	12	Updated Disclaimer.
03-Feb-2015	13	In <i>Table 2: SPC560B40x/50x and SPC560C40x/50x device comparison</i> : – changed the MPC5604BxLH entry for CAN (FlexCAN) from 3 ⁷ to 2 ⁶ . – updated tablenote 7. In <i>Table 14: Recommended operating conditions (5.0 V)</i> , updated tablenote 5 to: "1 µF (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between V _{DD_ADC} /V _{SS_ADC} pair. Another ceramic cap of 10nF with low inductance package can be added". In <i>Section 3.17.2: Low voltage detector electrical characteristics</i> , added a note on LVHVD5 detector. In <i>Section 5: Ordering information</i> , added a note: "Not all options are available on all devices".

Table 55. Document revision history (continued)

