

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	123
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 36x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b40l5b6e0y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3. LQFP 100-pin configuration

									Pin nu	umber	-
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT — WKPU[19] ⁽⁴⁾	SIUL eMIOS_0 CGL — WKPU	I/O I/O O I	М	Tristate	5	12	16	G4
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁽⁵⁾ WKPU[2] ⁽⁴⁾	SIUL eMIOS_0 — — WKPU WKPU WKPU	/O /O - 	S	Tristate	4	7	11	F3
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — — WKPU[3] ⁽⁴⁾	SIUL eMIOS_0 — WKPU	I/O I/O — I	S	Tristate	3	5	9	F2
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — — EIRQ[0]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	43	68	90	K15
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — — WKPU[9] ⁽⁴⁾	SIUL eMIOS_0 — WKPU	I/O I/O — I	S	Tristate	20	29	43	N6
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	79	118	C11
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — — EIRQ[1]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	52	80	119	D11

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PB[11] (8)	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] CS0_0 ANS[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — I/O I	J	Tristate	38	59	81	N13
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ANX[0]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	39	61	83	M16
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ANX[1]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	40	63	85	M13
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] CS3_0 ANX[2]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	41	65	87	L16
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] CS4_0 ANX[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	42	67	89	L13
PC[0] ⁽⁹⁾	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O — I —	Μ	Input, weak pull-up	59	87	126	A8
PC[1] ⁽⁹⁾	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] TDO ⁽¹⁰⁾ 	SIUL — JTAGC —	I/O — 0 —	М	Tristate	54	82	121	C9

Table 6. Functional port pin descriptions (continued)

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Equation 2 $P_D = K / (T_J + 273 °C)$

Therefore, solving equations *Equation 1* and *Equation 2*:

Equation 3 K = $P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$

Where:

K is a constant for the particular part, which may be determined from *Equation 3* by measuring P_D (at equilibrium) for a known T_A. Using this value of K, the values of P_D and T_J may be obtained by solving equations *Equation 1* and *Equation 2* iteratively for any value of T_A.

3.15 I/O pad electrical characteristics

3.15.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability.
- Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal oscillator (SXOSC) providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

3.15.2 I/O input DC characteristics

Table 16 provides input DC electrical characteristics as described in Figure 6.

Figure 6. I/O input DC electrical characteristics definition

Table 16. I/O input DC electrical characteristics											
Symt		C	Parameter	Condit		Unit					
Synn		J	Falameter	Condit	Min	Тур	Max	Unit			
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	$0.65 V_{DD}$		V _{DD} +0.4				
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_	-0.4		0.35V _{DD}	V			
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	_		0.1V _{DD}	_	_			
		D	_		T _A = -40 °C	—	2	200	nA		
		D		No injection on adjacent pin	T _A = 25 °C	—	2	200			
I _{LKG}	СС	D	Digital input leakage		T _A = 85 °C	—	5	300			
		D			T _A = 105 °C	_	12	500			
		Ρ			T _A = 125 °C	_	70	1000			
$W_{FI}^{(2)}$	SR	Ρ	Wakeup input filtered pulse	_	-	_	_	40	ns		
W _{NFI} ⁽²⁾	SR	Ρ	Wakeup input not filtered pulse	_		1000		_	ns		

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

Symbol C Parame		~	<u> </u>	C Deremeter		Conditions ⁽¹⁾		Unit						
		Farameter		Conditions	Min	Тур	Max	Unit						
		I	Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	_	0.1V _{DD}					
	V _{OL} C		С	Output low level SLOW configuration	Push Pull	I _{OL} = 2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	_	_	0.1V _{DD}	V				
			с	c	C	C	с	С	;		I_{OL} = 1 mA, V_{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Symbol			Demonster		١	Unit			
Sym	Symbol С V _{OH} СС С С С С С С С С С Р С С С С С С	Parameter		Conditions			Max	onne	
		С	<u>-</u>		I _{OH} = –3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	_	_	
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_	
V _{OH} С	сс	с	Output high level MEDIUM configuration	Push Pull	$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	0.8V _{DD}	_	_	V
		с	-		$I_{OH} = -1$ mA, $V_{DD} = 3.3$ V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8	_	_	
		с			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	_	_	
		С	Output low level MEDIUM configuration		I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	0.2V _{DD}	
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)		_	0.1V _{DD}	
V _{OL}	сс	с		Push Pull	I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	_	_	0.1V _{DD}	V
		с			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	_	_	0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	0.1V _{DD}	

Table 19 MEDIUM	configuration	output buffer	electrical	characteristics
	ooninguruuon	output sunor	cicotiioui	onunuotonistios

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Symbol		~	Paramatar			Unit				
Sym	IDOI	C	Farameter		Conditions			Max	onin	
V _{OH} (Ρ	Output high level FAST configuration	Push Pull	$I_{OH} = -14$ mA, $V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0 (recommended)	0.8V _{DD}	_	_		
	сс	С			$I_{OH} = -7mA$, $V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 1 ⁽²⁾	0.8V _{DD}	_	_	V	
		С			$I_{OH} = -11$ mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} 0.8				
		Ρ			$I_{OL} = 14mA$, $V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0 (recommended)			0.1V _{DD}		
V _{OL}	сс	С	Output low level FAST configuration	Push Pull	$I_{OL} = 7mA,$ $V_{DD} = 5.0 V \pm 10\%, PAD3V5V = 1(2)$		_	0.1V _{DD}	V	
		С			I_{OL} = 11mA, V_{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_		0.5		

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

3.15.4 Output pin transition times

Table 21. Output pin transition times

Symbol		<u>د</u>	Paramotor				Value		
)	Falancie		Conditions				onit
		D	D C O Output transition time output pin ⁽²⁾ D SLOW configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	50	
		Т		C _L = 50 pF		_	—	100	
+	<u> </u>	D		C _L = 100 pF		_		125	20
۲tr		D		C _L = 25 pF		—	—	50	115
		T D		C _L = 50 pF	אר א א א א א א א א א א א א א א א א א א	_		100	
				C _L = 100 pF				125	

6.	Symbol		Deremeter		Conditions ⁽¹⁾	Value			110:4	
Зу	mboi	C	Falameter		Conditions			Max	Onne	
		D		C _L = 25 pF			—	10		
		Т	Output transition time output pin ⁽²⁾ MEDIUM configuration	C _L = 50 pF	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	—		20		
+	<u> </u>	D		C _L = 100 pF	SIUL.PCRx.SRC = 1	_		40		
	00	D		C _L = 25 pF		—		12	115	
		Т		C _L = 50 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	25		
		D		C _L = 100 pF	SIUL.PCRx.SRC = 1	_		40		
		C D		C _L = 25 pF		—	Iin Typ Max — — 10 — — 20 — — 40 — — 42 — — 42 — — 42 — — 42 — — 40 — — 40 — — 40 — — 40 — — 40 — — 40 — — 40 — — 40 — — 4 — — 4 — — 4 — — 7 — — 12			
					C _L = 50 pF	$V_{DD} = 5.0 \text{ V} + 10\% \text{ PAD3V5V} = 0$	_	—	6	
	<u> </u>			Output transition time output	C _L = 100 pF				12	
۲r	00		FAST configuration	C _L = 25 pF		—		4	115	
					C _L = 50 pF	$\sqrt{100} = 3.3 \text{ V} + 10\% \text{ PAD3V5V} = 1$	_	—	7	
					C _L = 100 pF		_		12	

Table 21.	Output	pin transition tin	nes (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. C_L includes device and package capacitances (C_{PKG} < 5 pF).

3.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 22*.

Packago			Supply	segment					
Fackage	1	2	3	4	5	6			
LBGA208 ⁽¹⁾	Equivalent to LQFP144 segment pad distribution				MCKO	MDOn/MSEO			
LQFP144	pin20–pin49	pin51–pin99	pin100-pin122	pin 123–pin19	—	—			
LQFP100	pin16–pin35	pin37–pin69	pin70–pin83	pin 84–pin15	—	—			
LQFP64 ⁽²⁾	pin8–pin26	pin28–pin55	pin56–pin7	—	—	—			

Table 22. I/O supply segment

1. LBGA208 available only as development package for Nexus2+

2. All LQFP64 information is indicative and must be confirmed during silicon validation.

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the $I_{\rm AVGSEG}$ maximum value.

SPC560B40x/50x, SPC560C40x/50x

	Supply compat			LQFP144/LQFP100				LQFP64 ⁽²⁾			
Sup	piy seg	ment	Pad	Weigl	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weight 3.3 V	
LQFP 144	LQFP 100	LQFP 64		SRC ⁽³⁾ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
			PB[9]	1%	—	1%	—	1%	—	1%	—
	2	2	PB[8]	1%	—	1%	—	1%	—	1%	—
			PB[10]	6%	—	7%	—	6%	—	7%	—
			PF[0]	6%	—	7%	—	—	—	—	—
			PF[1]	7%	—	8%	—	—	—	—	—
		_	PF[2]	7%	—	8%	—	—	—	—	—
		_	PF[3]	7%	—	9%	—	—	—	—	—
			PF[4]	8%	—	9%	—	—	—	—	—
			PF[5]	8%	—	10%	—	—	—	—	—
		_	PF[6]	8%	_	10%	_	_		_	_
			PF[7]	9%	—	10%	—	—	—	—	—
			PD[0]	1%	_	1%	_	_	_	—	_
			PD[1]	1%	—	1%	—	—	—	—	—
			PD[2]	1%	_	1%	_	_	_	—	_
		_	PD[3]	1%	_	1%	_	_	_	—	_
2			PD[4]	1%	_	1%	_	_		_	_
			PD[5]	1%	_	1%	_	_		_	_
		_	PD[6]	1%	_	1%	_	_	_	—	_
			PD[7]	1%	_	1%	_	_		_	_
			PD[8]	1%	_	1%	_	_		_	_
	2		PB[4]	1%	_	1%	_	1%	_	1%	_
	2	~	PB[5]	1%	_	1%	_	1%		2%	_
		2	PB[6]	1%	_	1%	_	1%	_	2%	_
			PB[7]	1%		1%		1%		2%	
			PD[9]	1%	_	1%	_	_		_	_
		_	PD[10]	1%	—	1%	—	—	—	—	—
		_	PD[11]	1%	—	1%	—	—	—	—	—
		2	PB[11]	11%	—	13%	—	17%	—	21%	—
		—	PD[12]	11%	—	13%	—	—	—	-	—
		2	PB[12]	11%	—	13%	—	18%	—	21%	—
		—	PD[13]	10%	—	12%	—	—	—	—	—

Table 24. I/O weight⁽¹⁾ (continued)

				a 111 (1)		Value		l lm it
Symbol		С	Parameter	Conditions	Min	Тур	Max	Unit
C _{REGn}	SR		Internal voltage regulator external capacitance	_	200	_	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	w
	00			V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 4.5 V$ to 5.5 V	100 (3)	470(4)	_	-5
CDEC1	SK		Decoupling capacitance ⁽²⁾ ballast V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 3 V \text{ to } 3.6 V$		400	470(**	_	nF
C _{DEC2}	SR	—	Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF
$\frac{d}{dt}$ VDD	SR		Maximum slope on V _{DD}		_	_	250	mV/µs
∆ _{VDD(STDBY)}	SR		Maximum instant variation on V _{DD} during standby exit		_	_	30	mV
$\frac{d}{dt}$ VDD(STDBY)	SR		Maximum slope on V _{DD} during standby exit				15	mV/µs
V _{MREG}	сс	т	Main regulator output voltage	Before exiting from reset	_	1.32	_	v
		Ρ		After trimming	1.16	1.28	—	
I _{MREG}	SR	—	Main regulator current provided to V_{DD_LV} domain	_	—	—	150	mA
hipponit	CC	П	Main regulator module current	I _{MREG} = 200 mA	—		2	mΔ
IMREGINI	00		consumption	I _{MREG} = 0 mA	—		1	110 (
V _{LPREG}	сс	Ρ	Low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{LPREG}	SR		Low power regulator current provided to V _{DD_LV} domain	_	_	_	15	mA
	<u> </u>	D	Low power regulator module	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	
ILPREGINT		—	current consumption	I _{LPREG} = 0 mA; T _A = 55 °C	_	5 —		
V _{ULPREG}	сс	Р	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V

Table 26. Voltage regulator electrical characteristics

 $\text{ESR}_{\text{STDBY}}(\text{MAX}) = |\Delta_{\text{VDD}(\text{STDBY})}|/(I_{\text{DD}_{\text{BV}}} - 200 \text{ mA}) = (30 \text{ mV})/(100 \text{ mA}) = 0.3 \Omega$

 $C_{STDBY}(MIN) = (I_{DD_BV} - 200 \text{ mA})/dVDD(STDBY)/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu\text{s}) = 6.7 \mu\text{F}$

In case optimization is required, $C_{STDBY}(MIN)$ and $ESR_{STDBY}(MAX)$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

3.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{-LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 12. Low voltage detector vs reset

Note:

Figure 12: Low voltage detector vs reset does not apply to LVDHV5 low voltage detector because LVDHV5 is automatically disabled during reset and it must be enabled by software again. Once the device is forced to reset by LVDHV5, the LVDHV5 is disabled and reset is

DocID14619 Rev 13

	g									
Symbol		С	Parameter	Conditions ⁽¹⁾	Max	Unit				
f _{READ}		Ρ		2 wait states	64					
	СС	С	Maximum frequency for Flash reading	1 wait state	40	MHz				
		С		0 wait states	20					

Table 31. Flash read access timing

1. V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.19.2 Flash power supply DC characteristics

Table 32 shows the power supply DC characteristics on external supply.

Symbol		~	Baramatar	Conditions ⁽¹⁾	Value			Unit		
Symbo	01	C	Falameter	Conditions	Min	Тур	Max	Unit		
			Sum of the current consumption on	Code flash memory module read $f_{CPU} = 64 \text{ MHz}^{(3)}$	_	15	33	m ^		
(2)			access	Data flash memory module read $f_{CPU} = 64 \text{ MHz}^{(3)}$	_	15	33			
		Sum of the current consumption on		Program/Erase ongoing while reading code flash memory registers f _{CPU} = 64 MHz ⁽³⁾	_	15	33	m 4		
I _{FMOD} (2)			modification (program/erase)	Program/Erase ongoing while reading data flash memory registers $f_{CPU} = 64 \text{ MHz}^{(3)}$	_	15	15 33			
1	<u> </u>	D Sum of the current consumption on VDD_HV and VDD_BV			Sum of the current consumption on	During code flash memory low- power mode	_	_	900	
IFLPW			During data flash memory low- power mode	_	_	900	μΑ			
I _{FPWD}	<u> </u>	CC D Sum of VDD_H	Sum of the current consumption on	During code flash memory power-down mode	_	_	150			
			C D VDD_HV and VDD_BV		During data flash memory power- down mode	_	_	150		

Table 32. Flash memory power supply DC electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. This value is only relative to the actual duration of the read cycle

3. $f_{CPU}\,64$ MHz can be achieved only at up to 105 $^\circ\text{C}$

2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Syı	nbol	С	Parameter	Conditions	Class
LU	сс	т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

Table 36. Latch-up results

3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. *Figure 13* describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

4.2.2 LQFP100

Figure 35. LQFP100 package mechanical drawing

Table 51. LQFP100 mechanical data

Symbol		mm			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3		12.000		_	0.4724	—
E	15.800	16.000	16.200	0.6220	0.6299	0.6378

5 Ordering information

Figure 38. Commercial product code structure

Appendix A Abbreviations

Table 54 lists abbreviations used but not defined elsewhere in this document.

Abbreviation	Meaning
CMOS	Complementary metal-oxide-semiconductor
СРНА	Clock phase
CPOL	Clock polarity
CS	Peripheral chip select
EVTO	Event out
МСКО	Message clock out
MDO	Message data out
MSEO	Message start/end out
MTFE	Modified timing format enable
SCK	Serial communications clock
SOUT	Serial data out
TBD	To be defined
ТСК	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select

Table	54	Abbrow	intiana
Iable	: 34.	ADDIEV	Ialiulia

Date	Revision	Changes
		Changes between revisions 5 and 7
		Added LQFP64 package information
		Updated the "Features" section.
		Section "Introduction"
		- Relocated a note
		Table: "SPC560B40x/50x and SPC560C40x/50x device comparison"
		 Added footnote regarding SCI and CAN
		Added eDMA block in the "SPC560B40x/50x and SPC560C40x/50x series block diagram" figure
		Removed alternate function information from "LQFP 100-pin configuration" and "LQFP 100-pin configuration" figures.
		Added "Functional port pin descriptions" table
		Deleted the "NVUSRO[WATCHDOG_EN] field description" section
		Table: "Absolute maximum ratings"
		 Removed the min value of V_{IN} relative tio V_{DD}
		Table "Recommended operating conditions (3.3 V)"
		– TV _{DD} : made single row
		"Recommended operating conditions (5.0 V)"
		- deleted T _{A C-Grade Part} , T _{J C} -Grade Part, T _{A V} -Grade Part, T _{J V} -Grade Part, T _{A M} -Grade Part, T _J
		M-Grade Part ^{rows} Table: "LQFP thermal characteristics"
		– Added more rows
		- Rounded the values
22-Jul-2010	7	Removed table "LBGA208 thermal characteristics"
		Table "I/O input DC electrical characteristics"
		– W _{FI} : insered a footnote
		– W _{NFI} : insered a footnote
		Table "I/O consuption"
		- Removed I _{DYNSEG} row
		– Added "I/O weight " table
		Replaced "nRSTIN" with "RESET" in the "RESET electrical characteristics" section.
		Table "Voltage regulator electrical characteristics"
		- Updated the values
		- Removed I _{VREGREF} and I _{VREDLVD12}
		- Added a note about I _{DD_BC}
		abanged min value)/
		Incontrad max value of V
		Inserted max value of v _{LVDLVCORL}
		- Updated V _{PORH} values
		Table "Low voltage power domain electrical characteristics"
		Table "Program and erase specifications"
		- Inserted T _{celot} row
		Table "Flash power supply DC electrical characteristics"
		– Entirely updated

Table 55. Document revision history (continued)

Table 55	Document	revision	history	(continued)	
Table JJ.	Document	164131011	matory	(continueu)	,

Date	Revision	Changes		
01-Oct-2011	9	Formatting and minor editorial changes throughout Harmonized oscillator nomenclature Device summary table: removed 384 KB code flash device versions Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C; removed 384 KB code flash device versions LQFP 64-phi configuration: renamed pin 6 from VPP_TEST to VSS_HV Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+ pins" Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAJSV5] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[WATCHDOG_EN] field description" Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated I _{LKG} characteristics Section "I/O pad current specification": removed content referencing the I _{DYNSEG} maximum value I/O consumption: replaced instances of "Root medium square" with "Root mean square" I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package Reset electrical characteristics"; daded event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage detector electrical characteristics" Section "Low voltage detector electrical characteristics: updated values for V _{LVDLVBKPL} and V _{LVDLVCORL} ; replaced "LVD_DIGBKP" with "LVDLVBKP" in note Updated section "Power consumption" Fast external crystal oscillator (4 to 16 MH2) electrical characteristics: updated parameter classification for V _{FXOSCOP} Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a se		
17-Jan-2013	10	Internal review.		

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14619 Rev 13

