

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b50l1b4e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5	Ordering information	106
Appendix	A Abbreviations	107
Revision	history	108

		Table	e 2. SPC56)B40x/50x	and SPC56	0C40x/50x	device co	mparison ⁽¹)		
						Device					
Feature	SPC560B 40L1	SPC560B 40L3	SPC560B 40L5	SPC560C 40L1	SPC560C 40L3	SPC560B 50L1	SPC560B 50L3	SPC560B 50L5	SPC560C 50L1	SPC560C 50L3	SPC560B 50B2
CPU			L	L	•	e200z0h	•	•	•	•	
Execution speed ⁽²⁾					Stat	ic – up to 64	MHz				
Code Flash			256 KB					512	2 KB		
Data Flash		64 KB (4 × 16 KB)									
RAM		24 KB 32 KB 32 KB 48 KB									
MPU		8-entry									
ADC (10-bit)	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	36 ch
СТИ						Yes					
Total timer I/O ⁽³⁾ eMIOS	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit
- PWM + MC + IC/OC ⁽⁴⁾	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	10 ch
- PWM + IC/OC ⁽⁴⁾	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch
- IC/OC ⁽⁴⁾		3 ch	6 ch		3 ch		3 ch	6 ch		3 ch	6 ch
SCI (LINFlex)		3 ⁽⁵⁾						4			
SPI (DSPI)	2	:	3	2	3	2	;	3	2	:	3
CAN (FlexCAN)		2 ⁽⁶⁾		5	6		3 ⁽⁷⁾		5		6
I ² C				1		1					
32 kHz oscillator						Yes					
GPIO ⁽⁸⁾	45	79	123	45	79	45	79	123	45	79	123

9/116

SPC560B40x/50x, SPC560C40x/50x

Introduction

Figure 1. SPC560B40x/50x and SPC560C40x/50x block diagram

Table 3 summarizes the functions of all blocks present in the SPC560B40x/50x and SPC560C40x/50x series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

3.5 System pins

The system pins are listed in Table 5.

					Pin nu		umbe	r
System pin	Function Bidirectional reset with Schmitt-Trigger characteristics		Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽¹⁾
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	М	Input, weak pull-up only after PHASE2	9	17	21	J1
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. ⁽²⁾	I/O	х	Tristate	27	36	50	N8
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. ⁽²⁾	I	х	Tristate	25	34	48	P8

Tahlo	5	System	nin	descri	ntions
rable	э.	System	pin	aescri	ptions

1. LBGA208 available only as development package for Nexus2+

2. See the relevant section of the datasheet

3.6 Functional ports

The functional port pins are listed in *Table 6*.

c. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPIO[21] — — — GPI[1]	SIUL — — ADC	 - - 	I	Tristate	35	53	75	R16
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPIO[22] — — — GPI[2]	SIUL — — ADC	 - - 	I	Tristate	36	54	76	P15
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPIO[23] — — — GPI[3]	SIUL — — ADC	 - - 	I	Tristate	37	55	77	P16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 	GPIO[24] — — ANS[0] OSC32K_XTAL ⁽⁷⁾	SIUL - ADC SXOSC	 	I	Tristate	30	39	53	R9
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 —	GPIO[25] — — ANS[1] OSC32K_EXTAL ⁽ ⁷⁾	SIUL — — ADC SXOSC	 	I	Tristate	29	38	52	Т9
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 —	GPIO[26] — — ANS[2] WKPU[8] ⁽⁴⁾	SIUL — — ADC WKPU	/O 	J	Tristate	31	40	54	P9

Table 6. Functional port pin descriptions (continued)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX —	SIUL LINFlex_2 —	I/O O 	S	Tristate	63	99	143	A1
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — — LIN2RX WKPU[13] ⁽⁴⁾	SIUL — — LINFlex_2 WKPU	I/O - - - -	S	Tristate	2	2	2	B1
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX ⁽¹¹⁾ MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC	I/O O O O	М	Tristate	13	22	28	M3
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — — CAN1RX CAN4RX ⁽¹¹⁾ WKPU[5] ⁽⁴⁾	SIUL — — FlexCAN_1 FlexCAN_4 WKPU	⊻	S	Tristate		21	27	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — SIN_2	SIUL eMIOS_0 — DSPI_2	I/O I/O — I	М	Tristate	_	97	141	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate	_	98	142	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I	S	Tristate		3	3	C1

Table 6.	Functional	port r	oin des	scriptions	(continued)
	i unotionui	POILP		Jonptions	(ooninaca)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] — CS5_0 — CAN2RX ⁽¹⁵⁾ CAN3RX ⁽¹⁴⁾	SIUL — DSPI_0 — FlexCAN_2 FlexCAN_3	I/O — 0 — 1	S	Tristate		_	33	N2
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O 	М	Tristate	_	_	38	R3
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] — — — WKPU[15] ⁽⁴⁾	SIUL — — — WKPU	I/O — — — —	S	Tristate	_	_	39	R4
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate		_	35	R1
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — — WKPU[16] ⁽⁴⁾	SIUL eMIOS_1 — — WKPU	I/O I/O 	S	Tristate		_	41	T6
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ⁽¹¹⁾ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate	_	_	102	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — —	GPIO[95] — — CAN1RX CAN4RX ⁽¹¹⁾ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	I/O — — — — — — — — —	S	Tristate			101	E15

Table 6.	Functional	port pin	descriptions	(continued)
14010 01	. another a	P • • • P · · ·	accompliance	(0011111000)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PG[15]	PCR[111]	AF0 AF1 AF2 AF3	GPIO[111] E1UC[1] —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	_	111	B13
PH[0]	PCR[112]	AF0 AF1 AF2 AF3 —	GPIO[112] E1UC[2] — SIN1	SIUL eMIOS_1 — DSPI_1	I/O I/O — I	Μ	Tristate	_		93	F13
PH[1]	PCR[113]	AF0 AF1 AF2 AF3	GPIO[113] E1UC[3] SOUT1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O O	М	Tristate	_	_	94	F14
PH[2]	PCR[114]	AF0 AF1 AF2 AF3	GPIO[114] E1UC[4] SCK_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	Μ	Tristate			95	F16
PH[3]	PCR[115]	AF0 AF1 AF2 AF3	GPIO[115] E1UC[5] CS0_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	Μ	Tristate			96	F15
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] —	SIUL eMIOS_1 —	I/O I/O 	Μ	Tristate			134	A6
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPIO[117] E1UC[7] —	SIUL eMIOS_1 —	I/O I/O 	S	Tristate			135	В6
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 — ADC	I/O I/O — 0	М	Tristate	_	_	136	D5

Table 6. Functional port pin descriptions (continued)

Figure 6. I/O input DC electrical characteristics definition

	Table 16. I/O input DC electrical characteristics											
Symt		C	Parameter	Condit	ions(1)			Unit				
Synn		J	Falameter	Condit	0115 ()	Min	Тур	Max	Unit			
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_		$0.65 V_{DD}$		V _{DD} +0.4				
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_		-0.4		0.35V _{DD}	V			
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	_		0.1V _{DD}	_	_				
		D			T _A = -40 °C	—	2	200				
		D		No injection	T _A = 25 °C	—	2	200				
I _{LKG}	СС	D	Digital input leakage	on adjacent	T _A = 85 °C	—	5	300	nA			
		D		pin	T _A = 105 °C	_	12	500				
					T _A = 125 °C	_	70	1000				
$W_{FI}^{(2)}$	SR	Ρ	Wakeup input filtered pulse	—		_	_	40	ns			
W _{NFI} ⁽²⁾	SR	Ρ	Wakeup input not filtered pulse	_		1000		_	ns			

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

Symbol					Value			Unit											
Symb	Symbol C		Parameter	Conditions	Min	Тур	Max	Unit											
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	—	0.1V _{DD}		_	V											
		Ρ		Push Pull, $I_{OL} = 2mA$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_	_	0.1V _{DD}												
V _{OL}	сс	С	Output low level	Push Pull, I_{OL} = 1mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾			0.1V _{DD}	V											
		с		Push Pull, I_{OL} = 1mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5												
				C _L = 25pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_		10												
				C _L = 50pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	20												
t _{tr}	~~~		Output transition time	C _L = 100pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_		40	- ns											
			output pin ⁽³⁾	C _L = 25pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		12												
				C _L = 50pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	25												
															C _L = 100pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	_			40	ns											
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	1000		_	ns											
		Ρ		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10		150												
I _{WPU}	сс	D	Weak pull-up current	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	_	150	μA											
		Ρ		$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	10	—	250												

Table 25. Reset electrical characteristics (continued)
--

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

2. This transient configuration does not occurs when device is used in the V_{DD} = 3.3 V \pm 10% range.

3. CL includes device and package capacitance (CPKG < 5 pF).

Symbol		6	Paramatar	Conditions ⁽¹⁾	Conditions ⁽¹⁾ Value			Unit	
		C	Falameter	Conditions		Min	Тур	Max	Onit
		Ρ	STOP mode current ⁽⁷⁾ S	Slow internal RC oscillator (128 kHz) running	T _A = 25 °C	_	180	700 ⁽⁸⁾	
		D			T _A = 55 °C	_	500		μА
I _{DDSTOP}	СС	D			T _A = 85 °C	_	1	6 ⁽⁸⁾	
		D			T _A = 105 °C		2	9 ⁽⁸⁾	mA
		Ρ			T _A = 125 °C		4.5	12 ⁽⁸⁾	
		Ρ	STANDBY2 mode { current ⁽⁹⁾ (Slow internal RC oscillator (128 kHz) running	T _A = 25 °C		30	100	
		D			T _A = 55 °C		75		
I _{DDSTDBY2}	СС	D			T _A = 85 °C		180	700	μΑ
		D			T _A = 105 °C		315	1000	
		Ρ			T _A = 125 °C		560	1700	
		Т	STANDBY1 mode	Slow internal RC oscillator (128 kHz) running	T _A = 25 °C		20	60	
I _{DDSTDBY1}		D			T _A = 55 °C		45		
	СС	D			T _A = 85 °C		100	350	μΑ
		D			T _A = 105 °C	_	165	500	
		D			T _A = 125 °C		280	900	

Table 28. Power consumption on VDD_BV and VDD_HV (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. I_{DDMAX} is drawn only from the V_{DD_BV} pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- 3. Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26.
- I_{DDRUN} is drawn only from the V_{DD_BV} pin. RUN current measured with typical application with accesses on both flash and RAM.
- Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.
- 7. Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- 8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- 9. Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- 10. ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Sy	mbol	C	Parameter	Conditions	Class
LU	сс	Г	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

Table 36. Latch-up results

3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. *Figure 13* describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Symbol		~	Parameter	Conditions ⁽¹⁾	Value			Unit
		J	Farameter	Conditions	Min	Тур	Max	Unit
t _{FIRCSU}	сс	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V ± 10%	_	1.1	2.0	μs
$\Delta_{FIRCPRE}$	сс	т	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C	-1	_	+1	%
	сс	Т	Fast internal RC oscillator trimming step	T _A = 25 °C	_	1.6		%
∆ _{FIRCVAR}	сс	Ρ	Fast internal RC oscillator variation in over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration	_	-5	_	+5	%

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

3.25 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol		C	Poromotor	Conditions ⁽¹⁾	Value			Unit	
		C	Farameter	Conditions	Min	Тур	Max	Unit	
, CO		Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	_	128			
'SIRC	SR		frequency	—	100	—	150		
I _{SIRC} ⁽²⁾	сс	С	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed	_	—	5	μA	
t _{SIRCSU}	сс	Ρ	Slow internal RC oscillator start-up time	T _A = 25 °C, V _{DD} = 5.0 V ± 10%	_	8	12	μs	
	сс	с	Slow internal RC oscillator precision after software trimming of fsiRC	T _A = 25 °C	-2	_	+2	%	
	сс	С	Slow internal RC oscillator trimming step	_	_	2.7	_		
	сс	с	Slow internal RC oscillator variation in temperature and supply with respect to f_{SIRC} at $T_A = 55$ °C in high frequency configuration	High frequency configuration	-10	_	+10	%	

Table 43. Slow internal RC oscillator (128 kHz) electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

Figure 23. DSPI classic SPI timing – master, CPHA = 0

Figure 28. DSPI modified transfer format timing – master, CPHA = 1

Figure 29. DSPI modified transfer format timing – slave, CPHA = 0

DocID14619 Rev 13

4 Package characteristics

4.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 Package mechanical data

4.2.1 LQFP64

Figure 34. LQFP64 package mechanical drawing

Table 50. LQFP64 mechanical data

Symbol		mm		inches ⁽¹⁾				
Symbol	Min	Тур	Мах	Min	Тур	Max		
А	—	—	1.6	—	—	0.063		
A1	0.05	—	0.15	0.002	—	0.0059		
A2	1.35	1.4	1.45	0.0531	0.0551	0.0571		
b	0.17	0.22	0.27	0.0067	0.0087	0.0106		
С	0.09	_	0.2	0.0035	_	0.0079		
D	11.8	12	12.2	0.4646	0.4724	0.4803		

DocID14619 Rev 13

Date	Revision	Changes
06-Mar-2009	2 (continued)	Updated tables: - "I/O input DC electrical characteristics" - "I/O pull-up/pull-down DC electrical characteristics" - "SLOW configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" Added "Output pin transition times" section Updated "I/O consumption" table Updated "Start-up reset requirements" figure Updated "Reset electrical characteristics" table "Voltage regulator electrical characteristics" section: - Amended description of LV_PLL "Voltage regulator capacitance connection" figure: - Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated tables" - "Voltage regulator electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor vs reset" figure Updated "Flash memory electrical characteristics" Added "Low voltage monitor vs reset" figure Updated "Flash memory electrical characteristics" Added "Electromagnetic compatibility (EMC) characteristics" section Updated "Flash memory electrical characteristics" section Updated "Slaw external crystal oscillator (32 kHz) electrical characteristics" section Updated tables: - "FMPLL electrical characteristics" - "Fast internal RC oscillator (128 kHz) electrical characteristics" - "Slow internal RC oscillator (128 kHz) electrical characteristics" - "Slow internal RC oscillator (128 kHz) electrical characteristics" Added "On-chip peripherals" section Added "ADC input leakage current" table Updated "ADC conversion characteristics" table Updated "ADC
03-Jun-2009	3	Corrected "Commercial product code structure" figure

Table 55. Document revision history (continued)

Date	Revision	Changes
22-Jul-2010	7 (continued)	Table "Start-up time/Switch-off time" - Entirely updated Figures "Crystal oscillator and resonator connection scheme" - Relocated a note Table "Slow external crystal oscillator (32 kHz) electrical characteristics" - Removed g _{mSXOSC} row - Inserted values of I _{SXOSCBIAS} Table "FMPLL electrical characteristics" - Rounded the values of f _{VCO} Table "Fast internal RC oscillator (16 MHz) electrical characteristics" - Entirely updated. Table "ADC conversion characteristics" - Updated the description of the conditions of t _{ADC_PU} and t _{ADC_S} . - Added "I _{ADCPWD} " and "I _{ADCRUN} " rows Table "DSPI characteristics" - Entirely updated. Updated "Order codes" table. Figure "Commercial product code structure" - Replaced PowerPC with "Power ArchitectureT ^{M"} in the product identifier - Removed the note about the condition from "Flash read access timing" table - Removed the notes that assert the values need to be confirmed before validation - Exchanged the order of "LQFP 100-pin configuration" and "LQFP 144-pin configuration"
25-Nov-2010	8	 Editorial changes and improvements. In the "SPC560B40x/50x and SPC560C40x/50x device comparison" table, changed the temperature value from 105 to 125 °C, in the footnote regarding "Execution speed". In the "LQFP thermal characteristics" table, added values concerning LQFP64 package. In the "MEDIUM configuration output buffer electrical characteristics" table: fixed a typo in last row of conditions column, there was I_{OH} that now is I_{OL}. In the "Reset electrical characteristics" table, changed the parameter classification tag for V_{OL} and I_{WPU} . In the "Low voltage monitor electrical characteristics" table, changed the max value of V_{LVDLVCORL} from 1.5V to 1.15V. In the "FMPLL electrical characteristics" table, changed the parameter classification tag for f_{VCO}.

Table 55. Document revision history (continued)

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14619 Rev 13

