

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b50l3b4e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.

Bort nin	Function	Pin number							
Port pin	Function	LQFP64	LQFP100	LQFP144	LBGA208 ⁽¹⁾				
VDD_HV	Digital supply voltage	7, 28, 56	15, 37, 70, 84	19, 51, 100, 123	C2, D9, E16, G13, H3, N9, R5				
VSS_HV	Digital ground	6, 8, 26, 55	14, 16, 35, 69, 83		G7, G8, G9, G10, H1, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10				
VDD_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{SS_LV} pin. ⁽²⁾	11, 23, 57	19, 32, 85	23, 46, 124	D8, K4, P7				
VSS_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{DD_LV} pin. ⁽²⁾	10, 24, 58	18, 33, 86	22, 47, 125	C8, J2, N7				
VDD_BV	Internal regulator supply voltage	12	20	24	K3				
VSS_HV_ADC	Reference ground and analog ground for the ADC	33	51	73	R15				
VDD_HV_ADC	Reference voltage and analog supply for the ADC	34	52	74	P14				

1. LBGA208 available only as development package for Nexus2+

2. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:

- $S = Slow^{(b)}$
- $M = Medium^{(b) (c)}$
- $F = Fast^{(b)}(c)$
- I = Input only with analog feature^(b)
- J = Input/Output ('S' pad) with analog feature
- X = Oscillator

b. See the I/O pad electrical characteristics in the device datasheet for details.

						Pin number					
Port pin	PCR Alternate function ⁽¹⁾ Function Peripheral		Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾	
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2]	SIUL eMIOS_0 LINFlex_3 — SIUL	I/O I/O O I	S	Tristate	44	71	104	D16
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁽⁶⁾ —	GPIO[8] E0UC[8] — EIRQ[3] ABS[0] LIN3RX	SIUL eMIOS_0 — SIUL BAM LINFlex_3		S	Input, weak pull-up	45	72	105	C16
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁽⁶⁾	GPIO[9] E0UC[9] — FAB	SIUL eMIOS_0 — BAM	I/O I/O — I	S	Pull-down	46	73	106	C15
PA[10]	PCR[10]	AF0 AF1 AF2 AF3	GPIO[10] E0UC[10] SDA —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O —	S	Tristate	47	74	107	B16
PA[11]	PCR[11]	AF0 AF1 AF2 AF3	GPIO[11] E0UC[11] SCL —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O	S	Tristate	48	75	108	B15
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — SIN_0	SIUL — — DSPI0	I/O I	S	Tristate	22	31	45	Τ7
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 —	SIUL DSPI_0 —	I/O O —	М	Tristate	21	30	44	R7

Table 6. Functional port pin descriptions (continued)

					Pin number						
Port pin	PCR Alternate function ⁽¹⁾		Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 	GPIO[75] — CS4_1 — LIN3RX WKPU[14] ⁽⁴⁾	SIUL — DSPI_1 — LINFlex_3 WKPU	/O 0 1 	S	Tristate		13	17	H2
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 —	GPIO[76] — E1UC[19] ⁽¹³⁾ — SIN_2 EIRQ[11]	SIUL eMIOS_1 DSPI_2 SIUL	/O /O 	S	Tristate	_	76	109	C14
PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate	_		103	D15
PE[14]	PCR[78]	AF0 AF1 AF2 AF3 —	GPIO[78] SCK_2 E1UC[21] — EIRQ[12]	SIUL DSPI_2 eMIOS_1 — SIUL	I/O I/O I/O I	S	Tristate	_		112	C13
PE[15]	PCR[79]	AF0 AF1 AF2 AF3	GPIO[79] CS0_2 E1UC[22] —	SIUL DSPI_2 eMIOS_1 —	I/O I/O I/O —	М	Tristate		_	113	A13
PF[0]	PCR[80]	AF0 AF1 AF2 AF3 —	GPIO[80] E0UC[10] CS3_1 — ANS[8]	SIUL eMIOS_0 DSPI_1 — ADC	I/O I/O O I	J	Tristate	_	_	55	N10
PF[1]	PCR[81]	AF0 AF1 AF2 AF3 —	GPIO[81] E0UC[11] CS4_1 — ANS[9]	SIUL eMIOS_0 DSPI_1 — I	I/O I/O O I	J	Tristate	_	_	56	P10

								Pin number				
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾	
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] — CS5_0 — CAN2RX ⁽¹⁵⁾ CAN3RX ⁽¹⁴⁾	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O - O - I - I	S	Tristate	_	_	33	N2	
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O 	М	Tristate	_		38	R3	
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] — — — WKPU[15] ⁽⁴⁾	SIUL — — — WKPU	I/O 	S	Tristate			39	R4	
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate		_	35	R1	
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — — WKPU[16] ⁽⁴⁾	SIUL eMIOS_1 — WKPU	I/O I/O — I	S	Tristate	_	_	41	Т6	
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ⁽¹¹⁾ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate	_	_	102	D14	
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 	GPIO[95] — — CAN1RX CAN4RX ⁽¹¹⁾ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	/O 	S	Tristate			101	E15	

						-		Pin number				
Port pin	PCR Alternate function ⁽¹⁾ Function Peripheral		I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾			
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX ⁽¹¹⁾ E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O —	М	Tristate			98	E14	
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] — E1UC[24] — CAN5RX ⁽¹¹⁾ EIRQ[14]	SIUL — eMIOS_1 — FlexCAN_5 SIUL	I/O I/O I I	S	Tristate	_	_	97	E13	
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] —	SIUL eMIOS_1 —	I/O I/O 	Μ	Tristate		_	8	E4	
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] — — WKPU[17] ⁽⁴⁾	SIUL eMIOS_1 — WKPU	I/O I/O 	S	Tristate	_	_	7	E3	
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_	_	6	E1	
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKPU[18] ⁽⁴⁾	SIUL eMIOS_1 — WKPU	I/O I/O — I	S	Tristate	_		5	E2	
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate		_	30	M2	

Table 6. Functional port pin descriptions (continued)

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Equation 2 $P_D = K / (T_J + 273 °C)$

Therefore, solving equations *Equation 1* and *Equation 2*:

Equation 3 K = $P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$

Where:

K is a constant for the particular part, which may be determined from *Equation 3* by measuring P_D (at equilibrium) for a known T_A. Using this value of K, the values of P_D and T_J may be obtained by solving equations *Equation 1* and *Equation 2* iteratively for any value of T_A.

3.15 I/O pad electrical characteristics

3.15.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability.
- Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal oscillator (SXOSC) providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

3.15.2 I/O input DC characteristics

Table 16 provides input DC electrical characteristics as described in Figure 6.

					LQFP144/	LQFP100	(0011111		LQFI	P64 ⁽²⁾		
Sup	ply seg	ment	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weight 3.3 V		
LQFP 144	LQFP 100	LQFP 64		SRC ⁽³⁾ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
			PA[5]	5%	7%	6%	6%	6%	8%	7%	7%	
2	3 3	2	PA[6]	5%	—	6%	_	5%		6%	_	
3	3	2	PH[10]	4%	6%	5%	5%	5%	7%	6%	6%	
			PC[1]	5%	—	5%	_	5%	_	5%	_	
		3	PC[0]	6%	9%	7%	8%	6%	9%	7%	8%	
		3	PH[9]	7	7	8	8	7	7	8	8	
		_	PE[2]	7%	10%	9%	9%	_	_	—	_	
	4	_	PE[3]	8%	11%	9%	9%			—		
	4	3	PC[5]	8%	11%	9%	10%	8%	11%	9%	10%	
		3	PC[4]	8%	12%	10%	10%	8%	12%	10%	10%	
		_	PE[4]	8%	12%	10%	11%	_	_	_	_	
		_	PE[5]	9%	12%	10%	11%	_	_	_	_	
		_	PH[4]	9%	13%	11%	11%			—		
4		_	PH[5]	9%	—	11%				—		
		_	PH[6]	9%	13%	11%	12%	_	_	_	_	
			PH[7]	9%	13%	11%	12%	_		_	_	
			PH[8]	10%	14%	11%	12%	_		_	_	
		—	PE[6]	10%	14%	12%	12%	—	_		—	
		_	PE[7]	10%	14%	12%	12%			—		
		_	PC[12]	10%	14%	12%	13%	_	_	—	—	
	4	—	PC[13]	10%	—	12%				—		
			PC[8]	10%	—	12%		10%		12%	—	
		3	PB[2]	10%	15%	12%	13%	10%	15%	12%	13%	

Table 24. I/O weight⁽¹⁾ (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to125 °C, unless otherwise specified

2. All LQFP64 information is indicative and must be confirmed during silicon validation.

3. SRC: "Slew Rate Control" bit in SIU_PCR

3.16 **RESET** electrical characteristics

The device implements a dedicated bidirectional $\overline{\text{RESET}}$ pin.

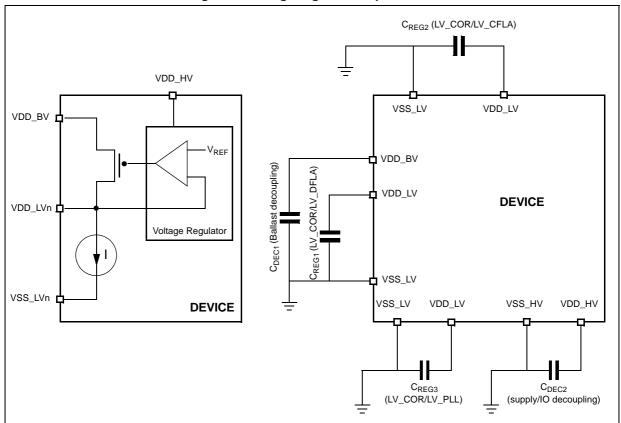


Figure 9. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see *Section 3.13: Recommended operating conditions*).

The internal voltage regulator requires a controlled slew rate of both V_{DD_HV} and V_{DD_BV} as described in *Figure 10*.

released as soon as internal reset sequence is completed regardless of LVDHV5H threshold.

Symbol		с	Parameter	Conditions ⁽¹⁾		Unit		
Symbol		C	Falantelei	Conditions	Min	Тур	Мах	Unit
V _{PORUP}	SR	Ρ	Supply for functional POR module	—	1.0		5.5	
V _{PORH}	сс	Ρ	Power-on reset threshold	T _A = 25 °C, after trimming	1.5	_	2.6	
		Т		—	1.5	_	2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold		_	_	2.95	
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6	_	2.9	V
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold				4.5	
V _{LVDHV5L}	СС	Ρ	LVDHV5 low voltage detector low threshold		3.8	_	4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold]	1.08	_	1.16	
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold		1.08	_	1.16	

Table 27. Low voltage detector electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

3.18 Power consumption

Table 28 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Symbol		с	Parameter	Conditions ⁽¹⁾			Value						
Symbol		0	rarameter	Conditions	Min	Тур	Max	Unit					
I _{DDMAX} ⁽²⁾	сс	D	RUN mode maximum average current	_		_	115	140 ⁽³⁾	mA				
		Т		f _{CPU} = 8 MHz		_	7						
		Т		f _{CPU} = 16 MHz		_	18						
I _{DDRUN} ⁽⁴⁾	сс	Т	RUN mode typical average current ⁽⁵⁾	f _{CPU} = 32 MHz		_	29		mA				
			-			Ρ		f _{CPU} = 48 MHz		_	40	100	
		Ρ		f _{CPU} = 64 MHz		_	51	125					
	сс	С	HALT mode current ⁽⁶⁾	Slow internal RC oscillator	T _A = 25 °C	_	8	15	mA				
IDDHALT	00			(128 kHz) running	T _A = 125 °C		14	25					

 Table 28. Power consumption on VDD_BV and VDD_HV

3.19.3 Start-up/Switch-off timings

Symbol		С	Parameter	Conditions ⁽¹⁾		Unit		
Symbol		C	Farameter	Conditions	Min	Тур	Max	Unit
т	сс	Т	Delay for Flash module to exit reset mode	Code Flash	_	—	125	
T _{FLARSTEXIT}	00	Т	Delay for Flash module to exit reset mode	Data Flash	—	—	125	
т	сс	Т	Delay for Flash module to exit low-power	Code Flash	_	—	0.5	
T _{FLALPEXIT}		Т	mode	Data Flash	_		0.5	
т	~~	Т	Delay for Flash module to exit power-down	Code Flash	_	_	30	
T _{FLAPDEXIT}	СС	Т	mode	Data Flash	_	_	30	μs
т	сс	Т	Delay for Flash module to enter low-power	Code Flash	—	_	0.5	
T _{FLALPENTRY}		Т	mode	Data Flash	_	_	0.5	1
т	~~~	Т	Delay for Flash module to enter power-	Code Flash	_	—	1.5	1
T _{FLAPDENTRY}	СС	Т	down mode	Data Flash	_	—	1.5	1

Table 33. Start-up time/Switch-off time

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

3.20 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

3.20.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note *Software Techniques For Improving Microcontroller EMC Performance* (AN1015)).

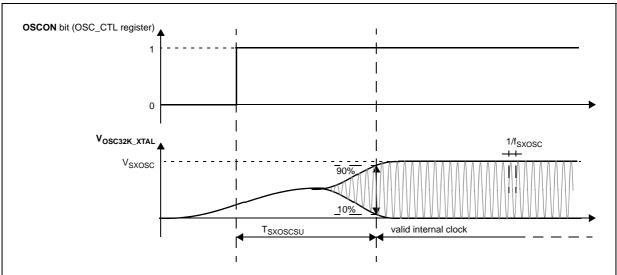


Figure 17. Slow external crystal oscillator (32 kHz) timing diagram

Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics

Symbol		с	Parameter	Conditions ⁽¹⁾		Unit		
Symbol		C	Falameter	Conditions	Min	Тур	Max	Unit
f _{sxosc}	SR		Slow external crystal oscillator frequency	—	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	_	2.1	_	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	—	_	2.5	_	μΑ
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	_	—	8	μΑ
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time				2 ⁽²⁾	s

1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

3.23 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbo		с	Parameter	Conditions ⁽¹⁾		Unit		
Symbo	Symbol		rarameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN}	SR		FMPLL reference clock ⁽²⁾	_	4	—	64	MHz
Δ_{PLLIN}	SR	_	FMPLL reference clock duty cycle ⁽²⁾	_	40	-	60	%
f _{PLLOUT}	СС	D	FMPLL output clock frequency	_	16	_	64	MHz

Symbo	a.l	с	Parameter	Conditions ⁽¹⁾			Unit	
Symbo		U	Parameter	Conditions	Min	Тур	Max	Unit
f (3)	сс		VCO frequency without frequency modulation	—	256		512	MHz
f _{VCO} ⁽³⁾	00	С	VCO frequency with frequency modulation	—	245	_	533	
f _{CPU}	SR		System clock frequency	—	_	_	64	MHz
f _{FREE}	СС	Ρ	Free-running frequency	—	20	—	150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)	_	40	100	μs
Δt_{STJIT}	СС		FMPLL short term jitter ⁽⁴⁾	f _{sys} maximum	-4	_	4	%
Δt_{LTJIT}	сс	_	FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} @ 64 MHz, 4000 cycles		_	10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	_	_	4	mA

Table 41. FMPLL electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

3. Frequency modulation is considered ±4%

4. Short term jitter is measured on the clock rising edge at cycle n and n+4.

3.24 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.

Symbo		С	Parameter	Con	ditions ⁽¹⁾	Value			Unit				
Symbo	1	0	Falainetei	Conditions		Min	Тур	Max	Unit				
f	CC	Ρ	Fast internal RC oscillator high	cillator high $T_A = 25 \text{ °C}$, tr		_	16	_	MHz				
[†] FIRC	SR	_	frequency			12		20					
I _{FIRCRUN}	сс	т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed T _A = 125 °C		_	_	200	μA				
I _{FIRCPWD}	сс	D	Fast internal RC oscillator high frequency current in power down mode			_	_	10	μA				
									sysclk = off	_	500	_	
			Fast internal RC oscillator high		sysclk = 2 MHz	_	600	_					
I _{FIRCSTOP}	СС	т	frequency and system clock current	T _A = 25 °C	sysclk = 4 MHz		700		μA				
					in stop mode		sysclk = 8 MHz		900	_			
					sysclk = 16 MHz	_	1250	_					

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics

Sumbo	Symbol C Parameter		Parameter	Conditions ⁽¹⁾			Unit	
Symbo	1	C	Parameter	Conditions	Min	Тур	Max	Unit
t _{FIRCSU}	сс	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V ± 10%	—	1.1	2.0	μs
$\Delta_{FIRCPRE}$	сс		Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C	-1	_	+1	%
	сс	т	Fast internal RC oscillator trimming step	T _A = 25 °C	_	1.6		%
$\Delta_{\sf FIRCVAR}$	сс	Ρ	Fast internal RC oscillator variation in over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration	_	-5		+5	%

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

3.25 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol		С	Parameter	Conditions ⁽¹⁾			Unit	
Symbol		C	Farameter	Conditions	Min	Тур	Max	Unit
f	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	—	128		kHz
f _{SIRC}	SR		frequency	—	100	—	150	KIIZ
I _{SIRC} ⁽²⁾	сс	С	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed	—	_	5	μA
tsircsu	сс	Ρ	Slow internal RC oscillator start-up time	T _A = 25 °C, V _{DD} = 5.0 V ± 10%	_	8	12	μs
	сс	с	Slow internal RC oscillator precision after software trimming of ^f sIRC	T _A = 25 °C	-2	_	+2	%
	сс	С	Slow internal RC oscillator trimming step	_	—	2.7	_	
	сс	С	Slow internal RC oscillator variation in temperature and supply with respect to f_{SIRC} at $T_A = 55$ °C in high frequency configuration	High frequency configuration	-10	_	+10	%

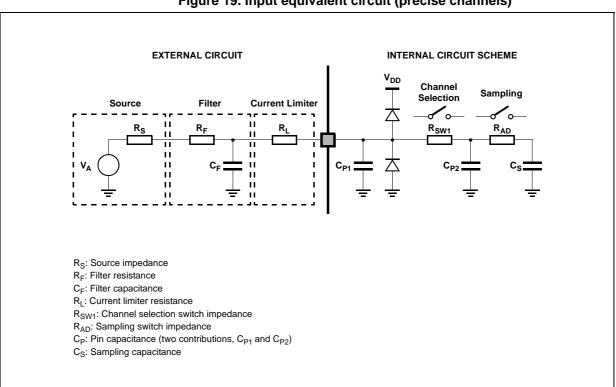
Table 43. Slow internal RC oscillator (128 kHz) electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

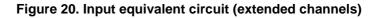
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.


In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$


Equation 4 generates a constraint for external network design, in particular on a resistive path.

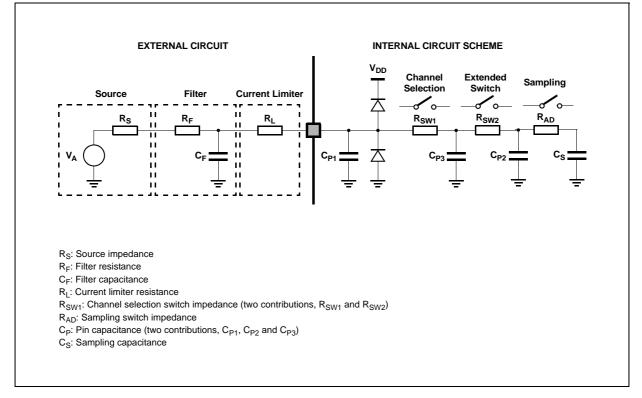


Figure 19. Input equivalent circuit (precise channels)

SPC560B40x/50x, SPC560C40x/50x

DocID14619 Rev 13

During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., (41 + 5) * f_{periph.}

ĺ	/06
	116
	0,

DocID14619 Rev 13

5

NI -	Cumple of		~	Denemation		DSPI0/DSPI1			DSPI2											
No.	Symbo	DI	С	Parameter		Min	Тур	Max	Min	Тур	Max	- Unit								
			D		Master mode (MTFE = 0)	125	_	—	333	_	_									
1	1 t _{SCK}	SR	D	SCK cycle time	Slave mode (MTFE = 0)	125	_	_	333	_	_	ns								
I			D		Master mode (MTFE = 1)	83	_	_	125	_	_									
					D	D	D	D				D	D		Slave mode (MTFE = 1)	83	_	_	125	_
_	f _{DSPI}	SR	D	DSPI digital controller freque	ncy	—	_	f _{CPU}	_	—	f _{CPU}	MHz								
_	∆t _{CSC}	СС	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1 \rightarrow 0	Master mode	_	_	130 ⁽²⁾	_	_	15 ⁽³⁾	ns								
	∆t _{ASC}	СС	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1 \rightarrow 1	Master mode	_	_	130 ⁽³⁾	_	_	130 ⁽³⁾	ns								
2	t _{CSCext} ⁽⁴⁾	SR	D	CS to SCK delay	Slave mode	32	—		32	_	_	ns								
3	t _{ASCext} ⁽⁵⁾	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	—	1/f _{DSPI} + 5	—	_	ns								
4	tana	CC	D	SCK duty cycle	Master mode	—	t _{SCK/2}	—		t _{SCK/2}	_	ns								
4	t _{SDC}	SR	D		Slave mode	t _{SCK/2}	—	_	t _{SCK/2}	_		115								
5	t _A	SR	D	Slave access time	Slave mode		—	1/f _{DSPI} + 70		—	1/f _{DSPI} + 130	ns								
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7	—	—	7	—		ns								
7	t _{PCSC}	SR		PCSx to PCSS time		0	—	—	0	—	—	ns								
8	t _{PASC}	SR	D	PCSS to PCSx time		0	-	—	0		—	ns								

Package pinouts and signal descriptions

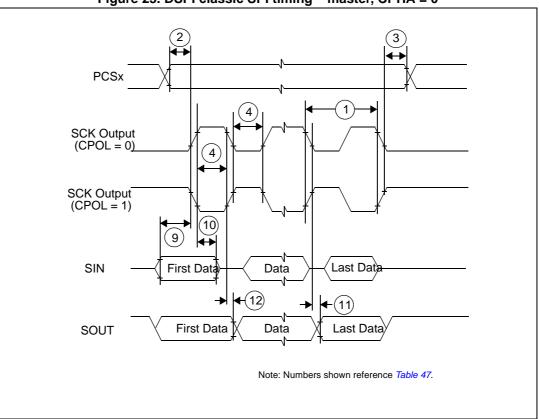
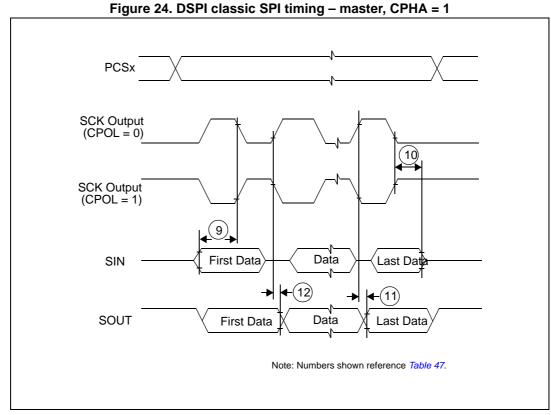
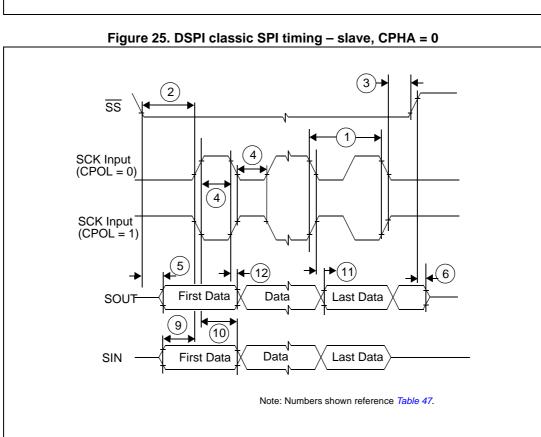




Figure 23. DSPI classic SPI timing – master, CPHA = 0

DocID14619 Rev 13

Table 55.	Document	revision	history	(continued))
	Document	10131011	matory	Commuca	,

Date	Revision	Changes
01-Oct-2011	9	Formatting and minor editorial changes throughout Harmonized oscillator nomenclature Devices comparison table: removed 384 KB code flash device versions Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C; removed 384 KB code flash device versions LQFP 64-pin configuration: renamed pin 6 from VPP_TEST to VSS_HV Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+ pins" Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality: updated footnote describing defaulti value of 1'1 in field descriptions NVUSRO[PAD3/SV] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[PAD3/SV] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[PAD3/SV] and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics Section "I/O pad current specification": removed content referencing the I _{DYNSEG} maximum value I/O consumption: replaced instances of "Root medium square" with "Root mean square" I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package Reset electrical characteristics: updated parameter classification for I _{WPU} Updated Voltage regulator electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "LvoLVGBKP" with "LVDLVBKP" in note Updated section "Power consumption" Fast external crystal oscillator (32 kHz) electrical characteristics: updated parameter classification for V _{FXOSCOP} Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a series resistor Slo
17-Jan-2013	10	Internal review.
17-Jan-2013	10	Internal review.

