

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b50l3c6e0y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5	Ordering information	106
Appendix	A Abbreviations	107
Revision	history	108

Figure 4. LQFP 144-pin configuration

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.

Port nin	Eurotion	Pin number						
Portpin	Function	LQFP64	LQFP100	LQFP144	LBGA208 ⁽¹⁾			
VDD_HV	Digital supply voltage	7, 28, 56	15, 37, 70, 84	19, 51, 100, 123	C2, D9, E16, G13, H3, N9, R5			
VSS_HV	Digital ground	6, 8, 26, 55	14, 16, 35, 69, 83	18, 20, 49, 99, 122	G7, G8, G9, G10, H1, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10			
VDD_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V _{SS_LV} pin. ⁽²⁾	11, 23, 57	19, 32, 85	23, 46, 124	D8, K4, P7			
VSS_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{DD_LV} pin. ⁽²⁾	10, 24, 58	18, 33, 86	22, 47, 125	C8, J2, N7			
VDD_BV	Internal regulator supply voltage	12	20	24	К3			
VSS_HV_ADC	Reference ground and analog ground for the ADC	33	51	73	R15			
VDD_HV_ADC	Reference voltage and analog supply for the ADC	34	52	74	P14			

Table 4. Vollage Supply pill descriptions	Table 4.	Voltage	supply	pin	descriptions
---	----------	---------	--------	-----	--------------

1. LBGA208 available only as development package for Nexus2+

2. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:

- $S = Slow^{(b)}$
- $M = Medium^{(b) (c)}$
- $F = Fast^{(b)}(c)$
- I = Input only with analog feature^(b)
- J = Input/Output ('S' pad) with analog feature
- X = Oscillator

b. See the I/O pad electrical characteristics in the device datasheet for details.

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PB[11] (8)	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] CS0_0 ANS[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — I/O I	J	Tristate	38	59	81	N13
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ANX[0]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	39	61	83	M16
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ANX[1]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	40	63	85	M13
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] CS3_0 ANX[2]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	41	65	87	L16
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ANX[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	42	67	89	L13
PC[0] ⁽⁹⁾	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O — I —	Μ	Input, weak pull-up	59	87	126	A8
PC[1] ⁽⁹⁾	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] TDO ⁽¹⁰⁾ 	SIUL — JTAGC —	I/O — 0 —	М	Tristate	54	82	121	C9

Table 6. Functional port pin descriptions (continued)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] — CS4_1 — LIN3RX WKPU[14] ⁽⁴⁾	SIUL — DSPI_1 — LINFlex_3 WKPU	I/O — 0 — 1	S	Tristate	_	13	17	H2
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 —	GPIO[76] — E1UC[19] ⁽¹³⁾ — SIN_2 EIRQ[11]	SIUL — eMIOS_1 — DSPI_2 SIUL	/O /O 	S	Tristate	_	76	109	C14
PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate	_		103	D15
PE[14]	PCR[78]	AF0 AF1 AF2 AF3 —	GPIO[78] SCK_2 E1UC[21] — EIRQ[12]	SIUL DSPI_2 eMIOS_1 — SIUL	/O /O /O 	S	Tristate	_	_	112	C13
PE[15]	PCR[79]	AF0 AF1 AF2 AF3	GPIO[79] CS0_2 E1UC[22] —	SIUL DSPI_2 eMIOS_1 —	I/O I/O I/O —	Μ	Tristate	_	_	113	A13
PF[0]	PCR[80]	AF0 AF1 AF2 AF3 —	GPIO[80] E0UC[10] CS3_1 — ANS[8]	SIUL eMIOS_0 DSPI_1 — ADC	I/O I/O O I	J	Tristate	_	_	55	N10
PF[1]	PCR[81]	AF0 AF1 AF2 AF3 —	GPIO[81] E0UC[11] CS4_1 — ANS[9]	SIUL eMIOS_0 DSPI_1 — I	I/O I/O O _ I	J	Tristate	_	_	56	P10

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] — CS5_0 — CAN2RX ⁽¹⁵⁾ CAN3RX ⁽¹⁴⁾	SIUL — DSPI_0 — FlexCAN_2 FlexCAN_3	I/O — 0 — 1	S	Tristate	_	_	33	N2
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O 	М	Tristate	_	_	38	R3
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] — — — WKPU[15] ⁽⁴⁾	SIUL — — — WKPU	I/O — — — —	S	Tristate	_	_	39	R4
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate		_	35	R1
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — — WKPU[16] ⁽⁴⁾	SIUL eMIOS_1 — — WKPU	I/O I/O 	S	Tristate		_	41	T6
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ⁽¹¹⁾ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate	_	_	102	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — —	GPIO[95] — — CAN1RX CAN4RX ⁽¹¹⁾ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	I/O — — — — — — — — —	S	Tristate			101	E15

Table 6.	Functional	port pin	descriptions	(continued)
14010 01	. another a	P • • • P · · ·	accompliance	(0011111000)

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	_	29	M1
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] — CS0_2 EIRQ[15]	SIUL eMIOS_1 — DSPI_2 SIUL	I/O I/O I/O I	S	Tristate	_	_	26	L2
PG[9]	PCR[105]	AF0 AF1 AF2 AF3	GPIO[105] E1UC[18] — SCK_2	SIUL eMIOS_1 — DSPI_2	I/O I/O I/O	S	Tristate	_	_	25	L1
PG[10]	PCR[106]	AF0 AF1 AF2 AF3	GPIO[106] E0UC[24] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	_	_	114	D13
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	_	_	115	B12
PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] — —	SIUL eMIOS_0 — —	I/O I/O 	М	Tristate			92	K14
PG[13]	PCR[109]	AF0 AF1 AF2 AF3	GPIO[109] E0UC[27] —	SIUL eMIOS_0 — —	I/O I/O —	Μ	Tristate		_	91	K16
PG[14]	PCR[110]	AF0 AF1 AF2 AF3	GPIO[110] E1UC[0] —	SIUL eMIOS_1 —	I/O I/O —	S	Tristate			110	B14

Table 6. Functional port pin descriptions (continued)

		_		v	Unit	
Symbo	I	Parameter	Conditions	Min	Max	Unit
V	СD	Voltage on any GPIO pin with respect to	—	-0.3	6.0	V
V _{IN} SR	SR	ground (V _{SS})	Relative to V _{DD}	—	V _{DD} +0.3	v
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-10	10	m۸
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	mA
		Sum of all the static I/O current within a	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	70	m۸
IAVGSEG	SK	supply segment	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		64	mA
ICORELV	SR	Low voltage static current sink through VDD_BV	—	—	150	mA
T _{STORAGE}	SR	Storage temperature	—	-55	150	°C

Table 12. Absolute maximum ratings (continued)

Note: Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$), the voltage on pins with respect to ground (V_{SS}) must not exceed the recommended values.

3.13 Recommended operating conditions

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Farameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ⁽¹⁾	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	_	3.0	3.6	V
V _{SS_LV} ⁽²⁾	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V (3)	CD	Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
VDD_BV`	31	respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	v
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V (4)	СD	Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁽⁵⁾	3.6	V
♥DD_ADC`´	JA	with respect to ground (V _{SS})	Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	v

Table 13. Recommended operating conditions (3.3 V)

3.15.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 17 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- *Table 18* provides output driver characteristics for I/O pads when in SLOW configuration.
- *Table 19* provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 20 provides output driver characteristics for I/O pads when in FAST configuration.

Symbol		ر ۲	Paramotor	Conditions(1)			Value			
		C	Faiametei	Conucions		Min	Тур	Max	onit	
		Ρ	Weak pull-up current absolute value		PAD3V5V = 0	10	—	150		
I _{WPU} C	C C	С		$V_{IN} = V_{IL}, V_{DD} = 5.0 V \pm 10\%$	PAD3V5V = 1 ⁽²⁾	10	_	250	μA	
		Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	_	150		
	_	Ρ		$V_{IN} = V_{IH}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10	_	150		
I _{WPD}	C C	С	Weak pull-down current absolute value		PAD3V5V = 1	10		250	μA	
		Ρ		$V_{IN} = V_{IH}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	_	150		

Table 17. I/O pull-up/pull-down DC electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 18. SLOW configuration output buffer electrical characteristics

Symbol		ر د	Parameter		Conditions ⁽¹⁾		Unit			
		C	raianetei		Conditions	Min	Тур	Max	onin	
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_		
V _{OH} CC	сс	с	Output high level SLOW configuration	Push Pull	$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	0.8V _{DD}	_	_	V	
		с			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	V _{DD} -0.8	_	_		

Symbol		C	Parameter	Conditions ⁽¹⁾		Unit		
Symbol		C	Faiameter	Conditions	Min	Тур	Max	onit
I _{ULPREG}	SR		Ultra low power regulator current provided to V_{DD_LV} domain	_	_	—	5	mA
	<u> </u>		lltra low power regulator module	I _{ULPREG} = 5 mA; T _A = 55 °C	_	_	100	
ULPREGINT			current consumption	I _{ULPREG} = 0 mA; T _A = 55 °C	_	2	_	μΛ
I _{DD_BV}	сс	D	In-rush average current on V_{DD_BV} during power-up ⁽⁵⁾	_	_		300 (6)	mA

Table 26. Voltage regulator electrical characteristics (c	continued)
---	------------

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V $\,$

4. External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.

5. In-rush average current is seen only for short time (maximum 20 μ s) during power-up and on standby exit. It is dependent on the sum of the C_{REGn} capacitances.

 The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

The $|\Delta_{VDD(STDBY)}|$ and dVDD(STDBY)/dt system requirement can be used to define the component used for the V_{DD} supply generation. The following two examples describe how to calculate capacitance size:

Example 1 No regulator (worst case)

The $|\Delta_{VDD(STDBY)}|$ parameter can be seen as the V_{DD} voltage drop through the ESR resistance of the regulator stability capacitor when the I_{DD_BV} current required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the maximum equivalent resistance ESR_{STDBY}(MAX) of the total capacitance on the V_{DD} supply:

 $ESR_{STDBY}(MAX) = |\Delta_{VDD(STDBY)}|/I_{DD BV} = (30 \text{ mV})/(300 \text{ mA}) = 0.1\Omega^{(d)}$

The dVDD(STDBY)/dt parameter can be seen as the V_{DD} voltage drop at the capacitance pin (excluding ESR drop) while providing the I_{DD_BV} supply required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the minimum equivalent capacitance C_{STDBY} (MIN) of the total capacitance on the V_{DD} supply:

 $C_{STDBY}(MIN) = I_{DD BV}/dVDD(STDBY)/dt = (300 mA)/(15 mV/\mu s) = 20 \mu F$

This configuration is a worst case, with the assumption no regulator is available.

Example 2 Simplified regulator

The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent ESR_{STDBY}(MAX) and C_{STDBY}(MIN) as follows:

d. Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.

released as soon as internal reset sequence is completed regardless of LVDHV5H threshold.

Symbol		C	Parametar	Conditions ⁽¹⁾		Unit		
		C	Farameter	Conditions	Min	Тур	Max	onn
V _{PORUP}	SR	Ρ	Supply for functional POR module	—	1.0	—	5.5	
V _{PORH}	сс	Ρ	Power-on reset threshold	T _A = 25 °C, after trimming	1.5	_	2.6	
		Т		—	1.5	_	2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold		—	—	2.95	
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6	_	2.9	V
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold		_	—	4.5	
V _{LVDHV5L}	СС	Ρ	LVDHV5 low voltage detector low threshold		3.8	—	4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold		1.08	—	1.16	
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold		1.08	_	1.16	

Table 27. Low voltage detector electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

3.18 Power consumption

Table 28 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Symbol		<u>د</u>	Paramotor	Conditions ⁽¹⁾			Unit			
		0	Farameter	Conditions			Тур	Max	•••••	
I _{DDMAX} ⁽²⁾	сс	D	RUN mode maximum average current	—		_	115	140 ⁽³⁾	mA	
		Т		f _{CPU} = 8 MHz		_	7	_		
	сс		Т		f _{CPU} = 16 MHz			18	_	
I _{DDRUN} ⁽⁴⁾		Т	RUN mode typical average current ⁽⁵⁾	f _{CPU} = 32 MHz			29	_	mA	
		Ρ		f _{CPU} = 48 MHz			40	100		
		Ρ		f _{CPU} = 64 MHz			51	125		
I _{DDHALT}	CC	С	HALT mode current ⁽⁶⁾	Slow internal RC oscillator	T _A = 25 °C		8	15	mΔ	
		CC	CC	Ρ		(128 kHz) running	T _A = 125 °C	_	14	25

 Table 28. Power consumption on VDD_BV and VDD_HV

2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Syı	nbol	С	Parameter	Conditions	Class
LU	сс	т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

Table 36. Latch-up results

3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. *Figure 13* describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Figure 13. Crystal oscillator and resonator connection scheme

Table 37. Crystal description Shunt Crystal Load on capacitance Crystal Crystal Nominal equivalent xtalin/xtalout NDK crystal motional motional between frequency series C1 = C2reference capacitance inductance xtalout (MHz) resistance (pF)⁽¹⁾ and xtalin (C_m) fF (L_m) mH **ESR** Ω C0⁽²⁾ (pF) 4 NX8045GB 300 2.68 591.0 21 2.93 8 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 NX5032GA 120 3.11 56.5 15 2.93 120 3.00 16 3.90 25.3 10

1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Table 39. Crystal motional characteristics⁽¹⁾

Symbol	Perometer	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	Onit
L _m	Motional inductance	—	—	11.796	—	KH
C _m	Motional capacitance	—	_	2	_	fF
C1/C2	Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground ⁽²⁾	_	18	_	28	pF
		AC coupled @ C0 = 2.85 $pF^{(4)}$	_	_	65	
R _m ⁽³⁾	Motional resistance	AC coupled @ $C0 = 4.9 \text{ pF}^{(4)}$	_	—	50	kW
		AC coupled @ $C0 = 7.0 \text{ pF}^{(4)}$		—	35	
		AC coupled @ $C0 = 9.0 \text{ pF}^{(4)}$	_	_	30	

1. Crystal used: Epson Toyocom MC306

2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.

3. Maximum ESR (R_m) of the crystal is 50 k $\!\Omega$

4. C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins

Figure 17. Slow external crystal oscillator (32 kHz) timing diagram

Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics

Symbol		~	Parameter	Conditions ⁽¹⁾		Unit		
		C	Falameter	Conditions	Min	Тур	Max	Unit
f _{SXOSC}	SR		Slow external crystal oscillator frequency	—	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	—	2.1	—	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	_	—	2.5	—	μΑ
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	—	_	8	μΑ
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	_	—	_	2 ⁽²⁾	s

1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

3.23 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbol		6	Parameter	Conditions ⁽¹⁾		Unit		
		C	i diameter	Conditions	Min	Тур	Мах	onic
f _{PLLIN}	SR	—	FMPLL reference clock ⁽²⁾	—	4	—	64	MHz
Δ_{PLLIN}	SR	_	FMPLL reference clock duty cycle ⁽²⁾	—	40	_	60	%
f _{PLLOUT}	СС	D	FMPLL output clock frequency	—	16	—	64	MHz

Symbo		<u>د</u>	Parameter	Conditions ⁽¹⁾		Unit		
Symbol		J	Farameter	Conditions	Min	Тур	Мах	onit
t _{FIRCSU}	сс	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V ± 10%	_	1.1	2.0	μs
$\Delta_{FIRCPRE}$	сс	Т	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C	-1	_	+1	%
	сс	т	Fast internal RC oscillator trimming step	T _A = 25 °C	_	1.6		%
AFIRCVAR	сс	Ρ	Fast internal RC oscillator variation in over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration	_	-5	_	+5	%

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

3.25 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol		C	Parameter	Conditions ⁽¹⁾	Value			Unit
		C	Farameter	Conditions	Min	Тур	Max	Unit
f	СС	Ρ	Slow internal RC oscillator low frequency	T _A = 25 °C, trimmed	—	128		
ISIRC	SR			—	100	—	150	50 KHZ
I _{SIRC} ⁽²⁾	сс	С	Slow internal RC oscillator low requency current $T_A = 25 \text{ °C}$, trimmed		_	—	5	μA
t _{SIRCSU}	сс	Ρ	Slow internal RC oscillator start-up $T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$		_	8	12	μs
	сс	с	Slow internal RC oscillator precision after software trimming of fsiRC	T _A = 25 °C	-2	_	+2	%
	сс	С	Slow internal RC oscillator trimming step	_	_	2.7	_	
		с	Slow internal RC oscillator variation in temperature and supply with respect to f_{SIRC} at $T_A = 55$ °C in high frequency configuration	High frequency configuration	-10	_	+10	%

Table 43. Slow internal RC oscillator (128 kHz) electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

Figure 30. DSPI modified transfer format timing – slave, CPHA = 1

Figure 31. DSPI PCS strobe (PCSS) timing

3.27.3 **Nexus characteristics**

Table 40. Nexus characteristics	Table 48.	Nexus	characteristics
---------------------------------	-----------	-------	-----------------

No	No. Symbol		c	Parameter		Unit		
NO.				Falameter	Min	Тур	Max	Unit
1	t _{TCYC}	CC	D	TCK cycle time	64	—	—	ns
2	t _{MCYC}	СС	D	MCKO cycle time	32		—	ns
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	—	—	8	ns

DocID14619 Rev 13

Revision history

Date	Revision	Changes
04-Apr-2008	1	Initial release.
06-Mar-2009	2	Made minor editing and formatting changes to improve readability Harmonized oscillator naming throughout document Modified document title Updated "Feature" on cover page Replaced LFBGA208 with LBGA208 Updated "Description" Section Updated "SPC560B40x/50x and SPC560C40x/50x device comparison" table Added "Block diagram" section Section 3 "Package pinouts and signal descriptions": - Removed signal descriptions (these are found in the device reference manual) Updated "LQFP 144-pin configuration (top view)" figure: - Replaced VPP with VSS_HV on pin 18 - Added MA[1] as AF3 for PC[10] (pin 28) - Added MA[0] as AF2 for PC[3] (pin 116) - Changed description for pin 120 to PH[10] / GPI0[122] / TMS - Changed description for pin 120 to PH[10] / GPI0[121] / TCK - Replaced NMI[0] with NMI on pin 11 Updated "LQFP 100-pin configuration (top view)" figure: - Replaced VPP with VSS_HV on pin 14 - Added MA[1] as AF3 for PC[10] (pin 22) - Added MA[0] as AF2 for PC[3] (pin 77) - Changed description for pin 81 to PH[10] / GPI0[122] / TMS - Changed description for pin 88 to PH[9] / GPI0[121] / TCK - Replaced [11] with WKUP[11] for PB[3] (pin 1) - Replaced NMI[0] with NMI on pin 7 Updated "LBGA208 configuration" figure: - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 88 from TCK to PH[9] - Changed description for ball 89 from TMS to PH[10] - Updated "LBGA208 configuration" figure: - Changed descriptions for balls R9 and T9 Added "Parameter classification" section and tagged parameters in tables where appropriate Added "NVUSRO register" section Updated "Recommended operating conditions" section : - Added note on RAM data retention to end of section Updated "Recommended operating conditions" section Updated "Package thermal characteristics" section Updated "Power considerations" section Updated "Power considerations" section Updated "Power considerations" section

Table 55. Document revision history

Date	Revision	Changes
06-Mar-2009	2 (continued)	Updated tables: - "I/O input DC electrical characteristics" - "I/O pull-up/pull-down DC electrical characteristics" - "SLOW configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" - "FAST configuration output buffer electrical characteristics" Added "Output pin transition times" section Updated "I/O consumption" table Updated "Start-up reset requirements" figure Updated "Reset electrical characteristics" table "Voltage regulator electrical characteristics" section: - Amended description of LV_PLL "Voltage regulator capacitance connection" figure: - Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated tables" - "Voltage regulator electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor electrical characteristics" - "Low voltage monitor vs reset" figure Updated "Flash memory electrical characteristics" Added "Low voltage monitor vs reset" figure Updated "Flash memory electrical characteristics" Added "Electromagnetic compatibility (EMC) characteristics" section Updated "Flash memory electrical characteristics" section Updated "Slaw external crystal oscillator (32 kHz) electrical characteristics" section Updated tables: - "FMPLL electrical characteristics" - "Fast internal RC oscillator (128 kHz) electrical characteristics" - "Slow internal RC oscillator (128 kHz) electrical characteristics" - "Slow internal RC oscillator (128 kHz) electrical characteristics" Added "On-chip peripherals" section Added "ADC input leakage current" table Updated "ADC conversion characteristics" table Updated "ADC
03-Jun-2009	3	Corrected "Commercial product code structure" figure

Table 55. Document revision history (continued)

