

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	123
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 36x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b50l5c6e0y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 49.	JTAG characteristics	. 98
Table 50.	LQFP64 mechanical data	. 99
Table 51.	LQFP100 mechanical data	101
Table 52.	LQFP144 mechanical data	103
Table 53.	LBGA208 mechanical data	104
Table 54.	Abbreviations	107
Table 55.	Document revision history	108

2 Block diagram

Figure 1 shows a top-level block diagram of the SPC560B40x/50x and SPC560C40x/50x device series.

Figure 3. LQFP 100-pin configuration

							Pin number			umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PB[11] (8)	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] CS0_0 ANS[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — I/O I	J	Tristate	38	59	81	N13
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ANX[0]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	39	61	83	M16
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ANX[1]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	40	63	85	M13
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] CS3_0 ANX[2]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	41	65	87	L16
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ANX[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	42	67	89	L13
PC[0] ⁽⁹⁾	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O — I —	Μ	Input, weak pull-up	59	87	126	A8
PC[1] ⁽⁹⁾	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] TDO ⁽¹⁰⁾ 	SIUL — JTAGC —	I/O — 0 —	М	Tristate	54	82	121	C9

Table 6. Functional port pin descriptions (continued)

								Pin number				
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾	
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — — GPI[10]	SIUL — — — ADC	 - 	I	Tristate		47	69	T14	
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — — GPI[11]	SIUL - ADC	 	I	Tristate		48	70	R14	
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPIO[56] — — GPI[12]	SIUL ADC	 	I	Tristate	_	49	71	T15	
PD[9]	PCR[57]	AF0 AF1 AF2 AF3 —	GPIO[57] — — GPI[13]	SIUL ADC	 	I	Tristate	_	56	78	N15	
PD[10]	PCR[58]	AF0 AF1 AF2 AF3 —	GPIO[58] — — GPI[14]	SIUL ADC	 	I	Tristate		57	79	N14	
PD[11]	PCR[59]	AF0 AF1 AF2 AF3 —	GPIO[59] — — GPI[15]	SIUL ADC	 	I	Tristate	_	58	80	N16	
PD[12] ⁽ ⁸⁾	PCR[60]	AF0 AF1 AF2 AF3 —	GPIO[60] CS5_0 E0UC[24] — ANS[4]	SIUL DSPI_0 eMIOS_0 — ADC	I/O O I/O I	J	Tristate	_	60	82	M15	

Table 6.	Functional	port pin	descriptions	(continued)
		P P		(

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	_	29	M1
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] — CS0_2 EIRQ[15]	SIUL eMIOS_1 — DSPI_2 SIUL	I/O I/O I/O I	S	Tristate	_	_	26	L2
PG[9]	PCR[105]	AF0 AF1 AF2 AF3	GPIO[105] E1UC[18] — SCK_2	SIUL eMIOS_1 — DSPI_2	I/O I/O I/O	S	Tristate	_	_	25	L1
PG[10]	PCR[106]	AF0 AF1 AF2 AF3	GPIO[106] E0UC[24] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	_	_	114	D13
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	_	_	115	B12
PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] — —	SIUL eMIOS_0 — —	I/O I/O 	М	Tristate			92	K14
PG[13]	PCR[109]	AF0 AF1 AF2 AF3	GPIO[109] E0UC[27] —	SIUL eMIOS_0 — —	I/O I/O —	Μ	Tristate		_	91	K16
PG[14]	PCR[110]	AF0 AF1 AF2 AF3	GPIO[110] E1UC[0] —	SIUL eMIOS_1 —	I/O I/O —	S	Tristate			110	B14

Table 6. Functional port pin descriptions (continued)

Supply segment				LQFP144/	LQFP100			LQFP64 ⁽²⁾				
Sup	ply seg	ment	Pad	Weigl	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V	
LQFP 144	LQFP 100	LQFP 64		SRC ⁽³⁾ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
		2	PB[13]	10%	—	12%		18%		21%	—	
			PD[14]	10%	—	12%	—	—	—	—	—	
	2	2	PB[14]	10%	—	12%	—	18%	—	21%	—	
	2		PD[15]	10%	—	11%	—	—	—	—	—	
		2	PB[15]	9%	—	11%	—	18%	—	21%	—	
		2	PA[3]	9%	—	11%	—	18%	—	21%	—	
2	—	_	PG[13]	9%	13%	10%	11%	—	—	—	—	
2	—	_	PG[12]	9%	12%	10%	11%	—	—	—	—	
	—	_	PH[0]	5%	8%	6%	7%	—	—	—	—	
	—	_	PH[1]	5%	7%	6%	6%	—	—	—	—	
	_	_	PH[2]	5%	6%	5%	6%	—	—	—	—	
	—	_	PH[3]	4%	6%	5%	5%	—	—	—	—	
	—	_	PG[1]	4%	—	4%	—	—	—	—	—	
	—	_	PG[0]	3%	4%	4%	4%	—	—	—	—	
	—	_	PF[15]	3%	—	4%	—	—	—	—	—	
	—	_	PF[14]	4%	5%	5%	5%	—	—	—	—	
	—	_	PE[13]	4%	—	5%	—	—	—	—	—	
			PA[7]	5%	—	6%	—	16%	—	19%	—	
			PA[8]	5%	—	6%	—	16%	—	19%	—	
	2	2	PA[9]	5%	—	6%	—	15%	—	18%	—	
	3		PA[10]	6%	—	7%	—	15%	—	18%	—	
			PA[11]	6%	—	8%	—	14%	—	17%	—	
3		_	PE[12]	7%	—	8%	—	—	—	—	—	
	_	_	PG[14]	7%	—	8%	_	_	_	—	_	
	_	—	PG[15]	7%	10%	8%	9%	—	—	—	—	
	—	—	PE[14]	7%	—	8%	—	—	—	—	—	
	—	—	PE[15]	7%	9%	8%	8%	_	_	_	_	
	—	—	PG[10]	6%	—	8%	—	—	—	—	—	
	—	—	PG[11]	6%	9%	7%	8%	—	—	—	—	
	0	0	PC[3]	6%	—	7%	_	7%	—	9%	—	
	3	2	PC[2]	6%	8%	7%	7%	6%	9%	8%	8%	

Table 24. I/O weight⁽¹⁾ (continued)

Symbol			Demonster	O an division of (1)		Unit				
Symb	01	C	Parameter	Conditions	Min	Тур	Max	Unit		
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	—	0.1V _{DD}		_	V		
		Ρ		Push Pull, $I_{OL} = 2mA$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_	_	0.1V _{DD}			
V _{OL}	сс	С	Output low level	Push Pull, I_{OL} = 1mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	_		0.1V _{DD}	V		
		с		Push Pull, I_{OL} = 1mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_		0.5			
				C _L = 25pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	10			
				C _L = 50pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	20			
+	<u> </u>	СD	Output transition time	tion time $C_L = 100 \text{pF},$ - 40 $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ - 40			40			
^L tr			D	output pin ⁽³⁾	C _L = 25pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		12	- 115	
				C _L = 50pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	25			
				C _L = 100pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		40			
W _{FRST}	SR	Ρ	RESET input filtered pulse	_	_		40	ns		
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	1000		_	ns		
		Ρ		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10		150			
I _{WPU}	сс	D	Weak pull-up current absolute value	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	_	150	μA		
		Ρ		$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	10	—	250			

Table 25. Reset electrical characteristics (continued)
--

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

2. This transient configuration does not occurs when device is used in the V_{DD} = 3.3 V \pm 10% range.

3. CL includes device and package capacitance (CPKG < 5 pF).

 $\text{ESR}_{\text{STDBY}}(\text{MAX}) = |\Delta_{\text{VDD}(\text{STDBY})}|/(I_{\text{DD}_{\text{BV}}} - 200 \text{ mA}) = (30 \text{ mV})/(100 \text{ mA}) = 0.3 \Omega$

 $C_{STDBY}(MIN) = (I_{DD_BV} - 200 \text{ mA})/dVDD(STDBY)/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu\text{s}) = 6.7 \mu\text{F}$

In case optimization is required, $C_{STDBY}(MIN)$ and $ESR_{STDBY}(MAX)$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

3.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{-LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 12. Low voltage detector vs reset

Note:

Figure 12: Low voltage detector vs reset does not apply to LVDHV5 low voltage detector because LVDHV5 is automatically disabled during reset and it must be enabled by software again. Once the device is forced to reset by LVDHV5, the LVDHV5 is disabled and reset is

				-9			
Symbol		С	Parameter	Conditions ⁽¹⁾	Max	Unit	
f _{READ} CC		Ρ		2 wait states	64		
	СС	С	Maximum frequency for Flash reading	1 wait state	40	MHz	
		С		0 wait states	20		

Table 31. Flash read access timing

1. V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.19.2 Flash power supply DC characteristics

Table 32 shows the power supply DC characteristics on external supply.

Symbol		~	Baramatar	Conditions ⁽¹⁾			Unit									
Symbo	01	C	Falameter	Conditions	Min	Тур	Max	Unit								
I _{FREAD}			Sum of the current consumption on	Code flash memory module read $f_{CPU} = 64 \text{ MHz}^{(3)}$	_	15	33	m ^								
(2) CC		access	Data flash memory module read $f_{CPU} = 64 \text{ MHz}^{(3)}$	_	15	33										
I _{FMOD} ⁽²⁾ CC		Sum of the current consumption on	Program/Erase ongoing while reading code flash memory registers f _{CPU} = 64 MHz ⁽³⁾	_	15	33	m 4									
			modification (program/erase)	Program/Erase ongoing while reading data flash memory registers $f_{CPU} = 64 \text{ MHz}^{(3)}$	_	15	33									
1	<u> </u>										Sum of the current consumption on	During code flash memory low- power mode	_	_	900	
I _{FLPW} CC			VDD_HV and VDD_BV	During data flash memory low- power mode	_	_	900	μΑ								
I _{FPWD} C	<u> </u>	C D	C D	C D Sum of the curr	Sum of the current consumption on	During code flash memory power-down mode	_	_	150							
					VDD_HV and VDD_BV	During data flash memory power- down mode	_	_	150							

Table 32. Flash memory power supply DC electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. This value is only relative to the actual duration of the read cycle

3. $f_{CPU}\,64$ MHz can be achieved only at up to 105 $^\circ\text{C}$

3.19.3 Start-up/Switch-off timings

Symbol		<u>د</u>	Parametor	Conditions ⁽¹⁾			Unit		
Symbol		C	Farameter	Conditions	Min	Тур	Max	Unit	
т	00	Т	Delay for Elach module to exit recet mode	Code Flash	—	—	125		
' FLARSTEXIT	CC	Т	Jelay for Flash module to exit reset mode	Data Flash	_	—	125		
т	<u> </u>	Т	Delay for Flash module to exit low-power	Code Flash	_	—	0.5		
^I FLALPEXIT	CC	Т	mode	Data Flash	_	—	0.5		
т	<u> </u>	Т	Delay for Flash module to exit power-down	Code Flash	_	—	30		
FLAPDEXIT	CC	Т	mode	Data Flash	_	—	30	μs	
т	~~	Т	Delay for Flash module to enter low-power	Code Flash		—	0.5		
' FLALPENTRY	CC	т	Т	mode	Data Flash	_	—	0.5	
т	<u> </u>	Т	Delay for Flash module to enter power-	Code Flash	_	_	1.5		
' FLAPDENTRY		т	down mode	Data Flash	_	_	1.5		

Table 33. Start-up time/Switch-off time

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

3.20 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

3.20.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note *Software Techniques For Improving Microcontroller EMC Performance* (AN1015)).

Symbol		~	Parameter	Conditions ⁽¹⁾		Unit		
		J	Falameter	Conditions	Min	Тур	Max	Unit
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	$0.65 V_{DD}$	—	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	_	0.35V _{DD}	V

Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals)

3.22 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 15. Crystal oscillator and resonator connection scheme

Figure 19. Input equivalent circuit (precise channels)

SPC560B40x/50x, SPC560C40x/50x

Equation 7

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Equation 8

$$t_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

Equation 9

8.5 •
$$\tau_2 = 8.5 • R_L • (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1}, C_{P2} and C_S, then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1}. *Equation 10* must be respected (charge balance assuming now C_S already charged at V_{A1}):

Equation 10

$$V_{A2} \bullet (C_{S} + C_{P1} + C_{P2} + C_{F}) = V_{A} \bullet C_{F} + V_{A1} \bullet (C_{P1} + C_{P2} + C_{S})$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

 $Analog source bandwidth (V_A)$ $Analog source bandwidth (V_A)$ $f_C \leq 2 R_F C_F (conversion rate vs. filter pole)$ $f_F = f_0 (anti-aliasing filtering condition)$ $2 f_0 \leq f_C (Nyquist)$ $Anti-aliasing filter (f_F = RC filter pole)$ $f_F = f_0 (anti-aliasing filtering condition)$ $2 f_0 \leq f_C (Nyquist)$ $Sampled signal spectrum (f_C = conversion rate)$ $f_0 \qquad f_C \qquad f_C$

Figure 22. Spectral representation of input signal

Symbol		(Deremeter	Conditions ⁽¹⁾		Value			
		ر	Farameter			Min	Тур	Мах	t
I _{INJ}	S R			Current injection on one ADC input, different from the converted one	V _{DD} = 3.3 V ± 10%	-5	_	5	mA
			Input current Injection		V _{DD} = 5.0 V ± 10%	-5	_	5	
INL	C C	Т	Absolute value for integral non-linearity	No overload		—	0.5	1.5	LSB
DNL	C C	Т	Absolute differential non-linearity	No overload		—	0.5	1.0	LSB
E _O	C C	Т	Absolute offset error	—		—	0.5	_	LSB
E _G	C C	Т	Absolute gain error	—		_	0.6	—	LSB
TUEp	с с	Ρ	Total unadjusted	Without current injection		-2	0.6	2	
		т	channels, input only pins	With current injection		-3		3	LSB
-	C C	Т	Total unadjusted	Without current injection		-3	1	3	
TUEx		Т	channel	With current injection		-4		4	LSB

Table 45. ADC conversion characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. Analog and digital V_{SS} must be common (to be tied together externally).

- V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.
- Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- 5. During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sampling time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_s depend on programming.
- This parameter does not include the sampling time t_s, but only the time for determining the digital result and the time to load the result's register with the conversion result.
- 7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

3.27 On-chip peripherals

3.27.1 Current consumption

Figure 28. DSPI modified transfer format timing – master, CPHA = 1

Figure 29. DSPI modified transfer format timing – slave, CPHA = 0

3.27.4 JTAG characteristics

No	. Symbol		<u> </u>	Deremeter		l los id		
NO.			C	Farameter	Min	Тур	Max	onit
1	t _{JCYC}	СС	D	TCK cycle time	64	—	—	ns
2	t _{TDIS}	CC	D	TDI setup time	15	_	_	ns
3	t _{TDIH}	CC	D	TDI hold time	5	_	_	ns
4	t _{TMSS}	СС	D	TMS setup time	15	_	_	ns
5	t _{TMSH}	CC	D	TMS hold time	5	_	_	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid			33	ns
7	t _{TDOI}	СС	D	TCK low to TDO invalid	6	_	_	ns

Table 49. JTAG characteristics

Figure 33. Timing diagram – JTAG boundary scan

4 Package characteristics

4.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 Package mechanical data

4.2.1 LQFP64

Figure 34. LQFP64 package mechanical drawing

Table 50. LQFP64 mechanical data

Symbol		mm		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
А	—	—	1.6	—	—	0.063	
A1	0.05	—	0.15	0.002	—	0.0059	
A2	1.35	1.4	1.45	0.0531	0.0551	0.0571	
b	0.17	0.22	0.27	0.0067	0.0087	0.0106	
С	0.09	—	0.2	0.0035	—	0.0079	
D	11.8	12	12.2	0.4646	0.4724	0.4803	

5 Ordering information

Figure 38. Commercial product code structure

Date	Revision	Changes		
		Updated "LBGA208 configuration" figure		
		"Absolute maximum ratings" table:		
		 V_{DD_ADC}, V_{IN}: changed min value for "relative to V_{DD}" condition 		
		 I_{CORELV}: added new row 		
		"Recommended operating conditions (5.0 V)" table:		
		 T_A C-Grade Part, T_J C-Grade Part, T_A V-Grade Part, T_J V-Grade Part, T_A M-Grade Part, T_J M-Grade Part: added new rows 		
		 Changed capacitance value in footnote 		
		"Output pin transition times" table:		
		 MEDIUM configuration: added condition for PAD3V5V = 0 		
		Updated "Voltage regulator capacitance connection"		
		"Voltage regulator electrical characteristics" table:		
		 C_{DEC1}: changed min value 		
		– I _{MREG:} changed max value		
06-Aug-2009	4	 I_{DD_BV}: added max value footnote 		
		"Low voltage monitor electrical characteristics" table:		
		– V _{LVDHV3H} , V _{LVDHV5H} : changed max value		
		– V _{LVDHV3L} , V _{LVDHV5L} : added max value		
		Updated "Low voltage power domain electrical characteristics" table		
		"Flash module life" table:		
		 Retention: deleted min value footnote for "Blocks with 100000 P/E cycles" 		
		"Fast external crystal oscillator (4 to 16 MHz) electrical characteristics" table:		
		 I_{FXOSC}: added typ value 		
		"Slow external crystal oscillator (32 kHz) electrical characteristics" table		
		 V_{SXOSC}: changed typ value 		
		 T_{SXOSCSU}: added max value footnote 		
		"FMPLL electrical characteristics" table		
		$- \Delta t_{LTJIT}$: added max value		
		Updated "LQFP100 package mechanical drawing"		

Table 55. Document revision history (continued)

