

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Not For New Designs
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560c40l3c6e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	SPC560B40x/50x and SPC560C40x/50x block diagram	12
Figure 2.	LQFP 64-pin configuration	15
Figure 3.	LQFP 100-pin configuration	16
Figure 4.	LQFP 144-pin configuration	17
Figure 5.	LBGA208 configuration.	18
Figure 6.	I/O input DC electrical characteristics definition	47
Figure 7.	Start-up reset requirements	58
Figure 8.	Noise filtering on reset signal	58
Figure 9.	Voltage regulator capacitance connection	61
Figure 10.	V _{DD HV} and V _{DD BV} maximum slope	62
Figure 11.	V _{DD HV} and V _{DD BV} supply constraints during STANDBY mode exit	62
Figure 12.	Low voltage detector vs reset	65
Figure 13.	Crystal oscillator and resonator connection scheme	73
Figure 14.	Fast external crystal oscillator (4 to 16 MHz) timing diagram	74
Figure 15.	Crystal oscillator and resonator connection scheme	75
Figure 16.	Equivalent circuit of a quartz crystal	76
Figure 17.	Slow external crystal oscillator (32 kHz) timing diagram	77
Figure 18.	ADC characteristic and error definitions	80
Figure 19.	Input equivalent circuit (precise channels)	82
Figure 20.	Input equivalent circuit (extended channels)	82
Figure 21.	Transient behavior during sampling phase	83
Figure 22.	Spectral representation of input signal	84
Figure 23.	DSPI classic SPI timing – master, CPHA = 0	92
Figure 24.	DSPI classic SPI timing – master, CPHA = 1	93
Figure 25.	DSPI classic SPI timing – slave, CPHA = 0	93
Figure 26.	DSPI classic SPI timing – slave, CPHA = 1	94
Figure 27.	DSPI modified transfer format timing – master, CPHA = 0	94
Figure 28.	DSPI modified transfer format timing – master, CPHA = 1	95
Figure 29.	DSPI modified transfer format timing – slave, CPHA = 0	95
Figure 30.	DSPI modified transfer format timing – slave, CPHA = 1	96
Figure 31.	DSPI PCS strobe (PCSS) timing	96
Figure 32.	Nexus TDI, TMS, TDO timing	97
Figure 33.	Timing diagram – JTAG boundary scan	98
Figure 34.	LQFP64 package mechanical drawing	99
Figure 35.	LQFP100 package mechanical drawing 10	01
Figure 36.	LQFP144 package mechanical drawing 10	02
Figure 37.	LBGA208 package mechanical drawing10	04
Figure 38.	Commercial product code structure	06

Table 2. SPC560B40x/50x and SPC560C40x/50x device comparison⁽¹⁾ (continued)

Feature	Device										
	SPC560B 40L1	SPC560B 40L3	SPC560B 40L5	SPC560C 40L1	SPC560C 40L3	SPC560B 50L1	SPC560B 50L3	SPC560B 50L5	SPC560C 50L1	SPC560C 50L3	SPC560B 50B2
Debug					JT	AG					Nexus2+
Package	LQFP64 ⁽⁹⁾	LQFP100	LQFP144	LQFP64 ⁽⁹⁾	LQFP100	LQFP64 ⁽⁹⁾	LQFP100	LQFP144	LQFP64 ⁽⁹⁾	LQFP100	LBGA208 (10)

1. Feature set dependent on selected peripheral multiplexing-table shows example implementation.

2. Based on 125 °C ambient operating temperature.

3. See the eMIOS section of the device reference manual for information on the channel configuration and functions.

4. IC - Input Capture; OC - Output Compare; PWM - Pulse Width Modulation; MC - Modulus counter.

5. SCI0, SCI1 and SCI2 are available. SCI3 is not available.

6. CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.

7. CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.

8. I/O count based on multiplexing with peripherals.

9. All LQFP64 information is indicative and must be confirmed during silicon validation.

10. LBGA208 available only as development package for Nexus2+.

10/116

Figure 1. SPC560B40x/50x and SPC560C40x/50x block diagram

Table 3 summarizes the functions of all blocks present in the SPC560B40x/50x and SPC560C40x/50x series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

									Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration	LQFP64	LQFP100	LQFP144	LBGA208 ⁽³⁾
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] — CS4_1 — LIN3RX WKPU[14] ⁽⁴⁾	SIUL — DSPI_1 — LINFlex_3 WKPU	I/O — 0 — 1	S	Tristate	_	13	17	H2
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 —	GPIO[76] — E1UC[19] ⁽¹³⁾ — SIN_2 EIRQ[11]	SIUL — eMIOS_1 — DSPI_2 SIUL	/O /O 	S	Tristate	_	76	109	C14
PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate	_		103	D15
PE[14]	PCR[78]	AF0 AF1 AF2 AF3 —	GPIO[78] SCK_2 E1UC[21] — EIRQ[12]	SIUL DSPI_2 eMIOS_1 — SIUL	/O /O /O 	S	Tristate	_	_	112	C13
PE[15]	PCR[79]	AF0 AF1 AF2 AF3	GPIO[79] CS0_2 E1UC[22] —	SIUL DSPI_2 eMIOS_1 —	I/O I/O I/O —	Μ	Tristate	_	_	113	A13
PF[0]	PCR[80]	AF0 AF1 AF2 AF3 —	GPIO[80] E0UC[10] CS3_1 — ANS[8]	SIUL eMIOS_0 DSPI_1 — ADC	I/O I/O O I	J	Tristate	_	_	55	N10
PF[1]	PCR[81]	AF0 AF1 AF2 AF3 —	GPIO[81] E0UC[11] CS4_1 — ANS[9]	SIUL eMIOS_0 DSPI_1 — I	I/O I/O O _ I	J	Tristate	_	_	56	P10

- 11. Available only on SPC560Cx versions and SPC560B50B2 devices
- 12. Not available on SPC560B40L3 and SPC560B40L5 devices
- 13. Not available in 100 LQFP package
- 14. Available only on SPC560B50B2 devices
- 15. Not available on SPC560B44L3 devices

3.7 Nexus 2+ pins

In the LBGA208 package, eight additional debug pins are available (see Table 7).

		1/0	Pad type	Function	Pin number				
Debug pin	Function	direction	Pad type	after reset	LQFP 100	LQFP 144	LBGA 208 ⁽¹⁾		
MCKO	Message clock out	0	F	—	—	—	T4		
MDO0	Message data out 0	0	М	—	_	—	H15		
MDO1	Message data out 1	0	М	—	_	—	H16		
MDO2	Message data out 2	0	М	—	_	—	H14		
MDO3	Message data out 3	0	М	—	_	—	H13		
EVTI	Event in	I	М	Pull-up	_	—	K1		
EVTO	Event out	0	М	—	_	—	L4		
MSEO	Message start/end out	0	М	—	_	—	G16		

Table 7. Nexus 2+ pin descriptions

1. LBGA208 available only as development package for Nexus2+.

3.8 Electrical characteristics

3.9 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Farameter	Conditions	Min	Max	Unit
V	SP	Voltage on any GPIO pin with respect to ground	—	V _{SS} -0.1	—	V
VIN	SIX	(V _{SS})	Relative to V_{DD}		V _{DD} +0.1	v
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-5	5	٣٨
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	111A
TV _{DD}	SR	V_{DD} slope to ensure correct power up ⁽⁶⁾	_	3.0 ⁽⁷⁾	250 x 10 ³ (0.25 [V/µs])	V/s

Table 13. Recommended operating conditions (3.3 V) (continued)

1. 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair

2. 330 nF capacitance needs to be provided between each V_{DD_LLV}/V_{SS_LV} supply pair.

3. 400 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

4. 100 nF capacitance needs to be provided between $V_{\text{DD}_\text{ADC}}/V_{\text{SS}_\text{ADC}}$ pair.

 Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

6. Guaranteed by device validation.

7. Minimum value of TV_{DD} must be guaranteed until V_{DD} reaches 2.6 V (maximum value of V_{PORH}).

Cumhal		Devenueter	Conditions	Va	lue	Unit	
Symbol		Parameter	Conditions	Min	Max	Unit	
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V	
$V_{}(1)$	S P	Voltage on VDD_HV pins with respect to	_	4.5	5.5	V	
V DD`	JA	ground (V _{SS})	Voltage drop ⁽²⁾	3.0	5.5	v	
V _{SS_LV} ⁽³⁾	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V	
		Voltage on VDD_BV pin (regulator supply) with respect to ground (V _{SS})	—	4.5	5.5		
$V_{DD_BV}^{(4)}$	SR		Voltage drop ⁽²⁾	3.0	5.5	V	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1		
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}	_	V _{SS} -0.1	V _{SS} +0.1	V	
			—	4.5	5.5		
V _{DD_ADC} ⁽⁵⁾	SR	Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (Vss)	Voltage drop ⁽²⁾	3.0	5.5	V	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1		
V	SD	Voltage on any GPIO pin with respect to	—	V _{SS} -0.1	—	V	
V IN	JR	ground (V _{SS})	Relative to V _{DD}	—	V _{DD} +0.1	V	

Table 14. Recommended operating conditions (5.0 V)

Symbol		6	Deremeter		Conditions ⁽¹⁾		Value		110:4
Зу	mboi	C	Falameter		Conditions	Min	Тур	Max	Unit
		D		C _L = 25 pF		—	—	- 10	
		Т		C _L = 50 pF	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	—		20	
t _{tr} CC	D	Output transition time output	C _L = 100 pF	SIUL.PCRx.SRC = 1			40		
	00	D	MEDIUM configuration	C _L = 25 pF		—		12	115
		Т		C _L = 50 pF	$V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$		—	25	
		D		C _L = 100 pF	SIUL.PCRx.SRC = 1	_		40	10
				C _L = 25 pF			—	4	
				C _L = 50 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	—	6	
	<u> </u>		Output transition time output	C _L = 100 pF		_		12	
۲r	00		FAST configuration	C _L = 25 pF		—		4	115
				C _L = 50 pF	ן V א א א א א א א א א א א א א א א א א א א	—	—	7	
				C _L = 100 pF		_		12	

Table 21.	Output	pin transition tin	nes (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. C_L includes device and package capacitances (C_{PKG} < 5 pF).

3.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 22*.

Package	Supply segment										
Fackage	1	2	3	4	5	6					
LBGA208 ⁽¹⁾	Equival	ent to LQFP144	tribution	МСКО	MDOn/MSEO						
LQFP144	pin20–pin49	pin51–pin99	pin100-pin122	pin 123-pin19	—	—					
LQFP100	pin16–pin35	pin37–pin69	pin70–pin83	pin 84–pin15	—	—					
LQFP64 ⁽²⁾	pin8–pin26	pin28–pin55	pin56–pin7	—	—	—					

Table 22. I/O supply segment

1. LBGA208 available only as development package for Nexus2+

2. All LQFP64 information is indicative and must be confirmed during silicon validation.

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the $I_{\rm AVGSEG}$ maximum value.

Supply segment				LQFP144/LQFP100				LQFP64 ⁽²⁾				
Sup	ply seg	ment	Pad	Weigl	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V	
LQFP 144	LQFP 100	LQFP 64		SRC ⁽³⁾ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
		2	PB[13]	10%	—	12%		18%		21%	—	
			PD[14]	10%	—	12%	—	—	—	—	—	
	2	2	PB[14]	10%	—	12%	—	18%	—	21%	—	
	2		PD[15]	10%	—	11%	—	—	—	—	—	
		2	PB[15]	9%	—	11%	—	18%	—	21%	—	
		2	PA[3]	9%	—	11%	—	18%	—	21%	—	
2	—	_	PG[13]	9%	13%	10%	11%	—	—	—	—	
2	—	_	PG[12]	9%	12%	10%	11%	—	—	—	—	
	—	_	PH[0]	5%	8%	6%	7%	—	—	—	—	
	—	_	PH[1]	5%	7%	6%	6%	—	—	—	—	
	_	_	PH[2]	5%	6%	5%	6%	—	—	—	—	
	—	_	PH[3]	4%	6%	5%	5%	—	—	—	—	
	—	_	PG[1]	4%	—	4%	—	—	—	—	—	
	—	_	PG[0]	3%	4%	4%	4%	—	—	—	—	
	—	_	PF[15]	3%	—	4%	—	—	—	—	—	
	—	_	PF[14]	4%	5%	5%	5%	—	—	—	—	
	—	_	PE[13]	4%	—	5%	—	—	—	—	—	
			PA[7]	5%	—	6%	—	16%	—	19%	—	
			PA[8]	5%	—	6%	—	16%	—	19%	—	
	2	2	PA[9]	5%	—	6%	—	15%	—	18%	—	
	3		PA[10]	6%	—	7%	—	15%	—	18%	—	
			PA[11]	6%	—	8%	—	14%	—	17%	—	
3		_	PE[12]	7%	—	8%	—	—	—	—	—	
	_	_	PG[14]	7%	—	8%	_	_	_	—	_	
	_	—	PG[15]	7%	10%	8%	9%	—	—	—	—	
	—	—	PE[14]	7%	—	8%	—	—	—	—	—	
	—	—	PE[15]	7%	9%	8%	8%	_	_	—	_	
	—	—	PG[10]	6%	—	8%	—	—	—	—	—	
	—	—	PG[11]	6%	9%	7%	8%	—	—	—	—	
	0	0	PC[3]	6%	—	7%	_	7%	—	9%	—	
	3	3	2	PC[2]	6%	8%	7%	7%	6%	9%	8%	8%

Table 24. I/O weight⁽¹⁾ (continued)

Figure 9. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see *Section 3.13: Recommended operating conditions*).

The internal voltage regulator requires a controlled slew rate of both V_{DD_HV} and V_{DD_BV} as described in *Figure 10*.

 $\text{ESR}_{\text{STDBY}}(\text{MAX}) = |\Delta_{\text{VDD}(\text{STDBY})}|/(I_{\text{DD}_{\text{BV}}} - 200 \text{ mA}) = (30 \text{ mV})/(100 \text{ mA}) = 0.3 \Omega$

 $C_{STDBY}(MIN) = (I_{DD_BV} - 200 \text{ mA})/dVDD(STDBY)/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu\text{s}) = 6.7 \mu\text{F}$

In case optimization is required, $C_{STDBY}(MIN)$ and $ESR_{STDBY}(MAX)$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

3.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{-LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 12. Low voltage detector vs reset

Note:

Figure 12: Low voltage detector vs reset does not apply to LVDHV5 low voltage detector because LVDHV5 is automatically disabled during reset and it must be enabled by software again. Once the device is forced to reset by LVDHV5, the LVDHV5 is disabled and reset is

Symbol		6	Parameter Conditions ⁽¹⁾			Value			llnit
		C	Falameter	Conditions		Min	Тур	Max	onne
		Ρ			T _A = 25 °C	_	180	700 ⁽⁸⁾	
IDDSTOP		D			T _A = 55 °C	_	500		μA mA
	СС	D	STOP mode current ⁽⁷⁾	Slow internal RC oscillator	T _A = 85 °C	_	1	6 ⁽⁸⁾	
		D			T _A = 105 °C		2	9 ⁽⁸⁾	
		Ρ			T _A = 125 °C		4.5	12 ⁽⁸⁾	
		Ρ	STANDBY2 mode S current ⁽⁹⁾ (T _A = 25 °C		30	100	
		D			T _A = 55 °C		75		
I _{DDSTDBY2}	СС	D		(128 kHz) running	T _A = 85 °C		180	700	μΑ
		D			T _A = 105 °C		315	1000	
		Ρ			T _A = 125 °C		560	1700	
		Т			T _A = 25 °C		20	60	
		D			T _A = 55 °C		45		
I _{DDSTDBY1}	СС	D	STANDBY1 mode current ⁽¹⁰⁾	Slow internal RC oscillator (128 kHz) running	T _A = 85 °C		100	350	μA
		D			T _A = 105 °C	_	165	500	
		D			T _A = 125 °C		280	900	

Table 28. Power consumption on VDD_BV and VDD_HV (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. I_{DDMAX} is drawn only from the V_{DD_BV} pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- 3. Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26.
- I_{DDRUN} is drawn only from the V_{DD_BV} pin. RUN current measured with typical application with accesses on both flash and RAM.
- Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.
- 7. Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- 8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- 9. Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- 10. ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

Figure 13. Crystal oscillator and resonator connection scheme

Table 37. Crystal description Shunt Crystal Load on capacitance Crystal Crystal Nominal equivalent xtalin/xtalout NDK crystal motional motional between frequency series C1 = C2reference capacitance inductance xtalout (MHz) resistance (pF)⁽¹⁾ and xtalin (C_m) fF (L_m) mH **ESR** Ω C0⁽²⁾ (pF) 4 NX8045GB 300 2.68 591.0 21 2.93 8 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 NX5032GA 120 3.11 56.5 15 2.93 120 3.00 16 3.90 25.3 10

1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Figure 17. Slow external crystal oscillator (32 kHz) timing diagram

Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics

Symbol		~	Barameter Conditions ⁽¹⁾			Unit		
Symbol		C	Falameter	Conditions	Min	Тур	Max	•
f _{SXOSC}	SR		Slow external crystal oscillator frequency	—	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	—	2.1	_	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	_	—	2.5	_	μΑ
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	—	_	8	μΑ
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	_	—	_	2 ⁽²⁾	s

1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

3.23 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbol		<u>ر</u>	Parameter	Conditions ⁽¹⁾		Unit		
Symbo		C	Falameter	Conditions		Тур	Max	Unit
f _{PLLIN}	SR	—	FMPLL reference clock ⁽²⁾	—	4	—	64	MHz
Δ_{PLLIN}	SR	_	FMPLL reference clock duty cycle ⁽²⁾	—	40	_	60	%
f _{PLLOUT}	СС	D	FMPLL output clock frequency	—	16	—	64	MHz

Symbol		~	Perometer	Condisions(1)		Unit		
Symbo		C	Faiameter	Conditions	Min	Тур	Max	Unit
f (3)	<u> </u>	Ρ	VCO frequency without frequency modulation	_	256	—	512	MЦа
IVCO		С	VCO frequency with frequency modulation	-	245	_	533	
f _{CPU}	SR		System clock frequency	—	_		64	MHz
f _{FREE}	СС	Ρ	Free-running frequency	—	20		150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)	_	40	100	μs
Δt_{STJIT}	СС		FMPLL short term jitter ⁽⁴⁾	f _{sys} maximum	-4		4	%
∆t _{LTJIT}	сс		FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} @ 64 MHz, 4000 cycles			10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	_	_	4	mA

Table 41. FMPLL electrical characteristics (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

3. Frequency modulation is considered ±4%

4. Short term jitter is measured on the clock rising edge at cycle n and n+4.

3.24 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.

Symbol		6	Poromotor	Conditions(1)		Value			Unit	
Symbo	1	J	Faidineter	N		Min	Тур	Max	Unit	
f	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, 1	trimmed	—	16	—		
^I FIRC S	SR		frequency	—		12		20	IVIHZ	
I _{FIRCRUN}	сс	Т	Fast internal RC oscillator high frequency current in running mode	$T_A = 25 \ ^\circ C$, trimmed				200	μA	
I _{FIRCPWD}	сс	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 125 °C		_	_	10	μA	
					sysclk = off	_	500	_		
			Fast internal RC oscillator high		sysclk = 2 MHz	_	600	_		
I _{FIRCSTOP}	СС	Т	frequency and system clock current	T _A = 25 °C	sysclk = 4 MHz	_	700	_	μA	
				in stop mode		sysclk = 8 MHz	_	900	_	
					sysclk = 16 MHz	_	1250	_		

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in *Figure 19*): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 21. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

Equation 5

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

Equation 6

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to *Equation 7*:

ĺ	9
	9
	11
	6

DocID14619 Rev 13

5

					Table 47. D	OSPI charact	eristics	(1)				
No	Cumh	-	(Devementer		DSPI0/DSPI1				DSPI2	2	11
NO.	NO. Symbol	DI	C	Parameter		Min	Тур	Мах	Min	Тур	Мах	Unit
			D		Master mode (MTFE = 0)	125	_	_	333	_	_	
	1 t _{SCK} S	0.0	D	SCK cycle time	Slave mode (MTFE = 0)	125	_	_	333	_		
		SK	D		Master mode (MTFE = 1)	83	_		125	_	_	ns
			D		Slave mode (MTFE = 1)	83	_	_	125	_	_	
—	f _{DSPI}	SR	D	DSPI digital controller freque	ncy	—	—	f _{CPU}		—	f _{CPU}	MHz
_	∆t _{CSC}	СС	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1 \rightarrow 0	Master mode	_	_	130 ⁽²⁾	_		15 ⁽³⁾	ns
_	∆t _{ASC}	СС	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1 \rightarrow 1	Master mode	_	_	130 ⁽³⁾	_	_	130 ⁽³⁾	ns
2	t _{CSCext} ⁽⁴⁾	SR	D	CS to SCK delay	Slave mode	32	_	_	32	—	_	ns
3	t _{ASCext} ⁽⁵⁾	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	_	1/f _{DSPI} + 5	—	_	ns
4	+	CC	D	SCK duty avala	Master mode	—	t _{SCK/2}	_	_	t _{SCK/2}	—	DC
4	SDC	SR	D		Slave mode	t _{SCK/2}	—	_	t _{SCK/2}	—	—	115
5	t _A	SR	D	Slave access time	Slave mode	—	—	1/f _{DSPI} + 70	_	—	1/f _{DSPI} + 130	ns
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7	_		7	—	_	ns
7	t _{PCSC}	SR	D	PCSx to PCSS time		0	_	_	0	—	_	ns
8	t _{PASC}	SR	D	PCSS to PCSx time		0		_	0	—	_	ns

Package pinouts and signal descriptions

Figure 30. DSPI modified transfer format timing – slave, CPHA = 1

Figure 31. DSPI PCS strobe (PCSS) timing

3.27.3 **Nexus characteristics**

Table 40. Nexus characteristics	Table 48.	Nexus	characteristics
---------------------------------	-----------	-------	-----------------

No	Symbol		c	Parameter	Value			Unit
NO.	Symb	01		Falameter	Min Typ Max		Onic	
1	t _{TCYC}	CC	D	TCK cycle time	64	—	—	ns
2	t _{MCYC}	СС	D	MCKO cycle time	32		—	ns
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	—	—	8	ns

4.2.2 LQFP100

Figure 35. LQFP100 package mechanical drawing

Table 51. LQFP100 mechanical data

Symbol		mm		inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
А		_	1.600			0.0630	
A1	0.050	_	0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	_	0.200	0.0035		0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3		12.000			0.4724		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	

