

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

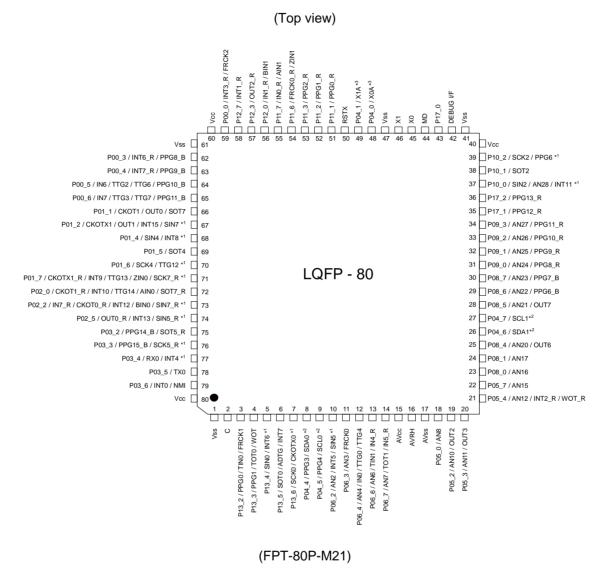
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

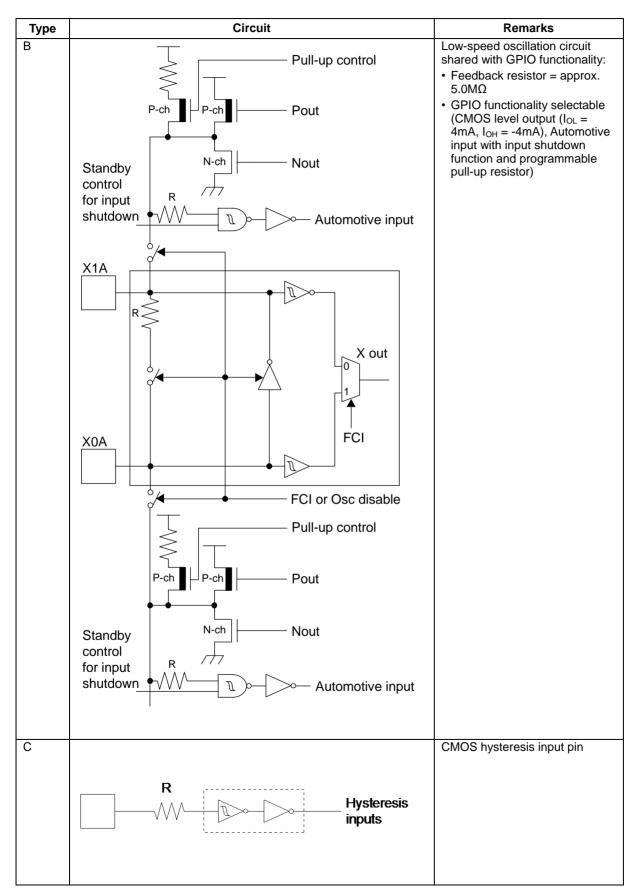
E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	416KB (416K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	28K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 21x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f637rbpmc-gse2


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ESS


^{*1}: CMOS input level only

^{*2}: CMOS input level only for I²C

^{*3}: Please set ROM Configuration Block (RCB) to use the subclock.

Other than those above, general-purpose pins have only Automotive input level.

	P-ch P-ch Pout P-ch P-ch Pout N-ch Nout Automotive input r input shutdown Analog input	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor Analog input
for	andby control	 Programmable pull-up resistor Analog input
for	andby control	CMOS level output
for	andby control	CMOS level output
		CMOS level output
М		CMOS level output
	Pull-up control	 (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor
	P-ch P-ch Pout	
	N-ch Nout	
	tandby control	
N	Pull-up control	 CMOS level output (I_{OL} = 3mA, I_{OH} = -3mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor *: N-channel transistor has slew
	P-ch P-ch Pout	rate control according to I ² C spec, irrespective of usage.
	tandby control	

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

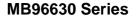
3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:


- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

13.6 Crystal oscillator and ceramic resonator circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

13.7 Turn on sequence of power supply to A/D converter and analog inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} . Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable).

13.8 Pin handling when not using the A/D converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2V to 2.7V.

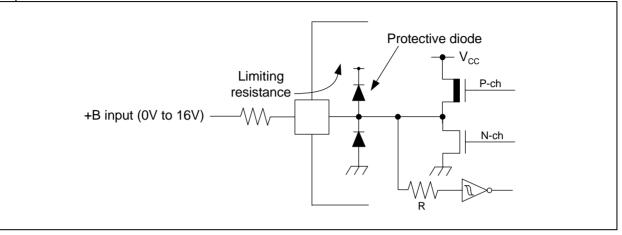
13.10Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

13.11 Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.


Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

- The DEBUG I/F pin has only a protective diode against V_{SS}. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
- · Sample recommended circuits:

- ^{*5}: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.
 - The actual power dissipation depends on the customer application and can be calculated as follows:
 - $P_{D} = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

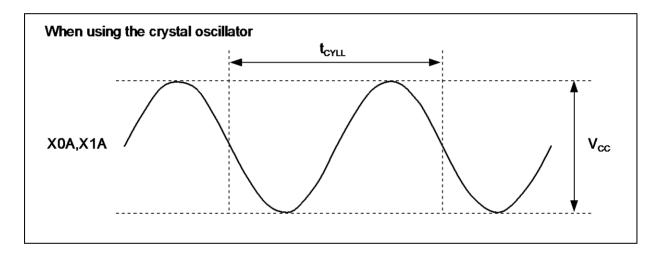
 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

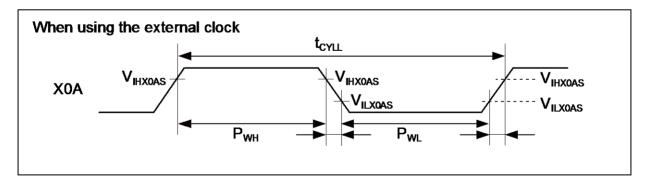
 I_A is the analog current consumption into AV_{CC} .

^{*6}: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

^{*7}: Write/erase to a large sector in flash memory is warranted with TA \leq + 105°C.

WARNING


Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



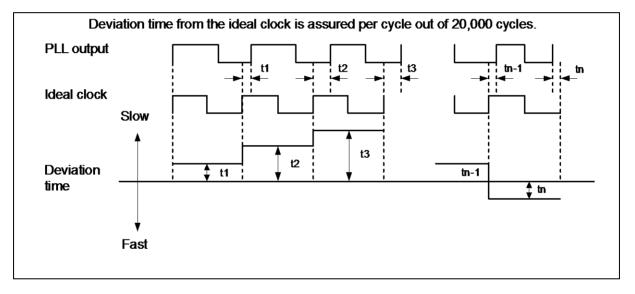
14.4.2 Sub Clock Input Characteristics

Parameter	Symbol	Pin name Conditions Value Value		Value			Unit	Remarks
Farameter	Symbol			Max	Unit	Reindiks		
		VOA	-	-	32.768	-	kHz	When using an oscillation circuit
Input frequency	f _{CL} X0A, X1A		-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs	
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%	

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

14.4.3 Built-in RC Oscillation Characteristics

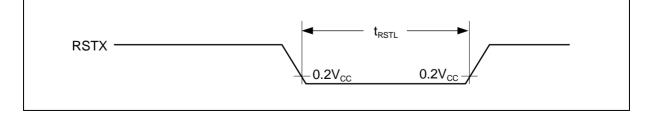
Parameter	Symbol	Value			Unit	Remarks	
Falameter		Min	Тур	Max	Unit	Remains	
Clock frequency	fac	50	100	200	kHz	When using slow frequency of RC oscillator	
Clock nequency	f _{RC}	1	2	4	MHz	When using fast frequency of RC oscillator	
RC clock stabilization	4	80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)	
time	t RCSTAB	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)	

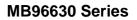

14.4.4 Internal Clock Timing

Parameter	Symbol	Va	Unit	
r al ameter	Symbol	Min	Мах	Onic
Internal System clock frequency (CLKS1 and CLKS2)	f _{CLKS1} , f _{CLKS2}	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	fclkb, fclkp1	-	32	MHz
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz

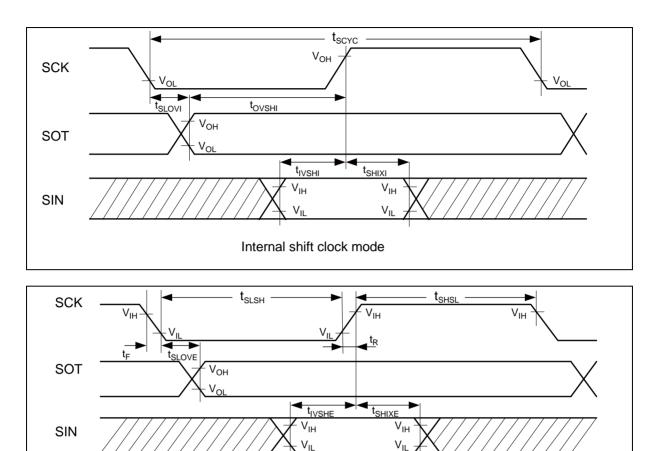
14.4.5 Operating Conditions of PLL

Baramatar	Symbol	Value			Unit	Remarks	
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	



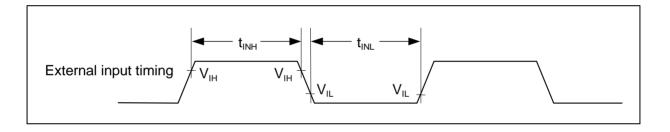

14.4.6 Reset Input

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)


 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol Pin name		Va	Unit		
i uluitotoi	Cymbol	T III Hallio	Min	Max	O	
Reset input time		RSTX	10	-	μS	
Rejection of reset input time	t _{RSTL} R	ROIN	1	-	μs	

External shift clock mode



14.4.9 External Input Timing

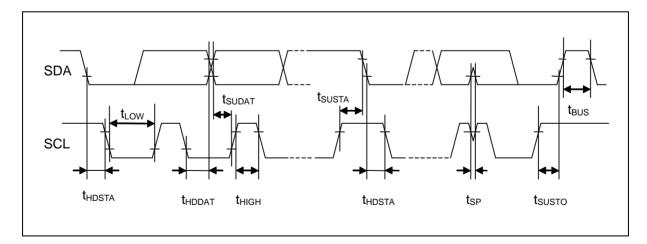
Parameter	Symbol	Pin name	Value)	Unit	Remarks	
Farameter	Symbol	Fin name	Min	Max	Unit		
		Pnn_m		General Purpose I/O			
		ADTG				A/D Converter trigger input	
		TINn				Reload Timer	
		TTGn	$- 2t_{CLKP1} + 200$ (t_{CLKP1} =			PPG trigger input	
Input pulse width		FRCKn,		-	ns	Free-Running Timer input	
	t _{INH} ,	FRCKn_R	$1/f_{CLKP1}$		113	clock	
input puise width	t _{INL}	INn, INn_R	1/1CLKPI/			Input Capture	
		AINn,				Quadrature	
		BINn,				Position/Revolution	
		ZINn				Counter	
		INTn, INTn_R	_ 200		20	External Interrupt	
		NMI	200	-	ns	Non-Maskable Interrupt	

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.4.10 ²C Timing

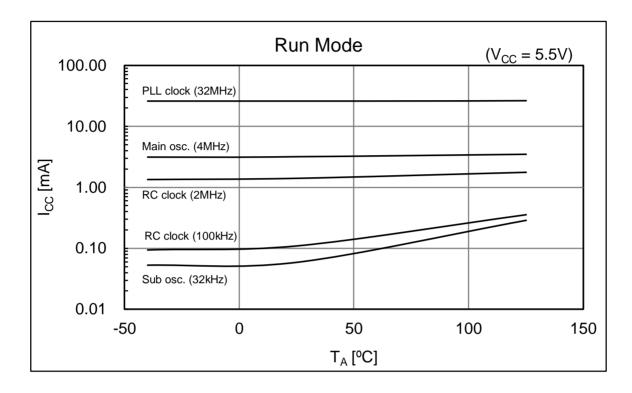
Parameter	Symbol	Conditions	Typic	al mode	High-speed mode*4		Unit
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
SCL clock frequency	f _{SCL}		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	-	μS
SCL clock "L" width	t _{LOW}		4.7	-	1.3	-	μS
SCL clock "H" width	t _{ніGH}		4.0	-	0.6	-	μS
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{susta}	$C_{L} = 50 pF,$ $R = (Vp/I_{OL})^{*1}$	4.7	-	0.6	-	μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}		0	3.45* ²	0	0.9* ³	μs
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t _{SUDAT}		250	-	100	-	ns
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{susto}		4.0	-	0.6	-	μs
Bus free time between "STOP condition" and "START condition"	t _{BUS}		4.7	-	1.3	-	μs
Pulse width of spikes which will be suppressed by input noise filter	t _{SP}	-	0	(1-1.5)× t _{CLКР1} * ⁵	0	(1-1.5)× t _{CLКР1} * ⁵	ns

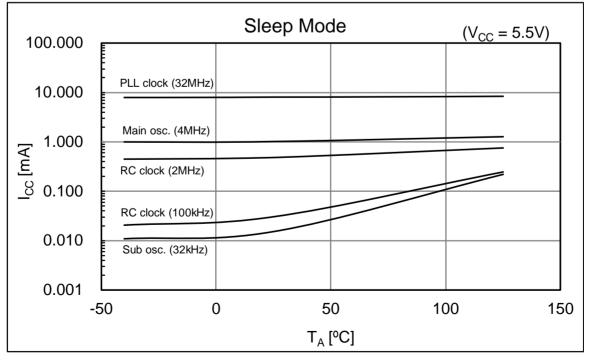

^{*1}: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

 *2 : The maximum t_{HDDAT} only has to be met if the device does not extend the "L" width (t_{LOW}) of the SCL signal.

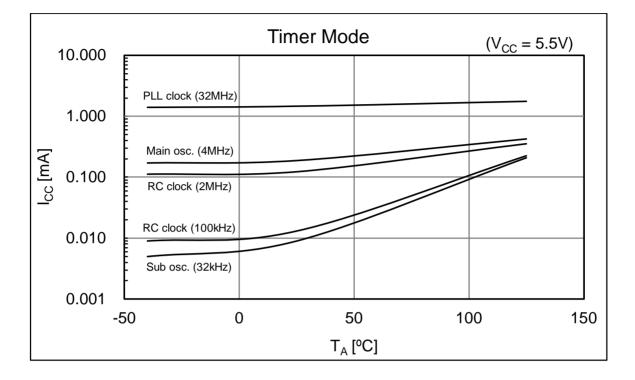
*3: A high-speed mode I²C bus device can be used on a standard mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250ns".

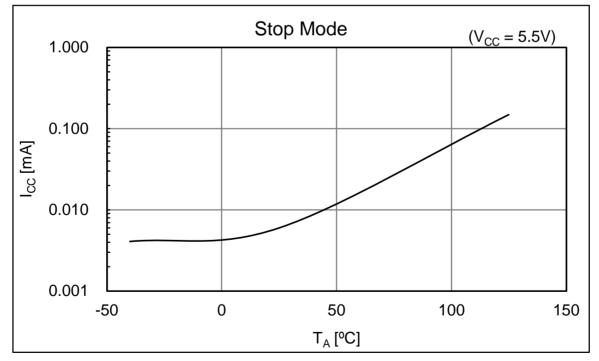
^{*4}: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.


^{*5}: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time.

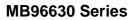


15. Example Characteristics


This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value. ■MB96F637



■MB96F637



■Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode

16. Ordering Information

MCU with CAN controller

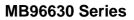
Part number	Flash memory	Package*
MB96F633RBPMC-GSE1	Flash A	80-pin plastic LQFP
MB96F633RBPMC-GSE2	(96.5KB)	(FPT-80P-M21)
MB96F635RBPMC-GSE1	Flash A	80-pin plastic LQFP
MB96F635RBPMC-GSE2	(160.5KB)	(FPT-80P-M21)
MB96F636RBPMC-GSE1	Flash A	80-pin plastic LQFP
MB96F636RBPMC-GSE2	(288.5KB)	(FPT-80P-M21)
MB96F637RBPMC-GSE1	Flash A	80-pin plastic LQFP
MB96F637RBPMC-GSE2	(416.5KB)	(FPT-80P-M21)

*: For details about package, see "Package Dimension".

MCU without CAN controller

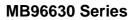
Part number	Flash memory	Package*
MB96F633ABPMC-GSE1	Flash A	80-pin plastic LQFP
MB96F633ABPMC-GSE2	(96.5KB)	(FPT-80P-M21)
MB96F635ABPMC-GSE1	Flash A	80-pin plastic LQFP
MB96F635ABPMC-GSE2	(160.5KB)	(FPT-80P-M21)

*: For details about package, see "Package Dimension".


18. Major Changes

Spansion Publication Number: MB96F636-DS704-00012

Page	Section	Change Results
Revision 1	.0	
-	-	$PRELIMINARY \to Data\ sheet$
	Features	Changed the description of "System clock"
2		Up to 16 MHz external clock for devices with fast clock input feature
2		\rightarrow
	_	Up to 8 MHz external clock for devices with fast clock input feature
		Changed the description of "External Interrupts"
		Interrupt mask and pending bit per channel
		\rightarrow
4		Interrupt mask bit per channel Changed the description of "Built-in On Chip Debugger"
		- Event sequencer: 2 levels
		→
		- Event sequencer: 2 levels + reset
	Product Lineup	Added the Product
		Changed the Remark of RLT
5		RLT 0/1/6 Only RLT6 can be used as PPG clock source
		\rightarrow
		RLT 0/1/6
	Block Diagram	Deleted the block of RLT6 from PPG block
		Changed the RLT block
6		2ch
		\rightarrow
		0/1/6 3ch
	Pin Description	Changed the Description of PPGn_B
8		Programmable Pulse Generator n output (8bit) →
		→ Programmable Pulse Generator n output (16bit/8bit)
	I/O Circuit Type	Changed the figure of type B
	" o onour type	Changed the Remarks of type B
		(CMOS hysteresis input with input shutdown function,
13		$I_{OL} = 4mA$, $I_{OH} = -4mA$, Programmable pull-up resister)
		\rightarrow
		(CMOS level output ($I_{OL} = 4mA$, $I_{OH} = -4mA$), Automotive input with
		input shutdown function and programmable pull-up resistor)
14		Changed the figure of type G
	Memory Map	Changed the START addresses of Boot-ROM
17		0F:E000 _H
••		\rightarrow
	Lines Dem Memory Mar Far Flack Deci	OF:C000 _H
	User Rom Memory Map For Flash Devices	Changed the annotation
19		Others (from DF:0200 _H to DF:1FFF _H) are all mirror area of SAS-512B. \rightarrow
		\rightarrow Others (from DF:0200 _H to DF:1FFF _H) is mirror area of SAS-512B.



Page	Section	Change Results
39	3. DC Characteristics (1) Current Rating	$\label{eq:charged} \begin{array}{ c c } \hline Changed the Value of "Power supply current in Stop modes" \\ \hline l_{CCH} \\ Max: 90\muA \rightarrow 60\muA (T_A = +25^{\circ}C) \\ Max: 985\muA \rightarrow 880\muA (T_A = +105^{\circ}C) \\ Max: 1985\muA \rightarrow 1845\muA (T_A = +125^{\circ}C) \\ Added the Symbol \\ \hline l_{CCFLASHPD} \\ \hline Changed the Value and condition of "Power supply current for active Low Voltage detector" \\ \hline l_{CCLVD} \\ Typ: 5\muA, Max: 15\muA, Remarks: nothing \\ \rightarrow \\ Typ: 5\muA, Max: -, Remarks: T_A = +25^{\circ}C \\ Typ: -, Max: 12.5\muA, Remarks: T_A = +125^{\circ}C \\ \hline Typ: 12.5mA, Max: 20mA, Remarks: nothing \\ \rightarrow \\ Typ: 12.5mA, Max: -, Remarks: T_A = +25^{\circ}C \\ \hline Typ: -, Max: 20mA, Remarks: T_A = +25^{\circ}C \\ \hline Typ: -, Max: 20mA, Remarks: T_A = +25^{\circ}C \\ \hline Typ: -, Max: 20mA, Remarks: T_A = +125^{\circ}C \\ \hline Typ: -, Max: 20mA, Remarks: T_A = +125^{\circ}C \\ \hline Typ: -, Max: 20mA, Remarks: T_A = +$
		→ When Flash is not in Power-down / reset mode, I _{CCFLASHPD} must be added to the Power supply current. The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.
40	3. DC Characteristics (2) Pin Characteristics	Added the Symbol for DEBUG I/F pin V _{OLD}
41		Changed the Pin name of "Input capacitance" Other than Vcc, Vss, AVcc, AVss, AVRH \rightarrow Other than C, Vcc, Vss, AVcc, AVss, AVRH
	4. AC Characteristics (1) Main Clock Input Characteristics	AVRH Deleted the annotation "I _{OH} and I _{OL} are target value." Changed MAX frequency for f _{FCI} in all conditions $16\rightarrow 8$
42		Changed MIN frequency for t_{CYLH} 62.5 \rightarrow 125 Changed MIN, MAX and Unit for P_{WH} , P_{WL} MIN: 30 \rightarrow 55 MAX: 70 \rightarrow - Unit: % \rightarrow ns Added the figure (t_{CYLH}) when using the external clock
43	4. AC Characteristics(2) Sub Clock Input Characteristics	Added the figure (t_{CYLL}) when using the crystal oscillator clock

Page	Section	Change Results
44	4. AC Characteristics (3) Built-In RC Oscillation Characteristics	Added "RC clock stabilization time"
	4. AC Characteristics (5) Operating Conditions Of PLL	Changed the Value of "PLL input clock frequency" Max: 16MHz \rightarrow 8MHz
		Changed the Symbol of "PLL oscillation clock frequency" $f_{\text{PLLO}} \rightarrow f_{\text{CLKVCO}}$
45		Added Remarks to "PLL oscillation clock frequency"
		Added " PLL phase jitter" and the figure
	4. Ac Characteristics(6) Reset Input	Added the figure for reset input time (t_{RSTL})
	4. Ac Characteristics(8) Usart Timing	Changed the condition (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = -40°C to + $105°C$) \rightarrow
47		$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}, C_L=50\text{pF})$
		Changed the HARDWARE MANUAL "MB96630 series HARDWARE MANUAL"
		→
		"MB96600 series HARDWARE MANUAL"
48		Changed the figure for "Internal shift clock mode"
50	4. AC Characteristics	Added parameter, "Noise filter" and an annotation *5 for it
50	(10) I ² C Timing	Added t _{SP} to the figure
	5. A/D Converter	Added "Analog impedance"
51	(1) Electrical Characteristics For The A/D	Added "Variation between channels"
	Converter	Added the annotation
52	5. A/D Converter (2) Accuracy And Setting Of The A/D Converter Sampling Time	Deleted the unit "[Min]" from approximation formula of Sampling time
	5. A/D Converter	Changed the Description and the figure
	(3) Definition Of A/D Converter Terms	"Linearity" → "Nonlinearity" "Differential linearity error"
		\rightarrow
		"Differential nonlinearity error"
		Changed the Description Linearity error:
53		Deviation of the line between the zero-transition point $(0b000000000 \leftrightarrow 0b000000001)$ and the full-scale transition point
		(0b111111110 $\leftarrow \rightarrow$ 0b111111111) from the actual conversion characteristics.
		→ Nonlinearity error:
		Deviation of the actual conversion characteristics from a straight line
		that connects the zero transition point (0b000000000 $\leftarrow \rightarrow$
		0b0000000001) to the full-scale transition point (0b1111111110 \longleftrightarrow 0b1111111111).
		Added the Description
		"Zero transition voltage"
		"Full scale transition voltage"
	6. Low Voltage Detection Function Characteristics	Added the Value of " Power supply voltage change rate" Max: +0.004 V/μs
		Added "Hysteresis width" (V _{HYS})
55		Added "Stabilization time" (T _{LVDSTAB})
55		Added "Detection delay time" (t _d)
		Deleted the Remarks
		Added the annotation *1, *2
	-	Added the figure for "Hysteresis width"
56		Added the figure for "Stabilization time"

Page	Section	Change Results
	7. Flash Memory Write/Erase Characteristics	Changed the Value of "Sector erase time"
		Added "Security Sector" to "Sector erase time"
		Changed the Parameter
		"Half word (16 bit) write time"
		\rightarrow
		"Word (16-bit) write time"
57		Changed the Value of "Chip erase time"
-		Changed the Remarks of "Sector erase time"
		Excludes write time prior to internal erase
		\rightarrow
		Includes write time prior to internal erase Added the Note and annotation *1
		Deleted "(targeted value)" from title " Write/Erase cycles and data hold
		time"
58 to 60	Example Characteristics	Added a section
30 10 00	Ordering Information	Changed part number
		MCU with CAN controller
		MB96F636RAPMC-GSE1* → MB96F636RBPMC-GSE1
61		MB96F636RAPMC-GSE2* → MB96F636RBPMC-GSE2
		MB96F637RAPMC-GSE1* → MB96F637RBPMC-GSE1
		$MB96F637RAPMC\text{-}GSE2^* \rightarrow MB96F637RBPMC\text{-}GSE2$
	Ordering Information	Added part number
		MCU with CAN controller
		MB96F633RBPMC-GSE1
		MB96F633RBPMC-GSE2
		MB96F635RBPMC-GSE1 MB96F635RBPMC-GSE2
61		MB96F635RBPMC-GSE2 MCU without CAN controller
		MB96F633ABPMC-GSE1
		MB96F633ABPMC-GSE2
		MB96F635ABPMC-GSE1
		MB96F635ABPMC-GSE2
Revision 1.	1	
-	-	Company name and layout design change

NOTE: Please see "Document History" about later revised information.