

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32zg222f8-qfp48t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering Information

Table 1.1 (p. 2) shows the available EFM32ZG222 devices.

Table 1.1. Ordering Information

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Voltage (V)	Temperature (⁰C)	Package
EFM32ZG222F4-QFP48	4	2	24	1.98 - 3.8	-40 - 85	TQFP48
EFM32ZG222F8-QFP48	8	2	24	1.98 - 3.8	-40 - 85	TQFP48
EFM32ZG222F16-QFP48	16	4	24	1.98 - 3.8	-40 - 85	TQFP48
EFM32ZG222F32-QFP48	32	4	24	1.98 - 3.8	-40 - 85	TQFP48

Visit www.silabs.com for information on global distributors and representatives.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

EFM[®]32

The RMU is responsible for handling the reset functionality of the EFM32ZG.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32ZG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32ZG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

2.1.10 Inter-Integrated Circuit Interface (I2C)

The I²C module provides an interface between the MCU and a serial I²C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I²C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (US-ART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.

3.4.1 EM0 Current Consumption

Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24 MHz

Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz

Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz

Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz

Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz

Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz

Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH

Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = STANDARD

Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH

3.9.3 LFRCO

Table 3.10. LFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFRCO}	Oscillation frequen- cy , V_{DD} = 3.0 V, T_{AMB} =25°C		31.29	32.768	34.28	kHz
t _{LFRCO}	Startup time not in- cluding software calibration			150		μs
I _{LFRCO}	Current consump- tion			190		nA
TUNESTEP _L FRCO	- Frequency step for LSB change in TUNING value			1.5		%

Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage

Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Differential	-V _{REF} /2		V _{REF} /2	V
VADCREFIN	Input range of exter- nal reference volt- age, single ended and differential		1.25		V _{DD}	V
V _{ADCREFIN_CH7}	Input range of ex- ternal negative ref- erence voltage on channel 7	See V _{ADCREFIN}		V _{DD} - 1.1	V	
V _{ADCREFIN_CH6}	Input range of ex- ternal positive ref- erence voltage on channel 6	See V _{ADCREFIN}	0.625		V _{DD}	V
V _{ADCCMIN}	Common mode in- put range		0		V _{DD}	V
	Input current	2pF sampling capacitors		<100		nA
CMRR _{ADC}	Analog input com- mon mode rejection ratio			65		dB
I _{ADC}		1 MSamples/s, 12 bit, external reference		351	500	μA
	Average active cur- rent	10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b00		67		μA
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b01		63		μΑ
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b10		64		μΑ
I _{ADCREF}	Current consump- tion of internal volt- age reference	Internal voltage reference		65	127	μA
C _{ADCIN}	Input capacitance			2		pF
R _{ADCIN}	Input ON resistance		1			MOhm
R _{ADCFILT}	Input RC filter resis- tance			10		kOhm
CADCFILT	Input RC filter/de- coupling capaci- tance	250			fF	
f _{ADCCLK}	ADC Clock Fre- quency					MHz
	Conversion time	6 bit	7			ADC- CLK Cycles
t _{ADCCONV}	Conversion time	8 bit	11			ADC- CLK Cycles

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		12 bit	13			ADC- CLK Cycles
t _{adcacq}	Acquisition time	Programmable	1		256	ADC- CLK Cycles
t _{ADCACQVDD3}	Required acquisi- tion time for VDD/3 reference		2			μs
	Startup time of ref- erence generator and ADC core in NORMAL mode			5		μs
t _{adcstart}	Startup time of ref- erence generator and ADC core in KEEPADCWARM mode			1		μs
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		59		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
		1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		67		dB
SNR _{ADC}	Signal to Noise Ra- tio (SNR)	1 MSamples/s, 12 bit, differential, $2xV_{DD}$ reference		69		dB
		200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference		67		dB
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		63		dB
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, 5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, V _{DD} reference	63	66		dB

Figure 3.26. Integral Non-Linearity (INL)

Figure 3.27. Differential Non-Linearity (DNL)

Figure 3.31. ADC Absolute Offset, Common Mode = Vdd /2

Figure 3.32. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V

3.13 Voltage Comparator (VCMP)

Table 3.25. VCMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{VCMPIN}	Input voltage range			V _{DD}		V
V _{VCMPCM}	VCMP Common Mode voltage range			V _{DD}		V
1	Active current	BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register		0.1	0.8	μA
IVCMP	Active current	BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0.		14.7	35	μA
t _{VCMPREF}	Startup time refer- ence generator	NORMAL		10		μs
V	Offect veltage	Single ended		10		mV
V _{VCMPOFFSET}	Offset voltage	Differential		10		mV
V _{VCMPHYST}	VCMP hysteresis			17		mV
t _{VCMPSTART}	Startup time				10	μs

The V_{DD} trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

VCMP Trigger Level as a Function of Level Setting

V_{DD Trigger Level}=1.667V+0.034 ×TRIGLEVEL

3.14 I2C

Table 3.26. I2C Standard-mode (Sm)

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency	0		100 ¹	kHz
t _{LOW}	SCL clock low time	4.7			μs
t _{HIGH}	SCL clock high time	4.0			μs
t _{SU,DAT}	SDA set-up time	250			ns
t _{HD,DAT}	SDA hold time	8		3450 ^{2,3}	ns
t _{SU,STA}	Repeated START condition set-up time	4.7			μs
t _{HD,STA}	(Repeated) START condition hold time	4.0			μs
t _{SU,STO}	STOP condition set-up time	4.0			μs
t _{BUF}	Bus free time between a STOP and START condition	4.7			μs

¹For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32ZG Reference Manual. ²The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

³When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10⁻⁹ [s] * f_{HFPERCLK} [Hz]) - 5).

(3.2)

...the world's most energy friendly microcontrollers

Alternate	LOCATION								
Functionality	0	1	2	3	4	5	6	Description	
CMU_CLK1	PA1		PE12					Clock Management Unit, clock output number 1.	
								Debug-interface Serial Wire clock input.	
DBG_SWCLK	PF0							Note that this function is enabled to pin out of reset, and has a built-in pull down.	
								Debug-interface Serial Wire data input / output.	
DBG_SWDIO	PF1							Note that this function is enabled to pin out of reset, and has a built-in pull up.	
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4	
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4	
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4	
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4	
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4	
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.	
HFXTAL_P	PB13							High Frequency Crystal positive pin.	
I2C0_SCL	PA1	PD7			PC1	PF1	PE13	I2C0 Serial Clock Line input / output.	
I2C0_SDA	PA0	PD6			PC0	PF0	PE12	I2C0 Serial Data input / output.	
IDAC0_OUT	PB11							IDAC0 output.	
LEU0_RX	PD5	PB14		PF1	PA0			LEUART0 Receive input.	
LEU0_TX	PD4	PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.	
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.	
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.	
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.	
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.	
PRS_CH0	PA0	PF3	PC14					Peripheral Reflex System PRS, channel 0.	
PRS_CH1	PA1	PF4	PC15					Peripheral Reflex System PRS, channel 1.	
PRS_CH2	PC0	PF5	PE10					Peripheral Reflex System PRS, channel 2.	
PRS_CH3	PC1		PE11					Peripheral Reflex System PRS, channel 3.	
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.	
TIM0_CC1	PA1	PA1			PC0	PF1		Timer 0 Capture Compare input / output channel 1.	
TIM0_CC2	PA2	PA2			PC1	PF2		Timer 0 Capture Compare input / output channel 2.	
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.	
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.	
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.	
US1_CLK	PB7		PF0	PC15				USART1 clock input / output.	
US1_CS	PB8		PF1	PC14				USART1 chip select input / output.	
								USART1 Asynchronous Receive.	
US1_RX	PC1		PD6	PD6				USART1 Synchronous mode Master Input / Slave Output (MISO).	
US1_TX	PC0		PD7	PD7				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).	

Figure 5.2. TQFP48 PCB Solder Mask

Table 5.2. QFP48 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.72
b	0.42
c	0.50
d	8.50
e	8.50

7 Revision History

7.1 Revision 1.10

March 6th, 2015

Updated ADC data, updated temperature sensor graph and added clarification on conditions for $\mathsf{INL}_{\mathsf{ADC}}$ and $\mathsf{DNL}_{\mathsf{ADC}}$ parameters.

Updated Max ESR_{HFXO} value for Crystal Frequency of 24 MHz.

Updated current consumption.

Updated LFXO and HFXO data.

Updated LFRCO and HFRCO data.

Updated ACMP data.

Updated VCMP data.

Updated Memory Map.

Added DMA current in Digital Peripherals section.

Added AUXHFRCO to block diagram and Electrical Characteristics.

Updated block diagram.

7.2 Revision 1.00

July 2nd, 2014

Corrected single power supply voltage minimum value from 1.85V to 1.98V.

Removed "Preliminary" markings.

Updated current consumption.

Updated transition between energy modes.

Updated power management data.

Updated GPIO data.

Updated LFXO, HFXO, HFRCO and ULFRCO data.

Updated LFRCO and HFRCO plots.

Updated ADC data.

Updated ACMP data.

7.3 Revision 0.61

November 21st, 2013

Updated figures.

Updated errata-link.

Updated chip marking.

Added link to Environmental and Quality information.

7.4 Revision 0.60

October 9th, 2013

Added I2C characterization data.

Added IDAC characterization data.

Updated current consumption table and figures in Electrical characteristics section.

Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit.

Removed Environmental information.

Updated trademark, disclaimer and contact information.

Other minor corrections.

7.5 Revision 0.50

April 22nd, 2013

Updated HFCORE max frequency from 32 MHz to 24 MHz.

Updated pinout.

Other minor corrections.

7.6 Revision 0.40

September 11th, 2012 Updated CPU core from Cortex M0 to Cortex M0+. Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Corrected operating voltage from 1.8 V to 1.85 V. Other minor corrections.

7.7 Revision 0.30

July 16th, 2011

Updated the Electrical Characteristics section.

7.8 Revision 0.20

June 8th, 2011

Corrected all current values in Electrical Characteristics section.

Updated Cortex M0 related items in the memory map.

7.9 Revision 0.10

June 7th, 2011

Initial preliminary release.