

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f070c6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F070CB/RB/C6/F6 microcontrollers.

This document should be read in conjunction with the STM32F0x0xx reference manual (RM0360). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M0 core, please refer to the Cortex[®]-M0 Technical Reference Manual, available from the www.arm.com website.

3 Functional overview

3.1 ARM[®]-Cortex[®]-M0 core with embedded Flash and SRAM

The ARM[®] Cortex[®]-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The STM32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the device family.

3.2 Memories

The device has the following features:

- 6 to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for failcritical applications.
- The non-volatile memory is divided into two arrays:
 - 32 to 128 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 Power supply schemes

- V_{DD} = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.

For more details on how to connect power pins, refer to *Figure 9: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

3.5.4 Low-power modes

The STM32F070CB/RB/C6/F6 microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines and RTC.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

3.10 Analog to digital converter (ADC)

The 12-bit analog to digital converter has up to 16 external and two internal (temperature sensor, voltage reference measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

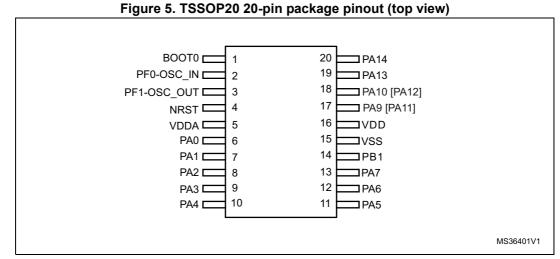
The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9

Table 2. Temperature sensor calibration values


3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 3.	Internal	voltage	reference	calibration values
----------	----------	---------	-----------	--------------------

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

	Table 9. Legend/abbreviations used in the pinout table				
Na	me	Abbreviation	Definition		
Pin r	name		specified in brackets below the pin name, the pin function during and same as the actual pin name		
		S	Supply pin		
Pin	type	I	Input only pin		
		I/O	Input / output pin		
		FT	5 V tolerant I/O		
		FTf	5 V tolerant I/O, FM+ capable		
1/O atr	ucture	ТТа	3.3 V tolerant I/O directly connected to ADC		
1/O Sti	ucture	TC	Standard 3.3 V I/O		
		В	Dedicated BOOT0 pin		
		RST	Bidirectional reset pin with embedded weak pull-up resistor		
No	tes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.			
Pin	Alternate functions	Functions selecte	Functions selected through GPIOx_AFR registers		
functions	Additional functions	Functions directly	selected/enabled through peripheral registers		

	Table 11. Alternate functions selected through GPIOA_AFR registers for port A								
Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
PA0	-	USART2_CTS	-	-	USART4_TX ⁽¹⁾	-	-	-	
PA1	EVENTOUT	USART2_RTS	-	-	USART4_RX ⁽¹⁾	TIM15_CH1N ⁽¹⁾	-	-	
PA2	TIM15_CH1 ⁽¹⁾	USART2_TX	-	-	-	-	-	-	
PA3	TIM15_CH2 ⁽¹⁾	USART2_RX	-	-	-	-	-	-	
PA4	SPI1_NSS	USART2_CK	USB_NOE ⁽²⁾	-	TIM14_CH1	-	-	-	
PA5	SPI1_SCK	-	-	-	-	-	-	-	
PA6	SPI1_MISO	TIM3_CH1	TIM1_BKIN	-	USART3_CTS ⁽¹⁾	TIM16_CH1	EVENTOUT	-	
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	EVENTOUT	-	
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	-	-	-	-	
PA9	TIM15_BKIN ⁽¹⁾	USART1_TX	TIM1_CH2	-	I2C1_SCL (2)	-	-	-	
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	-	I2C1_SDA (2)	-	-	-	
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	-	-	-	-	-	
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	-	-	-	-	-	
PA13	SWDIO	IR_OUT	USB_NOE	-	-	-	-	-	
PA14	SWCLK	USART2_TX	-	-	-	-	-	-	
PA15	SPI1_NSS	USART2_RX	-	EVENTOUT	USART4_RTS ⁽¹⁾	-	-	-	

Table 11. Alternate functions selected through GPIOA AFR registers for port A

1. Available on STM32F070CB/RB devices only.

2. Available on STM32F070C6/F6 devices only.

Pin name	AF0	AF1	AF2	AF3	AF4	AF5
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-	USART3_CK ⁽¹⁾	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-	USART3_RTS ⁽¹⁾	-
PB2	-	-	-	-	-	-
PB3	SPI1_SCK	EVENTOUT	-	-	-	-
PB4	SPI1_MISO	TIM3_CH1	EVENTOUT	-	-	TIM17_BKIN
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	-	-
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	-	-	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	-	USART4_CTS ⁽¹⁾	-
PB8	-	I2C1_SCL	TIM16_CH1	-	-	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	-	SPI2_NSS ⁽¹⁾
PB10	-	I2C2_SCL ⁽¹⁾	-	-	USART3_TX ⁽¹⁾	SPI2_SCK ⁽¹⁾
PB11	EVENTOUT	I2C2_SDA ⁽¹⁾	-	-	USART3_RX ⁽¹⁾	-
PB12	SPI2_NSS ⁽¹⁾	EVENTOUT	TIM1_BKIN	-	USART3_CK ⁽¹⁾	TIM15_BKIN ⁽¹⁾
PB13	SPI2_SCK ⁽¹⁾	-	TIM1_CH1N	-	USART3_CTS ⁽¹⁾	I2C2_SCL ⁽¹⁾
PB14	SPI2_MISO ⁽¹⁾	TIM15_CH1	TIM1_CH2N	-	USART3_RTS ⁽¹⁾	I2C2_SDA ⁽¹⁾
PB15	SPI2_MOSI ⁽¹⁾	TIM15_CH2	TIM1 CH3N	TIM15_CH1N ⁽¹⁾	-	-

1. Available on STM32F070xB devices only.

577

Pin name	AF0 ⁽¹⁾	AF1 ⁽¹⁾
PC0	EVENTOUT ⁽¹⁾	-
PC1	EVENTOUT ⁽¹⁾	-
PC2	EVENTOUT ⁽¹⁾	SPI2_MISO ⁽¹⁾
PC3	EVENTOUT ⁽¹⁾	SPI2_MOSI ⁽¹⁾
PC4	EVENTOUT ⁽¹⁾	USART3_TX ⁽¹⁾
PC5	-	USART3_RX ⁽¹
PC6	TIM3_CH1 ⁽¹⁾	-
PC7	TIM3_CH2 ⁽¹⁾	-
PC8	TIM3_CH3 ⁽¹⁾	-
PC9	TIM3_CH4 ⁽¹⁾	-
PC10	USART4_TX ⁽¹⁾	USART3_TX ⁽¹⁾
PC11	USART4_RX ⁽¹⁾	USART3_RX ⁽¹
PC12	USART4_CK ⁽¹⁾	USART3_CK ⁽¹
PC13	-	-
PC14	-	-
PC15	-	-

Table 13. Alternate functions selected through GPIOC_AFR registers for port C

1. Available on STM32F070xB devices only.

Table 14. Alternate functions selected through GPIOD_AFR registers for port D

Pin name	AF0 ⁽¹⁾	AF1 ⁽¹⁾
PD2	TIM3_ETR ⁽¹⁾	-

1. Available on STM32F070xB devices only.

Table 15. Alternate functions selected through GPIOF_AFR registers for port F

Pin name	AF0	AF1
PF0	-	I2C1_SDA ⁽¹⁾
PF1	-	I2C1_SCL ⁽¹⁾

1. Available on STM32F070x6 devices only.

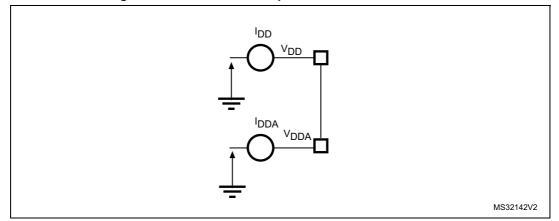

Bus	Boundary address	Size	Peripheral
-	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1 KB	Reserved
AHB2	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
ANDZ	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 3400 - 0x4002 43FF	4 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
	0x4002 2000 - 0x4002 23FF	1 KB	FLASH Interface
AHB1	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
-	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
APB	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 0800 - 0x4001 23FF	7 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG
-	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

Table 16. STM32F070CB/RB/C6/F6 peripheral register boundary addresses

DocID027114 Rev 3

6.1.7 Current consumption measurement

Figure 10. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17: Voltage characteristics*, *Table 18: Current characteristics* and *Table 19: Thermal characteristics* may cause permanent damage to the device. These are stress *ratings* only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
$V_{DD} - V_{SS}$	External main supply voltage	-0.3	4.0	V
$V_{DDA} - V_{SS}$	External analog supply voltage	-0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
	Input voltage on FT and FTf pins	V _{SS} –0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
$V_{IN}^{(2)}$	Input voltage on TTa pins	V _{SS} –0.3	4.0	V
	BOOT0	0	V _{DDIOx} + 4.0 ⁽³⁾	V
	Input voltage on any other pin	V _{SS} –0.3	4.0	V
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3 sensitivity chara		-

Table 17	. Voltage	characteristics ⁽¹⁾)
----------	-----------	--------------------------------	---

 All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 18: Current characteristics* for the maximum allowed injected current values.

3. V_{DDIOx} is internally connected with VDD pin.

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
ΣI _{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
ΣΙ	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	mA
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control $pins^{(2)}$	-80	
	Injected current on FT and FTf pins	-5/+0 ⁽⁴⁾	
I _{INJ(PIN)} ⁽³⁾	Injected current on TC and RST pin	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	1
Σl _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	1

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

A positive injection is induced by V_{IN} > V_{DDIOx} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 17: Voltage characteristics* for the maximum allowed input voltage values.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

On these I/Os, a positive injection is induced by V_{IN} > V_{DDA}. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 51: ADC accuracy*.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 19. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 20	. General	operating	conditions
----------	-----------	-----------	------------

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	48	MHz
f _{PCLK}	Internal APB clock frequency	-	0	48	
V _{DD}	Standard operating voltage	-	2.4	3.6	V

				Т			
Symbol	Parameter Conditions		f _{HCLK}	Peripherals enabled	Peripherals disabled	Unit	
	Supply current in Run	Running from	48 MHz	23.5	13.5		
IDD	mode from V _{DD} supply	HSE crystal clock 8 MHz,	8 MHz	4.8	3.1	mA	
	Supply current in Run	code executing	48 MHz	163.3	163.3		
I _{DDA}	mode from V _{DDA} supply	from Flash	8 MHz	2.5	2.5	μA	

Table 27. Typical current consumption in Run mode, code with data processingrunning from Flash

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 45: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

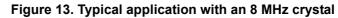
In addition to the internal peripheral current consumption measured previously, the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

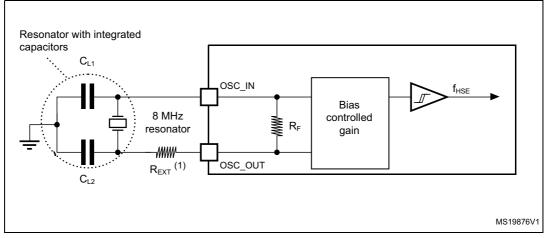
$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

Symbol	Parameter Conditions ⁽¹⁾		Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
		During startup ⁽³⁾	-	-	8.5		
I _{DD}	HSE current consumption	V _{DD} = 3.3 V, Rm = 45 Ω CL = 10 pF@8 MHz	-	0.5	-	mA	
		V _{DD} = 3.3 V, Rm = 30 Ω CL = 20 pF@32 MHz	-	1.5	-		
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V	
$t_{\rm SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	2	-	ms	

Table 32. HSE oscillator	characteristics
--------------------------	-----------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.


- 2. Guaranteed by design, not tested in production.
- 3. This consumption level occurs during the first 2/3 of the $t_{\mbox{SU(HSE)}}$ startup time


4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 13*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results

obtained with typical external components specified in *Table 33*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		low drive capability	-	0.5	0.9	
	LSE current	medium-low drive capability	-	-	1	
I _{DD}	onsumption medium-high drive capability		-	-	1.3	μA
		high drive capability		-	1.6	
	low drive capability		5	-	-	
	Oscillator	medium-low drive capability	8	-	-	µA/V
9 _m	transconductance	medium-high drive capability	15	-	-	μΑνν
	high drive capability		25	-	-	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S

Table 33. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

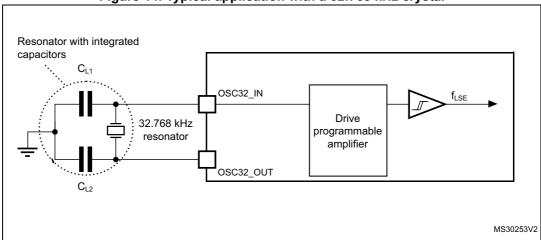


Figure 14. Typical application with a 32.768 kHz crystal

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP64 package information

LQFP64 is 64-pin, 10 x 10 mm low-profile quad flat package.

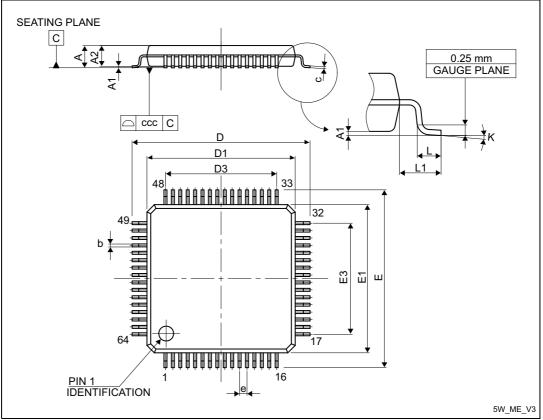
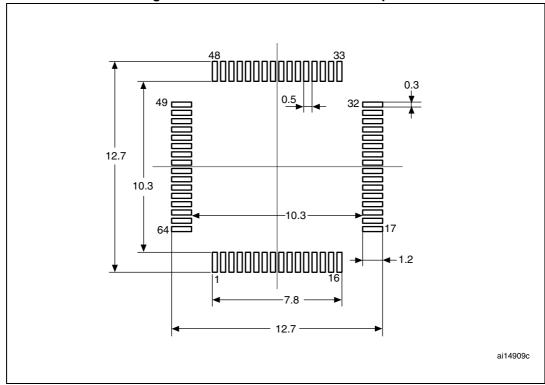


Figure 24. LQFP64 outline

1. Drawing is not to scale.

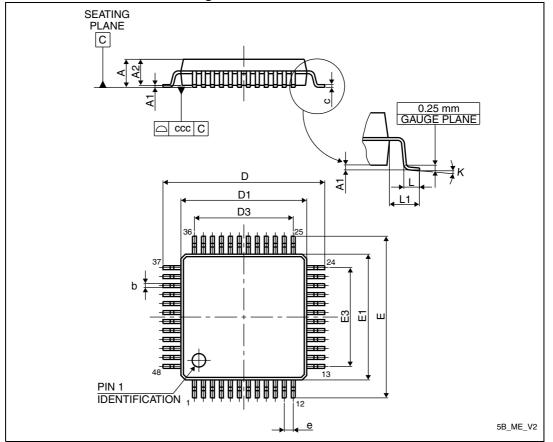
Table 59. LQFP64 mechanical data


Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571

Cumhal	millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 59. LQFP64 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 25. LQFP64 recommended footprint

1. Dimensions are expressed in millimeters.

7.2 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package

^{1.} Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	

7.3 TSSOP20 package information

TSSOP20 is a 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch package.

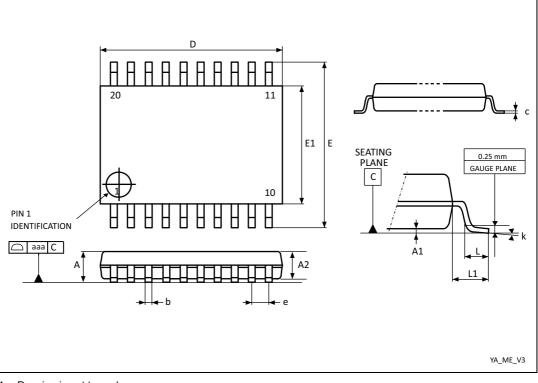
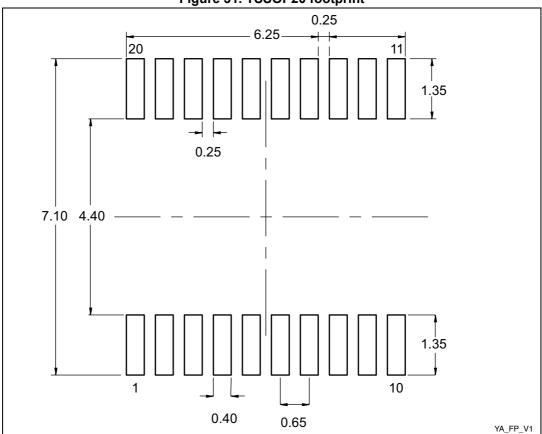


Figure 30.TSSOP20 outline

1. Drawing is not to scale.


Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.200	-	-	0.0472
A1	0.050	-	0.150	0.0020	-	0.0059
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413
b	0.190	-	0.300	0.0075	-	0.0118
с	0.090	-	0.200	0.0035	-	0.0079
D	6.400	6.500	6.600	0.2520	0.2559	0.2598
E	6.200	6.400	6.600	0.2441	0.2520	0.2598
E1	4.300	4.400	4.500	0.1693	0.1732	0.1772
е	-	0.650	-	-	0.0256	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	_	0.0394	-

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

Table 61. TSSOP20 mechanical data (continued)

1. Values in inches are converted from mm and rounded to four decimal digits.

Figure 31. TSSOP20 footprint

1. Dimensions are expressed in millimeters.

