

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f070rbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	STM32F070CB/RB/C6/F6 family device features and peripheral counts	10
Table 2.	Temperature sensor calibration values	17
Table 3.	Internal voltage reference calibration values	17
Table 4.	Timer feature comparison	18
Table 5.	Comparison of I2C analog and digital filters	21
Table 6.	STM32F070CB/RB/C6/F6 I ² C implementation	21
Table 7.	STM32F70x0 USART implementation	22
Table 8.	STM32F070CB/RB/C6/F6 SPI implementation	23
Table 9.	Legend/abbreviations used in the pinout table	25
Table 10.	STM32F070xB/6 pin definitions	26
Table 11.	Alternate functions selected through GPIOA_AFR registers for port A	30
Table 12.	Alternate functions selected through GPIOB_AFR registers for port B	31
Table 13.	Alternate functions selected through GPIOC AFR registers for port C	32
Table 14.	Alternate functions selected through GPIOD AFR registers for port D	32
Table 15.	Alternate functions selected through GPIOF AFR registers for port F.	32
Table 16.	STM32F070CB/RB/C6/F6 peripheral register boundary addresses	34
Table 17.	Voltage characteristics	38
Table 18.		39
Table 19.	Thermal characteristics.	39
Table 20.	General operating conditions	39
Table 21.	Operating conditions at power-up / power-down	40
Table 22.	Embedded reset and power control block characteristics.	40
Table 23.	Embedded internal reference voltage	41
Table 24.	Typical and maximum current consumption from V_{DD} supply at $V_{DD} = 3.6$ V	42
Table 25.	Typical and maximum current consumption from the V_{DDA} supply	42
Table 26.	Typical and maximum consumption in Stop and Standby modes	43
Table 27.	Typical current consumption in Run mode, code with data processing	
	running from Flash	44
Table 28.	Switching output I/O current consumption	45
Table 29.	Low-power mode wakeup timings	46
Table 30.	High-speed external user clock characteristics.	46
Table 31.	Low-speed external user clock characteristics	47
Table 32.	HSE oscillator characteristics	47
Table 33.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	49
Table 34.	HSI oscillator characteristics	50
Table 35.	HSI14 oscillator characteristics.	50
Table 36.	LSI oscillator characteristics	50
Table 37.	PLL characteristics	51
Table 38.	Flash memory characteristics	51
Table 39.	Flash memory endurance and data retention	52
Table 40.	EMS characteristics	52
Table 41.	EMI characteristics	53
Table 42.	ESD absolute maximum ratings	54
Table 43.	Electrical sensitivities	54
Table 44.	I/O current injection susceptibility	55
Table 45.	I/O static characteristics	55
Table 46.	Output voltage characteristics	58
Table 47.	I/O AC characteristics	59

3.5.4 Low-power modes

The STM32F070CB/RB/C6/F6 microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines and RTC.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except TIM14) and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of $Cortex^{\mbox{\sc extrm ${\rm extrm ${\rm extrm ${\rm extrm ${\rm sc ext$

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 51 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog to digital converter (ADC)

The 12-bit analog to digital converter has up to 16 external and two internal (temperature sensor, voltage reference measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address		
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9		

Table 2. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

	Table	3.	Internal	voltage	reference	calibration	values
--	-------	----	----------	---------	-----------	-------------	--------

Calibration value name	Description	Memory address		
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7BA - 0x1FFF F7BB		

can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.11.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.11.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source (HCLK or HCLK/8)

3.12 Real-time clock (RTC)

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
- Programmable alarm with wake up from Stop and Standby mode capability.
- Periodic wakeup unit with programmable resolution and period.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Tow anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32

3.13 Inter-integrated circuit interfaces (I²C)

Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also supports Fast Mode Plus (up to 1 Mbit/s), with 20 mA output drive.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

-	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	-

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management.

The I2C interfaces can be served by the DMA controller.

Refer to Table 6 for the differences between I2C1 and I2C2.

I2C features	I2C1	I2C2 ⁽²⁾				
7-bit addressing mode	Х	Х				
10-bit addressing mode	Х	Х				
Standard mode (up to 100 kbit/s)	Х	Х				
Fast mode (up to 400 kbit/s)	Х	Х				
Fast Mode Plus (up to 1 Mbit/s), with 20mA output drive I/Os	Х	-				
Independent clock	Х	-				
SMBus	Х	-				
Wakeup from STOP	-	-				

Table 6. STM32F070CB/RB/C6/F6 I²C implementation⁽¹⁾

1. X = supported.

2. Only available on STM32F070xB devices.

3.14 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds up to four universal synchronous/asynchronous receivers/transmitters that communicate at speeds of up to 6 Mbit/s.

DocID027114 Rev 3

Table 7 gives an overview of features as implemented on the available USART interfaces. All USART interfaces can be served by the DMA controller.

	STM32	F070x6	STM32F070xB		
features	USART1 USART2		USART1 USART2	USART3	USART4
Hardware flow control for modem	Х	Х	Х	Х	Х
Continuous communication using DMA	х	х	х	х	-
Multiprocessor communication	Х	Х	Х	Х	Х
Synchronous mode	Х	х	х	Х	Х
Smartcard mode	-	-	-	-	-
Single-wire Half-duplex communication	х	х	х	х	х
IrDA SIR ENDEC block	-	-	-	-	-
LIN mode	-	-	-	-	-
Dual clock domain and wakeup from Stop mode	-	-	-	-	-
Receiver timeout interrupt	Х	-	Х	-	-
Modbus communication	-	-	-	-	-
Auto baud rate detection (supported modes)	4	-	4	-	-
Driver Enable	X X		х	Х	х
USART data length	7, 8 and 9 bits				

Table 7. STM32F70x) USART im	plementation ⁽¹⁾
--------------------	------------	-----------------------------

1. X = supported.

3.15 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

SPI1 and SPI2 are identical and implement the set of features shown in the following table.

Table 9. Legend/abbreviations used in the pinout table						
Na	Name Abbreviation Definition					
Pin r	ame	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name				
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
		FTf	5 V tolerant I/O, FM+ capable			
I/O otr	uoturo	ТТа	3.3 V tolerant I/O directly connected to ADC			
1/O Sti	ucture	TC	Standard 3.3 V I/O			
		В	Dedicated BOOT0 pin			
		RST Bidirectional reset pin with embedded weak pull-up resisto				
Notes		Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.				
Pin functions	Alternate functions	Functions selecte	d through GPIOx_AFR registers			
	Additional functions	Functions directly selected/enabled through peripheral registers				

Pin	numb	ers			é		Pin functions	
LQFP64	LQFP48	TSSOP20	Pin name (function after reset)	Pin type	I/O structui	Notes	Alternate functions	Additional functions
1	1	-	VDD	S	-	-	Digital pov	ver supply
2	2	-	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT
3	3	-	PC14-OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN
4	4	-	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT
5	5	2	PF0-OSC_IN (PF0)	I/O	FT	-	I2C1_SDA ⁽³⁾	OSC_IN
6	6	3	PF1-OSC_OUT (PF1)	I/O	FT	-	I2C1_SCL ⁽³⁾	OSC_OUT
7	7	4	NRST	I/O	RST	-	Device reset input / intern	al reset output (active low)
8	-	-	PC0	I/O	TTa	-	EVENTOUT	ADC_IN10
9	-	-	PC1	I/O	TTa	-	EVENTOUT	ADC_IN11
10	-	-	PC2	I/O	TTa	-	SPI2_MISO, EVENTOUT	ADC_IN12
11	-	-	PC3	I/O	TTa	-	SPI2_MOSI, EVENTOUT	ADC_IN13
12	8	-	VSSA	S	-	-	Analog	ground
13	9	5	VDDA	S	-	-	Analog po	wer supply
14	10	6	PA0	I/O	TTa	(4)	USART2_CTS, USART4_TX	RTC_ TAMP2, WKUP1, ADC_IN0,
15	11	7	PA1	I/O	TTa	(4)	USART2_RTS, TIM15_CH1N, USART4_RX, EVENTOUT	ADC_IN1
16	12	8	PA2	I/O	TTa	(4)	USART2_TX, TIM15_CH1	ADC_IN2, WKUP4
17	13	9	PA3	I/O	TTa	(4)	USART2_RX, TIM15_CH2	ADC_IN3
18	-	-	VSS	S	-	-	- Ground	
19	-	-	VDD	S	-	-	Digital pov	ver supply
20	14	10	PA4	I/O	ТТа	-	SPI1_NSS, TIM14_CH1, USART2_CK, USB_NOE ⁽³⁾	ADC_IN4
21	15	11	PA5	I/O	TTa	-	SPI1_SCK	ADC_IN5

Table 10. STM32F070xB/6 pin definitions

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	-	USART2_CTS	-	-	USART4_TX ⁽¹⁾	-	-	-
PA1	EVENTOUT	USART2_RTS	-	-	USART4_RX ⁽¹⁾	TIM15_CH1N ⁽¹⁾	-	-
PA2	TIM15_CH1 ⁽¹⁾	USART2_TX	-	-	-	-	-	-
PA3	TIM15_CH2 ⁽¹⁾	USART2_RX	-	-	-	-	-	-
PA4	SPI1_NSS	USART2_CK	USB_NOE ⁽²⁾	-	TIM14_CH1	-	-	-
PA5	SPI1_SCK	-	-	-	-	-	-	-
PA6	SPI1_MISO	TIM3_CH1	TIM1_BKIN	-	USART3_CTS ⁽¹⁾	TIM16_CH1	EVENTOUT	-
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	EVENTOUT	-
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	-	-	-	-
PA9	TIM15_BKIN ⁽¹⁾	USART1_TX	TIM1_CH2	-	I2C1_SCL (2)	-	-	-
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	-	I2C1_SDA (2)	-	-	-
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	-	-	-	-	-
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	-	-	-	-	-
PA13	SWDIO	IR_OUT	USB_NOE	-	-	-	-	-
PA14	SWCLK	USART2_TX	-	-	-	-	-	-
PA15	SPI1_NSS	USART2_RX	-	EVENTOUT	USART4_RTS ⁽¹⁾	-	-	-

Table 11. Alternate functions selected through GPIOA AFR registers for port A

1. Available on STM32F070CB/RB devices only.

2. Available on STM32F070C6/F6 devices only.

Bus	Boundary address	Size	Peripheral
	0x4000 7400 - 0x4000 7FFF	3 KB	Reserved
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6C00 - 0x4000 6FFF	1 KB	Reserved
	0x4000 6400 - 0x4000 67FF	2 KB	Reserved
	0x4000 6000 - 0x4000 63FF	1 KB	USB RAM
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2 ⁽¹⁾
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 5000 - 0x4000 53FF	3 KB	Reserved
	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4 ⁽¹⁾
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3 ⁽¹⁾
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
APB	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2 ⁽¹⁾
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	Reserved

1. Available on STM32F070CB/RB devices only.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 12*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Мах	Unit
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	115

 Table 31. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Figure 12. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 32*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	

Table 32. HSE oscillator characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +85 °C	1	kcycle
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	20	Years

Table 39. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 40*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3V$, LQFP48, $T_A = +25$ °C, $f_{HCLK} = 48$ MHz, conforming to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP48, $T_A = +25$ °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Table 40. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

Figure 17. I/O AC characteristics definition

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V _{NF(NRST)}	NPST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ne
		$2.4 < V_{DD} < 3.6$	500 ⁽³⁾	-	-	115

Table 48. NRST pin characteristics

1. Data based on design simulation only. Not tested in production.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 50 Run max for $f_{4,p,q} = 14$ MHz

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	$I_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}_{S2}$ V_D_A = 2.7 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_A = -40$ to 85 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	

Table 51. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾

1. ADC DC accuracy values are measured after internal calibration.

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.14 does not affect the ADC accuracy 2.

accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. Data based on characterization results, not tested in production.

Figure 21. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 63. Ordering	informati	on s	chem	e			
Example:	STM32	F	070	С	6	Т	6 x
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = General-purpose							
Sub family							
070 = STM32F070xx							
Pin count							
F = 20 pins							
C = 48 pins							
R = 64 pins							
Code size							
6 = 32 Kbyte of Flash memory							
B = 128 Kbyte of Flash memory							
P							
Package							
P = ISSOP							
T = LQFP							
Temperature range							
6 = -40 to 85 °C							
Options							

xxx = programmed parts TR = tape and reel

9 Revision history

Date	Revision	Changes
27-Nov-2014	1	Initial release.
15-Jan-2015	2	Updated the number of SPI in <i>Features</i> and <i>Section:</i> <i>Description.</i> Updated <i>Section: Serial peripheral interface (SPI).</i> Updated the fourth footnote of <i>Table: STM32F070xB/i</i> <i>pin definitions</i> , and added the reference to PB9 pin. Moved the AF3 data to AF4 for PA9 and PA10 pins in <i>Table: Alternate functions selected through GPIOA_AFR</i> <i>registers for port A.</i> Added the reference to footnote 1 to AF0 data for PB12, PB13, PB14 and PB15, and to AF5 data for PB9 and PB10 in <i>Table: Alternate functions selected through</i> <i>GPIOB_AFR registers for port B.</i> Added the reference to footnote 1 to SPI2 in <i>Table:</i> <i>STM32F070xB/6 peripheral register boundary</i> <i>addressesF070</i>
07-Feb-2016	3	 Updated: Removal of Table 1 from cover page (all part numbers put in the header) Table 1: STM32F070CB/RB/C6/F6 family device features and peripheral counts; number of int. ADC channels corrected Figure 1: Block diagram Figure 2: Clock tree Table 7: STM32F070CB/RB/C6/F6 memory map and added the note related to the start address of the system memory Figure 9: Power supply scheme Section 3.5.1: Power supply schemes Section 3.5.1: Added internal reference voltage: added t_{START}, changed V_{REFINT} and t_{S_vrefint} values and notes Table 33: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) LSEDRV[1:0] values removed (see ref. manual) Table 49: ADC characteristics - t_{STAB} defined relative to clock frequency; notes 3. and 4. added Table 52: TS characteristics: removed the min. value for t_{START}

Table 64. Document revision history

