
Silicon Labs - C8051T612-GQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 29

Program Memory Size 8KB (8K x 8)

Program Memory Type OTP

EEPROM Size -

RAM Size 1.25K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 21x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-LQFP

Supplier Device Package 32-LQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051t612-gq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051t612-gq-4431442
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051T610/1/2/3/4/5/6/7

2 Rev 1.1

Rev 1.1 15

C8051T610/1/2/3/4/5/6/7

1. System Overview

C8051T610/1/2/3/4/5/6/7 devices are fully integrated, mixed-signal, system-on-a-chip MCUs. Highlighted
features are listed below. Refer to Table 2.1 for specific product feature selection and part ordering num-
bers.

High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
In-system, full-speed, non-intrusive debug interface (on-chip)
C8051F310 ISP Flash device is available for quick in-system code development
10-bit 500 ksps Single-ended ADC with analog multiplexer and integrated temperature sensor
Precision calibrated 24.5 MHz internal oscillator
16 k or 8 k of on-chip Byte-Programmable EPROM—(512 bytes are reserved on 16k version)
1280 bytes of on-chip RAM

SMBus/I2C, SPI, and Enhanced UART serial interfaces implemented in hardware
Four general-purpose 16-bit timers
Programmable Counter/Timer Array (PCA) with five capture/compare modules and Watchdog Timer function
On-chip Power-On Reset and VDD Monitor

On-chip Voltage Comparators (2)
29/25/21 Port I/O

With on-chip power-on reset, VDD monitor, watchdog timer, and clock oscillator, the
C8051T610/1/2/3/4/5/6/7 devices are truly stand-alone, system-on-a-chip solutions. User software has
complete control of all peripherals and may individually shut down any or all peripherals for power savings.

Code written for the C8051T610/1/2/3/4/5/6/7 family of processors will run on the C8051F310 Mixed-Sig-
nal ISP Flash microcontroller, providing a quick, cost-effective way to develop code without requiring spe-
cial emulator circuitry. The C8051T610/1/2/3/4/5/6/7 processors include Silicon Laboratories’ 2-Wire C2
Debug and Programming interface, which allows non-intrusive (uses no on-chip resources), full speed, in-
circuit debugging using the production MCU installed in the final application. This debug logic supports
inspection of memory, viewing and modification of special function registers, setting breakpoints, single
stepping, and run and halt commands. All analog and digital peripherals are fully functional while debug-
ging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging
without occupying package pins.

Each device is specified for 1.8–3.6 V operation over the industrial temperature range (–45 to +85 °C). An
internal LDO is used to supply the processor core voltage. The Port I/O and RST pins are tolerant of input
signals up to 5 V. See Table 2.1 for ordering information. Block diagrams of the devices in the
C8051T610/1/2/3/4/5/6/7 family are shown in Figure 1.1, Figure 1.2 and Figure 1.3.

C8051T610/1/2/3/4/5/6/7

40 Rev 1.1

8.1. Output Code Formatting
The ADC measures the input voltage with reference to GND. The registers ADC0H and ADC0L contain the
high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data
can be right-justified or left-justified, depending on the setting of the AD0LJST bit. Conversion codes are
represented as 10-bit unsigned integers. Inputs are measured from 0 to VREF x 1023/1024. Example
codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L
registers are set to 0.

8.2. 8-Bit Mode
Setting the ADC08BE bit in register ADC0CF to 1 will put the ADC in 8-bit mode. In 8-bit mode, only the 8
MSBs of data are converted, and the ADC0H register holds the results. The AD0LJST bit is ignored for 8-
bit mode. 8-bit conversions take two fewer SAR clock cycles than 10-bit conversions, so the conversion is
completed faster, and a 500 ksps sampling rate can be achieved with a slower SAR clock.

8.3. Modes of Operation
ADC0 has a maximum conversion speed of 500 ksps. The ADC0 conversion clock is a divided version of
the system clock, determined by the AD0SC bits in the ADC0CF register.

8.3.1. Starting a Conversion

A conversion can be initiated in one of six ways, depending on the programmed states of the ADC0 Start of
Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the fol-
lowing:

1. Writing a 1 to the AD0BUSY bit of register ADC0CN

2. A Timer 0 overflow (i.e., timed continuous conversions)

3. A Timer 2 overflow

4. A Timer 1 overflow

5. A rising edge on the CNVSTR input signal

6. A Timer 3 overflow

Writing a 1 to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-
demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is
complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt
flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT)
should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT
is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte over-
flows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode.
See Section “25. Timers” on page 170 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port I/O pin. When the
CNVSTR input is used as the ADC0 conversion source, the associated pin should be skipped by the Digi-
tal Crossbar. See Section “21. Port Input/Output” on page 113 for details on Port I/O configuration.

Input Voltage Right-Justified ADC0H:ADC0L
(AD0LJST = 0)

Left-Justified ADC0H:ADC0L
(AD0LJST = 1)

VREF x 1023/1024 0x03FF 0xFFC0
VREF x 512/1024 0x0200 0x8000
VREF x 256/1024 0x0100 0x4000
0 0x0000 0x0000

Rev 1.1 47

C8051T610/1/2/3/4/5/6/7

SFR Address = 0xC6

SFR Address = 0xC5

SFR Definition 8.7. ADC0LTH: ADC0 Less-Than Data High Byte

Bit 7 6 5 4 3 2 1 0

Name ADC0LTH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 ADC0LTH[7:0] ADC0 Less-Than Data Word High-Order Bits.

SFR Definition 8.8. ADC0LTL: ADC0 Less-Than Data Low Byte

Bit 7 6 5 4 3 2 1 0

Name ADC0LTL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 ADC0LTL[7:0] ADC0 Less-Than Data Word Low-Order Bits.

C8051T610/1/2/3/4/5/6/7

52 Rev 1.1

Figure 9.2. Temperature Sensor Error with 1-Point Calibration at 0 Celsius

-40.00 -20.00 0.00 20.00 40.00 60.00 80.00

Temperature (degrees C)

E
rr

o
r

(d
eg

re
es

 C
)

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

C8051T610/1/2/3/4/5/6/7

66 Rev 1.1

SFR Address = 0x9F

SFR Definition 12.5. CPT0MX: Comparator0 MUX Selection

Bit 7 6 5 4 3 2 1 0

Name CMX0N[1:0] CMX0P[1:0]

Type R R R/W R R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:6 Unused Unused, Read = 00b; Write = Don’t Care

5:4 CMX0N[1:0] Comparator0 Negative Input MUX Selection.

00: P1.1

01: P1.5

10: P2.1

11: P2.5

3:2 Unused Unused, Read = 00b; Write = Don’t Care

1:0 CMX0P[1:0] Comparator0 Positive Input MUX Selection.

00: P1.0

01: P1.4

10: P2.0

11: P2.4

Rev 1.1 85

C8051T610/1/2/3/4/5/6/7

16. Interrupts

The C8051T610/1/2/3/4/5/6/7 includes an extended interrupt system supporting a total of 14 interrupt
sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and exter-
nal input pins varies according to the specific version of the device. Each interrupt source has one or more
associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid
interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE–EIE1). However, interrupts must first be globally enabled by setting the EA bit
(IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables
all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruc-
tion that has two or more opcode bytes. Using EA (global interrupt enable) as an example:

// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.

; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction
which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruc-
tion, the interrupt may be taken. However, a read of the enable bit will return a '0' inside the interrupt ser-
vice routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be
taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.

Rev 1.1 94

C8051T610/1/2/3/4/5/6/7

17. EPROM Memory

Electrically programmable read-only memory (EPROM) is included on-chip for program code storage. The
EPROM memory can be programmed via the C2 debug and programming interface when a special pro-
gramming voltage is applied to the VPP pin. Each location in EPROM memory is programmable only once
(i.e., non-erasable). Table 7.6 on page 34 shows the EPROM specifications.

17.1. Programming and Reading the EPROM Memory
Reading and writing the EPROM memory is accomplished through the C2 programming and debug inter-
face. When creating hardware to program the EPROM, it is necessary to follow the programming steps
listed below. Refer to the “C2 Interface Specification” available at http://www.silabs.com for details on com-
municating via the C2 interface. Section “27. C2 Interface” on page 208 has information about C2 register
addresses for the C8051T610/1/2/3/4/5/6/7.

17.1.1. EPROM Write Procedure

1. Reset the device using the RST pin.

2. Wait at least 20 µs before sending the first C2 command.

3. Place the device in core reset: Write 0x04 to the DEVCTL register.

4. Set the device to program mode (1st step): Write 0x40 to the EPCTL register.

5. Set the device to program mode (2nd step): Write 0x4A to the EPCTL register.

Note: Prior to date code 1119, 0x58 should be written to EPCTL.

6. Apply the VPP programming Voltage.

7. Write the first EPROM address for programming to EPADDRH and EPADDRL.

8. Write a data byte to EPDAT. EPADDRH:L will increment by 1 after this write.

9. Use a C2 Address Read command to poll for write completion.

10.(Optional) Check the ERROR bit in register EPSTAT and abort the programming operation if necessary.

11. If programming is not finished, return to Step 8 to write the next address in sequence, or return to
Step 7 to program a new address.

12.Remove the VPP programming Voltage.

13.Remove program mode (1st step): Write 0x40 to the EPCTL register.

14.Remove program mode (2nd step): Write 0x00 to the EPCTL register.

15.Reset the device: Write 0x02 and then 0x00 to the DEVCTL register.

Important Note: There is a finite amount of time which VPP can be applied without damaging the device,
which is cumulative over the life of the device. Refer to Table 7.1 on page 31 for the VPP timing specifica-
tion.

Rev 1.1 97

C8051T610/1/2/3/4/5/6/7

18. Power Management Modes

The C8051T610/1/2/3/4/5/6/7 devices have two software programmable power management modes: idle,
and stop. Idle mode halts the CPU while leaving the peripherals and clocks active. In stop mode, the CPU
is halted, all interrupts and timers (except the missing clock detector) are inactive, and the internal oscilla-
tor is stopped (analog peripherals remain in their selected states; the external oscillator is not affected).
Since clocks are running in idle mode, power consumption is dependent upon the system clock frequency
and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least
power because the majority of the device is shut down with no clocks active. SFR Definition 18.1 describes
the Power Control Register (PCON) used to control the C8051T610/1/2/3/4/5/6/7's stop and idle power
management modes.

Although the C8051T610/1/2/3/4/5/6/7 has idle and stop modes available, more control over the device
power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral
can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or
serial buses, draw little power when they are not in use.

18.1. Idle Mode
Setting the Idle Mode Select bit (PCON.0) causes the hardware to halt the CPU and enter idle mode as
soon as the instruction that sets the bit completes execution. All internal registers and memory maintain
their original data. All analog and digital peripherals can remain active during idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an
enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume
operation. The pending interrupt will be serviced and the next instruction to be executed after the return
from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit.
If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence
and begins program execution at address 0x0000.

If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during
the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from idle mode when
a future interrupt occurs. Therefore, instructions that set the IDLE bit should be followed by an instruction
that has two or more opcode bytes, for example:

// in ‘C’:
PCON |= 0x01; // set IDLE bit
PCON = PCON; // ... followed by a 3-cycle dummy instruction

; in assembly:
ORL PCON, #01h ; set IDLE bit
MOV PCON, PCON ; ... followed by a 3-cycle dummy instruction

If enabled, the watchdog timer (WDT) will eventually cause an internal watchdog reset and thereby termi-
nate the idle mode. This feature protects the system from an unintended permanent shutdown in the event
of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by
software prior to entering the idle mode if the WDT was initially configured to allow this operation. This pro-
vides the opportunity for additional power savings, allowing the system to remain in the idle mode indefi-
nitely, waiting for an external stimulus to wake up the system. Refer to Section “19.6. PCA Watchdog Timer
Reset” on page 104 for more information on the use and configuration of the WDT.

Rev 1.1 100

C8051T610/1/2/3/4/5/6/7

19. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this
reset state, the following occur:

 CIP-51 halts program execution

 Special Function Registers (SFRs) are initialized to their defined reset values

 External Port pins are forced to a known state

 Interrupts and timers are disabled

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal
data memory are unaffected during a reset; any previously stored data is preserved. However, since the
stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled
during and after the reset. For VDD Monitor and power-on resets, the RST pin is driven low until the device
exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the inter-
nal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Pro-
gram execution begins at location 0x0000.

Figure 19.1. Reset Sources

PCA
WDT

Missing
Clock

Detector
(one-
shot)

(Software Reset)

System Reset

Reset
Funnel

Px.x

Px.x

EN

SWRSF

 Internal
Oscillator

System
Clock CIP-51

Microcontroller
Core

Extended Interrupt
Handler

Clock Select

EN

W
D

T

E
na

bl
e

M
C

D

E
na

bl
e

EXTCLK
External
Oscillator

Drive

Illegal
EPROM

Operation

RST
(wired-OR)

Power On
Reset

'0'

+
-

Comparator 0

C0RSEF

VDD

+
-

Supply
Monitor

Enable

Low
Frequency
Oscillator

C8051T610/1/2/3/4/5/6/7

107 Rev 1.1

SFR Address = 0xA9

SFR Definition 20.1. CLKSEL: Clock Select

Bit 7 6 5 4 3 2 1 0

Name CLKSL0

Type R R R R R R R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:1 Unused Unused. Read = 0000000b; Write = Don’t Care

0 CLKSL0 System Clock Source Select Bit.

0: SYSCLK derived from the Internal High-Frequency Oscillator and scaled per the
IFCN bits in register OSCICN.
1: SYSCLK derived from the External Oscillator circuit.

Rev 1.1 112

C8051T610/1/2/3/4/5/6/7

20.3.1. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as
shown in Figure 20.1, “RC Mode”. The capacitor should be no greater than 100 pF; however for very small
capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To deter-
mine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first
select the RC network value to produce the desired frequency of oscillation, according to Equation 20.1,
where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and R = the pull-up resistor
value in kΩ.

Equation 20.1. RC Mode Oscillator Frequency

For example: If the frequency desired is 100 kHz, let R = 246 kΩ and C = 50 pF:

f = 1.23(103) / RC = 1.23 (103) / [246 x 50] = 0.1 MHz = 100 kHz

Referring to the table in SFR Definition 20.4, the required XFCN setting is 010b.

20.3.2. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in
Figure 20.1, “C Mode”. The capacitor should be no greater than 100 pF; however for very small capacitors,
the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the
required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capaci-
tor to be used and find the frequency of oscillation according to Equation 20.2, where f = the frequency of
oscillation in MHz, C = the capacitor value in pF, and VDD = the MCU power supply in Volts.

Equation 20.2. C Mode Oscillator Frequency

For example: Assume VDD = 3.0 V and f = 150 kHz:

f = KF / (C x VDD)
0.150 MHz = KF / (C x 3.0)

Since the frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 20.4
(OSCXCN) as KF = 22:

0.150 MHz = 22 / (C x 3.0)
C x 3.0 = 22 / 0.150 MHz
C = 146.6 / 3.0 pF = 48.8 pF

Therefore, the XFCN value to use in this example is 011b and C = 50 pF.

f 1.23 10
3× R C×()⁄=

f KF() C VDD×()⁄=

C8051T610/1/2/3/4/5/6/7

116 Rev 1.1

21.2. Assigning Port I/O Pins to Analog and Digital Functions
Port I/O pins can be assigned to various analog, digital, and external interrupt functions. The Port pins
assigned to analog functions should be configured for analog I/O, and Port pins assigned to digital or exter-
nal interrupt functions should be configured for digital I/O.

21.2.1. Assigning Port I/O Pins to Analog Functions

Table 21.1 shows all available analog functions that require Port I/O assignments. Port pins selected for
these analog functions should have their corresponding bit in PnSKIP set to 1. This reserves the pin
for use by the analog function and does not allow it to be claimed by the Crossbar. Table 21.1 shows the
potential mapping of Port I/O to each analog function.

21.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most
digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the
Crossbar in a manner similar to the analog functions listed above. Port pins used by these digital func-
tions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set
to 1. Table 21.2 shows all available digital functions and the potential mapping of Port I/O to each digital
function.

Table 21.1. Port I/O Assignment for Analog Functions

Analog Function Potentially Assignable
Port Pins

SFR(s) used for
Assignment

ADC Input P1.0–P3.4 AMX0P, PnSKIP

Comparator Inputs P1.0–P2.7 CPT0MX, CPT1MX,
PnSKIP

Voltage Reference (VREF0) P0.0 REF0CN, PnSKIP

External Oscillator in RC or C Mode (EXTCLK) P0.3 OSCXCN, PnSKIP

Table 21.2. Port I/O Assignment for Digital Functions

Digital Function Potentially Assignable Port Pins SFR(s) used for
Assignment

UART0, SPI0, SMBus, CP0,
CP0A, CP1, CP1A,
SYSCLK, PCA0 (CEX0-4
and ECI), T0 or T1.

Any Port pin available for assignment by the
Crossbar. This includes P0.0 - P2.3 pins which
have their PnSKIP bit set to 0.
Note: The Crossbar will always assign UART0
pins to P0.4 and P0.5.

XBR0, XBR1

Any pin used for GPIO P0.0–P3.4 PnSKIP

C8051T610/1/2/3/4/5/6/7

128 Rev 1.1

SFR Address = 0xD5

SFR Address = 0xA0; Bit-Addressable

SFR Definition 21.10. P1SKIP: Port 1 Skip

Bit 7 6 5 4 3 2 1 0

Name P1SKIP[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P1SKIP[7:0] Port 1 Crossbar Skip Enable Bits.

These bits select Port 1 pins to be skipped by the Crossbar Decoder. Port pins
used for analog, special functions or GPIO should be skipped by the Crossbar.
0: Corresponding P1.n pin is not skipped by the Crossbar.
1: Corresponding P1.n pin is skipped by the Crossbar.

Note: P1.6 and P1.7 are not connected to external pins on the C8051T616/7 devices. When writing code for the
C8051T616/7, P1SKIP[6:7] should be set to 11b to skip these two pins on the crossbar.

SFR Definition 21.11. P2: Port 2

Bit 7 6 5 4 3 2 1 0

Name P2[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Description Write Read

7:0 P2[7:0] Port 2 Data.

Sets the Port latch logic
value or reads the Port pin
logic state in Port cells con-
figured for digital I/O.

0: Set output latch to logic
LOW.
1: Set output latch to logic
HIGH.

0: P2.n Port pin is logic
LOW.
1: P2.n Port pin is logic
HIGH.

Note: P2.6 and P2.7 are not connected to external pins on the C8051T616/7 devices.

Rev 1.1 146

C8051T610/1/2/3/4/5/6/7

22.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave
Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the
received slave address with an ACK, or ignore the received slave address with a NACK.

If the received slave address is ignored by software (by NACKing the address), slave interrupts will be
inhibited until the next START is detected. If the received slave address is acknowledged, zero or more
data bytes are transmitted. If the received slave address is acknowledged, data should be written to
SMB0DAT to be transmitted. The interface enters slave transmitter mode, and transmits one or more bytes
of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an
ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT
should not be written to before SI is cleared (an error condition may be generated if SMB0DAT is written
following a received NACK while in slave transmitter mode). The interface exits slave transmitter mode
after receiving a STOP. Note that the interface will switch to slave receiver mode if SMB0DAT is not written
following a Slave Transmitter interrupt. Figure 22.8 shows a typical slave read sequence. Two transmitted
data bytes are shown, though any number of bytes may be transmitted. Notice that all of the “data byte
transferred” interrupts occur after the ACK cycle in this mode.

Figure 22.8. Typical Slave Read Sequence

22.6. SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. Table 22.4 describes the
typical actions taken by firmware on each condition. In the table, STATUS VECTOR refers to the four upper
bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical
responses; application-specific procedures are allowed as long as they conform to the SMBus specifica-
tion. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Locations

C8051T610/1/2/3/4/5/6/7

152 Rev 1.1

23.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programma-
ble ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80
(SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in reg-
ister PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit
goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit
Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data
reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to 1. After the stop bit is
received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met:
(1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the
state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in
SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to 1. If the above conditions are not met,
SBUF0 and RB80 will not be loaded and the RI0 flag will not be set to 1. A UART0 interrupt will occur if
enabled when either TI0 or RI0 is set to 1.

Figure 23.5. 9-Bit UART Timing Diagram

D1D0 D2 D3 D4 D5 D6 D7
START

BIT
MARK

STOP
BIT

BIT TIMES

BIT SAMPLING

SPACE
D8

Rev 1.1 159

C8051T610/1/2/3/4/5/6/7

24.2. SPI0 Master Mode Operation
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by
reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-
MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is
used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this
mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a
Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will
typically default to being slave devices while they are not acting as the system master device. In multi-mas-
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins.
Figure 24.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this
mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices
that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 24.3
shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be
addressed using general-purpose I/O pins. Figure 24.4 shows a connection diagram for a master device in
4-wire master mode and two slave devices.

Figure 24.2. Multiple-Master Mode Connection Diagram

Master
Device 2

Master
Device 1

MOSI

MISO

SCK

MISO

MOSI

SCK

NSS

GPIO NSS

GPIO

C8051T610/1/2/3/4/5/6/7

181 Rev 1.1

25.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers oper-
ate in auto-reload mode as shown in Figure 25.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH
holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is
always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock
source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or
the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows
from 0xFF to 0x00. When Timer 2 interrupts are enabled, an interrupt is generated each time TMR2H over-
flows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each
time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and
TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not
cleared by hardware and must be manually cleared by software.

Figure 25.5. Timer 2 8-Bit Mode Block Diagram

T2MH T2XCLK TMR2H Clock Source T2ML T2XCLK TMR2L Clock Source

0 0 SYSCLK / 12 0 0 SYSCLK / 12
0 1 External Clock / 8 0 1 External Clock / 8
1 X SYSCLK 1 X SYSCLK

SYSCLK

TCLK

0

1
TR2

External Clock / 8

SYSCLK / 12 0

1

T2XCLK

1

0

TMR2H

TMR2RLH
Reload

Reload

TCLK TMR2L

TMR2RLL

Interrupt

 T
M

R
2C

N

T2SPLIT

TF2LEN
TF2L
TF2H

T2XCLK

TR2

To ADC,
SMBus

To SMBus

T2ML

T2MH

Rev 1.1 196

C8051T610/1/2/3/4/5/6/7

26.3.3. High-Speed Output Mode

In High-Speed Output mode, a module’s associated CEXn pin is toggled each time a match occurs
between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and
PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An
interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not auto-
matically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared
by software. Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-
Speed Output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next
match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Cap-
ture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the
ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 26.6. PCA High-Speed Output Mode Diagram

Match16-bit Comparator

PCA0H

PCA0CPHn

Enable

PCA0LPCA
Timebase

PCA0CPLn

0

1

0 0 0 x

ENB

ENB

0

1

Write to
PCA0CPLn

Write to
PCA0CPHn

Reset

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

x

CEXn
Crossbar Port I/O

Toggle
0

1

TOGn

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

C
C
F
4

C
C
F
3

PCA Interrupt

Rev 1.1 206

C8051T610/1/2/3/4/5/6/7

SFR Address = 0xF9

SFR Address = 0xFA

SFR Definition 26.4. PCA0L: PCA Counter/Timer Low Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0[7:0]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 PCA0[7:0] PCA Counter/Timer Low Byte.

The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.

Note: When the WDTE bit is set to 1, the PCA0L register cannot be modified by software. To change the contents of
the PCA0L register, the Watchdog Timer must first be disabled.

SFR Definition 26.5. PCA0H: PCA Counter/Timer High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0[15:8]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 PCA0[15:8] PCA Counter/Timer High Byte.

The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer.
Reads of this register will read the contents of a “snapshot” register, whose contents
are updated only when the contents of PCA0L are read (see Section 26.1).

Note: When the WDTE bit is set to 1, the PCA0H register cannot be modified by software. To change the contents of
the PCA0H register, the Watchdog Timer must first be disabled.

