

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	25
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.25К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051t615-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1. 5	System Overview	
	Figure 1.1. C8051T610/2/4 Block Diagram (32-pin LQFP)	16
	Figure 1.2. C8051T611/3/5 Block Diagram (28-pin QFN)	17
	Figure 1.3. C8051T616/7 Block Diagram (24-pin QFN)	18
3. F	Pin Definitions	
	Figure 3.1. LQFP-32 Pinout Diagram (Top View)	22
	Figure 3.2. QFN-28 Pinout Diagram (Top View)	23
	Figure 3.3. QFN-24 Pinout Diagram (Top View)	24
4. L	_QFP-32 Package Specifications	
	Figure 4.1. LQFP-32 Package Drawing	25
	Figure 4.2. LQFP-32 Recommended PCB Land Pattern	26
5. (QFN-28 Package Specifications	
	Figure 5.1. QFN-28 Package Drawing	27
	Figure 5.2. QFN-28 Recommended PCB Land Pattern	28
6. 0	QFN-24 Package Specifications	
	Figure 6.1. QFN-24 Package Drawing	29
	Figure 6.2. QFN-24 Recommended PCB Land Pattern	30
7. E	Electrical Characteristics	
	Figure 7.1. Normal Mode Digital Supply Current vs. Frequency (MPCE = 1)	38
	Figure 7.2. Idle Mode Digital Supply Current vs. Frequency (MPCE = 1)	38
8.1	0-Bit ADC (ADC0, C8051T610/1/2/3/6 only)	
	Figure 8.1. ADC0 Functional Block Diagram	39
	Figure 8.2. 10-Bit ADC Track and Conversion Example Timing	41
	Figure 8.3. ADC0 Equivalent Input Circuits	42
	Figure 8.4. ADC Window Compare Example: Right-Justified Data	48
	Figure 8.5. ADC Window Compare Example: Left-Justified Data	48
	Figure 8.6. ADC0 Multiplexer Block Diagram	49
9. 1	Temperature Sensor (C8051T610/1/2/3/6 only)	
	Figure 9.1. Temperature Sensor Transfer Function	51
	Figure 9.2. Temperature Sensor Error with 1-Point Calibration at 0 Celsius	52
10.	Voltage Reference Options	
	Figure 10.1. Voltage Reference Functional Block Diagram	54
12.	Comparator0 and Comparator1	
	Figure 12.1. Comparator0 Functional Block Diagram	58
	Figure 12.2. Comparator1 Functional Block Diagram	59
	Figure 12.3. Comparator Hysteresis Plot	60
	Figure 12.4. Comparator Input Multiplexer Block Diagram	65
13.	CIP-51 Microcontroller	
	Figure 13.1. CIP-51 Block Diagram	68
14.	Memory Organization	
	Figure 14.1. Memory Map	77
	Figure 14.2. Program Memory Map	78

19.	Reset Sources	
	Figure 19.1. Reset Sources	100
	Figure 19.2. Power-On and VDD Monitor Reset Timing	101
20.	Oscillators and Clock Selection	
	Figure 20.1. Oscillator Options	106
21.	Port Input/Output	
	Figure 21.1. Port I/O Functional Block Diagram	113
	Figure 21.2. Port I/O Cell Block Diagram	115
	Figure 21.3. Priority Crossbar Decoder Potential Pin Assignments	118
	Figure 21.4. Priority Crossbar Decoder Example 1 - No Skipped Pins	119
	Figure 21.5. Priority Crossbar Decoder Example 2 - Skipping Pins	120
22.	SMBus	
	Figure 22.1. SMBus Block Diagram	132
	Figure 22.2. Typical SMBus Configuration	133
	Figure 22.3. SMBus Transaction	134
	Figure 22.4. Typical SMBus SCL Generation	136
	Figure 22.5. Typical Master Write Sequence	143
	Figure 22.6. Typical Master Read Sequence	144
	Figure 22.7. Typical Slave Write Sequence	145
	Figure 22.8. Typical Slave Read Sequence	146
23.	UART0	
	Figure 23.1. UART0 Block Diagram	149
	Figure 23.2. UART0 Baud Rate Logic	150
	Figure 23.3. UART Interconnect Diagram	151
	Figure 23.4. 8-Bit UART Timing Diagram	151
	Figure 23.5. 9-Bit UART Timing Diagram	152
	Figure 23.6. UART Multi-Processor Mode Interconnect Diagram	153
24.	Enhanced Serial Peripheral Interface (SPI0)	
	Figure 24.1. SPI Block Diagram	157
	Figure 24.2. Multiple-Master Mode Connection Diagram	159
	Figure 24.3. 3-Wire Single Master and 3-Wire Single Slave Mode	
	Connection Diagram	160
	Figure 24.4. 4-Wire Single Master Mode and 4-Wire Slave Mode	
		160
	Figure 24.5. Master Mode Data/Clock Timing	162
	Figure 24.6. Slave Mode Data/Clock Timing (CKPHA = 0)	162
	Figure 24.7. Slave Mode Data/Clock Timing (CKPHA = 1)	163
	Figure 24.8. SPI Master Timing (CKPHA = 0)	167
	Figure 24.9. SPI Master Timing (CKPHA = 1)	167
	Figure 24.10. SPI Slave Timing (CKPHA = 0)	168
05		168
25.	Limers	170
	Figure 25.1. 10 Mode 0 Block Diagram	1/3
	Figure 25.2. 10 Mode 2 Block Diagram	1/4
	Figure 25.3. TU Mode 3 Block Diagram	175

Figure 6.2. QFN-24 Recommended PCB Land Pattern

Table 6.2. QFN-24 PCB Land Pattern Dimesic	ons
--	-----

Dimension	Min	Max
C1	3.90	4.00
C2	3.90	4.00
E	0.50	BSC
X1	0.20	0.30

Dimension	Min	Max
X2	2.70	2.80
Y1	0.65	0.75
Y2	2.70	2.80

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60μm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- **7.** A 2x2 array of 1.10mm x 1.10mm openings on a 1.30mm pitch should be used for the center pad.

Card Assembly

- 8. A No-Clean, Type-3 solder paste is recommended.
- **9.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Table 7.9. Temperature Sensor Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Linearity		—	±0.5	—	°C
Slope			3.49	—	mV/°C
Slope Error*			±40	—	µV/°C
Offset	Temp = 0 °C	—	930		mV
Offset Error*	Temp = 0 °C		±12	—	mV
Note: Represents one stan	dard deviation from the mean.				

Table 7.10. Voltage Reference Electrical Characteristics

 V_{DD} = 3.0 V; -40 to +85 °C unless otherwise specified.

Parameter	Conditions		Тур	Max	Units
Input Voltage Range		0	_	V _{DD}	V
Input Current	Sample Rate = 500 ksps; VREF = 2.5 V		12		μA

8.4.1. Window Detector Example

Figure 8.4 shows two example window comparisons for right-justified data. with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 8.5 shows an example using left-justified data with the same comparison values.

Figure 8.4. ADC Window Compare Example: Right-Justified Data

Figure 8.5. ADC Window Compare Example: Left-Justified Data

12. Comparator0 and Comparator1

C8051T610/1/2/3/4/5/6/7 devices include two on-chip programmable voltage comparators: Comparator0 is shown in Figure 12.1, Comparator1 is shown in Figure 12.2. The two comparators operate identically with the following exceptions: (1) Their input selections differ as described in Section "12.1. Comparator Multiplexers" on page 65; (2) Comparator0 can be used as a reset source.

The Comparators offer programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0 or CP1), or an asynchronous "raw" output (CP0A or CP1A). The asynchronous signals are available even when the system clock is not active. This allows the Comparators to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator outputs may be configured as open drain or push-pull (see Section "21.4. Port I/O Initialization" on page 121). Comparator0 may also be used as a reset source (see Section "19.5. Comparator0 Reset" on page 104).

The Comparator inputs are selected by the comparator input multiplexers, as detailed in Section "12.1. Comparator Multiplexers" on page 65.

Figure 12.1. Comparator0 Functional Block Diagram

SFR Definition 12.1. CPT0CN: Comparator0 Control

Bit	7	6	5	4	3	2	1	0
Name	CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0H	YP[1:0]	CP0H	/N[1:0]
Туре	R/W	R	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9B

Bit	Name	Function
7	CP0EN	Comparator0 Enable Bit.
		1: Comparatoro Disabled.
6	CP0OUT	Comparator0 Output State Flag.
		0: Voltage on CP0+ < CP0–. 1: Voltage on CP0+ > CP0–.
5	CP0RIF	Comparator0 Rising-Edge Flag. Must be cleared by software.
		0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred.
4	CP0FIF	Comparator0 Falling-Edge Flag. Must be cleared by software.
		0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred.
3:2	CP0HYP[1:0]	Comparator0 Positive Hysteresis Control Bits.
		00: Positive Hysteresis Disabled.
		01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV.
		11: Positive Hysteresis = 20 mV.
1:0	CP0HYN[1:0]	Comparator0 Negative Hysteresis Control Bits.
		00: Negative Hysteresis Disabled.
		U1: Negative Hysteresis = 5 mV .
		11: Negative Hysteresis = 20 mV.

SFR Definition 12.2. CPT0MD: Comparator0 Mode Selection

Bit	7	6	5	4	3	2	1	0
Name			CP0RIE	CP0FIE			CP0M	ID[1:0]
Туре	R	R	R/W	R/W	R	R	R/	W
Reset	0	0	0	0	0	0	1	0

SFR Address = 0x9D

Bit	Name	Function
7:6	Unused	Unused. Read = 00b, Write = Don't Care.
5	CPORIE	Comparator0 Rising-Edge Interrupt Enable. 0: Comparator0 Rising-edge interrupt disabled. 1: Comparator0 Rising-edge interrupt enabled.
4	CP0FIE	Comparator0 Falling-Edge Interrupt Enable. 0: Comparator0 Falling-edge interrupt disabled. 1: Comparator0 Falling-edge interrupt enabled.
3:2	Unused	Unused. Read = 00b, Write = don't care.
1:0	CP0MD[1:0]	Comparator0 Mode Select. These bits affect the response time and power consumption for Comparator0. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

SFR Definition 12.4. CPT1MD: Comparator1 Mode Selection

Bit	7	6	5	4	3	2	1	0
Name			CP1RIE	CP1FIE			CP1M	D[1:0]
Туре	R	R	R/W	R/W	R	R	R/	W
Reset	0	0	0	0	0	0	1	0

SFR Address = 0x9C

Bit	Name	Function
7:6	Unused	Unused. Read = 00b, Write = Don't Care.
5	CP1RIE	Comparator1 Rising-Edge Interrupt Enable. 0: Comparator1 Rising-edge interrupt disabled. 1: Comparator1 Rising-edge interrupt enabled.
4	CP1FIE	Comparator1 Falling-Edge Interrupt Enable. 0: Comparator1 Falling-edge interrupt disabled. 1: Comparator1 Falling-edge interrupt enabled.
3:2	Unused	Unused. Read = 00b, Write = don't care.
1:0	CP1MD[1:0]	Comparator1 Mode Select. These bits affect the response time and power consumption for Comparator1. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

SFR Definition 13.6. PSW: Program Status Word

Bit	7	6	5	4	3	2	1	0
Nam	e CY	AC	F0	RS	[1:0]	OV	F1	PARITY
Туре	R/W	R/W	R/W	R	/W	R/W	R/W	R
Rese	et O	0	0	0	0	0	0	0
SFR A	Address = 0	xD0; Bit-Addres	sable		I		I	1
Bit	Bit Name Function							
7	CY	Carry Flag.						
		This bit is set row (subtraction	when the las on). It is clea	at arithmetic ared to logic	operation re 0 by all othe	esulted in a ca er arithmetic o	arry (additio operations.	n) or a bor-
6	AC	Auxiliary Car	ry Flag.					
		This bit is set borrow from (s metic operatio	This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations.					
5	F0	User Flag 0.						
		This is a bit-ad	dressable,	general purp	oose flag for	use under so	oftware cont	rol.
4:3	RS[1:0]	Register Ban	k Select.					
		These bits sel	ect which re	gister bank	is used duri	ng register ac	cesses.	
		00: Bank 0, Ad	daresses Oxi daresses Oxi	00-0x07 08-0x0F				
		10: Bank 2, A	ddresses 0x	10-0x17				
		11: Bank 3, Ad	11: Bank 3, Addresses 0x18-0x1F					
2	OV	Overflow Flag	j .					
		This bit is set	to 1 under th	ne following	circumstanc	es:		
		I AN ADD, A	DDC, or SUB	B instruction s in an overflo	causes a sigr w (result is a	reater than 25	iow. 5).	
	A DIV instruction causes a divide-by-zero condition.							
		The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases.						
1	F1	User Flag 1.						
		This is a bit-ad	ddressable,	general purp	bose flag for	use under so	oftware cont	rol.
0	PARITY	Parity Flag.						
		This bit is set t if the sum is e	o logic 1 if th ven.	ne sum of th	e eight bits i	n the accumu	lator is odd	and cleared

20. Oscillators and Clock Selection

C8051T610/1/2/3/4/5/6/7 devices include a programmable internal high-frequency oscillator and an external oscillator drive circuit. The internal high-frequency oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 20.1. The system clock can be sourced by the external oscillator circuit or the internal oscillator. The internal oscillator also offers a selectable postscaling feature.

Figure 20.1. Oscillator Options

20.1. System Clock Selection

The CLKSL0 bit in register CLKSEL selects which oscillator source is used as the system clock. CLKSL0 must be set to 1 for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator and external oscillator, so long as the selected clock source is enabled and running.

The internal high-frequency oscillator requires little start-up time and may be selected as the system clock immediately following the register write which enables the oscillator. The external RC and C modes also typically require no startup time.

22.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. As a receiver, the interrupt for an ACK occurs **before** the ACK. As a transmitter, interrupts occur **after** the ACK.

22.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 22.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode.

Figure 22.5. Typical Master Write Sequence

22.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

The ACKRQ bit is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0-DAT is written while an active Master Receiver. Figure 22.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK.

Figure 22.6. Typical Master Read Sequence

25.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

SFR Definition 25.8. TMR2CN: Timer 2 Control

Bit	7	6	5	4	3	2	1	0
Name	TF2H	TF2L	TF2LEN		T2SPLIT	TR2		T2XCLK
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC8; Bit-Addressable

Bit	Name	Function
7	TF2H	Timer 2 High Byte Overflow Flag. Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF2L	Timer 2 Low Byte Overflow Flag.
		be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.
5	TF2LEN	Timer 2 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
4	Unused	Unused. Read = 0b; Write = Don't Care
3	T2SPLIT	Timer 2 Split Mode Enable.
		When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.
		1: Timer 2 operates as two 8-bit auto-reload timers.
2	TR2	Timer 2 Run Control.
		Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.
1	Unused	Unused. Read = 0b; Write = Don't Care
0	T2XCLK	Timer 2 External Clock Select.
		This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).

26.1. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H into a "snapshot" register; the following PCA0H read accesses this "snapshot" register. **Reading the PCA0L register first guarantees an accurate reading of the entire 16-bit PCA0 counter.** Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2–CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 26.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

CPS2	CPS1	CPS0	Timebase				
0	0	0	System clock divided by 12				
0	0	1	System clock divided by 4				
0	1	0	Timer 0 overflow				
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)				
1	0	0	System clock				
1	0	1	External oscillator source divided by 8 [*]				
1	1	Х	Reserved				
Note: Ext	Note: External oscillator source divided by 8 is synchronized with the system clock.						

Table 26.1. PCA Timebase Input Options

Rev 1.1

26.3.5. 8-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 26.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. If the MATn bit is set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The duty cycle for 8-Bit PWM Mode is given in Equation 26.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Duty Cycle =
$$\frac{(256 - PCA0CPHn)}{256}$$

Equation 26.2. 8-Bit PWM Duty Cycle

Using Equation 26.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 26.8. PCA 8-Bit PWM Mode Diagram

26.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 26.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

$$Duty Cycle = \frac{(65536 - PCA0CPn)}{65536}$$

Equation 26.3. 16-Bit PWM Duty Cycle

Using Equation 26.3, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 26.9. PCA 16-Bit PWM Mode

C2 Register Definition 27.2. DEVICEID: C2 Device ID

Bit	7	6	5	4	3	2	1	0
Name	DEVICEID[7:0]							
Туре	R/W							
Reset	0	0	0	1	0	0	1	1

C2 Address: 0x00

Bit	Name	Function
7:0	DEVICEID[7:0]	Device ID.
		This read-only register returns the 8-bit device ID: 0x13 (C8051T610/1/2/3/4/5/6/7).

C2 Register Definition 27.3. REVID: C2 Revision ID

Bit	7	6	5	4	3	2	1	0
Name	REVID[7:0]							
Туре	R/W							
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies
00.0.1								

C2 Address: 0x01

Bit	Name	Function				
7:0	REVID[7:0]	Revision ID.				
		This read-only register returns the 8-bit revision ID. For example: 0x00 = Revision A.				

