

Welcome to **E-XFL.COM**

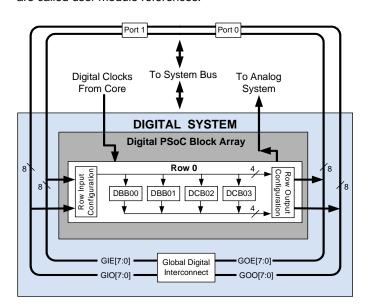
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 2x14b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c22213-24pvit

processor. The CPU utilizes an interrupt controller with 10 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).


Memory encompasses 2 KB of Flash for program storage, 256 bytes of SRAM for data storage, and up to 2 KB of EEPROM emulated using the Flash. Program Flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The Digital System is composed of 4 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Digital System Block Diagram

Digital peripheral configurations include those listed below.

- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 32 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8-bit with selectable parity (up to 1)
- SPI master and slave (up to 1)
- I2C slave and master (1 available as a System Resource)
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA (up to 1)
- Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled "PSoC Device Characteristics" on page 3.

The Analog System

The Analog System is composed of 3 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (one with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (two pole band-pass, low-pass, and notch)
- Amplifiers (one with selectable gain to 48x)
- Comparators (one with 16 selectable thresholds)
- DACs (one with 6- to 9-bit resolution)
- Multiplying DACs (one with 6- to 9-bit resolution)
- High current output drivers (one with 30 mA drive as a Core Resource)
- 1.3V reference (as a System Resource)
- Many other topologies possible

Getting Started

The quickest path to understanding the PSoC silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, reference the $PSoC^{TM}$ Mixed Signal Array Technical Reference Manual.

For up-to-date Ordering, Packaging, and Electrical Specification information, reference the latest PSoC device data sheets on the web at http://www.cypress.com/psoc.

Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store at http://www.onfulfillment.com/cypressstore/ contains development kits, C compilers, and all accessories for PSoC development. Click on *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Tele-Training

Free PSoC "Tele-training" is available for beginners and taught by a live marketing or application engineer over the phone. Five training classes are available to accelerate the learning curve including introduction, designing, debugging, advanced design, advanced analog, as well as application-specific classes covering topics like PSoC and the LIN bus. For days and times of the tele-training, see http://www.cypress.com/support/training.cfm.

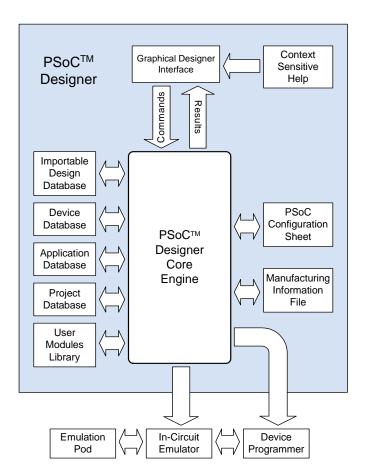
Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant, go to the following Cypress support web site: http://www.cypress.com/support/cypros.cfm.

Technical Support

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support/login.cfm.

Application Notes


A long list of application notes will assist you in every aspect of your design effort. To locate the PSoC application notes, go to http://www.cypress.com/design/results.cfm.

Development Tools

The Cypress MicroSystems PSoC Designer is a Microsoft® Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows 98, Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP. (Reference the PSoC Designer Functional Flow diagram below.)

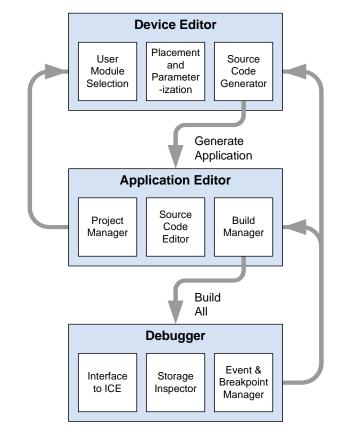
PSoC Designer helps the customer to select an operating configuration for the PSoC, write application code that uses the PSoC, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high-level C language compiler developed specifically for the devices in the family.

PSoC Designer Subsystems

User Modules and the PSoC Development Process

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. Each block has several registers that determine its function and connectivity to other blocks, multiplexers, buses, and to the IO pins. Iterative development cycles permit you to adapt the hardware as well as the software. This substantially lowers the risk of having to select a different part to meet the final design requirements.


To speed the development process, the PSoC Designer Integrated Development Environment (IDE) provides a library of pre-built, pre-tested hardware peripheral functions, called "User Modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and mixed signal varieties. The standard User Module library contains over 50 common peripherals such as ADCs, DACs Timers, Counters, UARTs, and other not-so common peripherals such as DTMF Generators and Bi-Quad analog filter sections.

Each user module establishes the basic register settings that implement the selected function. It also provides parameters that allow you to tailor its precise configuration to your particular application. For example, a Pulse Width Modulator User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. User modules also provide tested software to cut your development time. The user module application programming interface (API) provides highlevel functions to control and respond to hardware events at run-time. The API also provides optional interrupt service routines that you can adapt as needed.

The API functions are documented in user module data sheets that are viewed directly in the PSoC Designer IDE. These data sheets explain the internal operation of the user module and provide performance specifications. Each data sheet describes the use of each user module parameter and documents the setting of each register controlled by the user module.

The development process starts when you open a new project and bring up the Device Editor, a pictorial environment (GUI) for configuring the hardware. You pick the user modules you need for your project and map them onto the PSoC blocks with point-and-click simplicity. Next, you build signal chains by interconnecting user modules to each other and the IO pins. At this stage, you also configure the clock source connections and enter parameter values directly or by selecting values from drop-down menus. When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Application" step. This causes PSoC Designer to generate source code that automatically configures

the device to your specification and provides the high-level user module API functions.

User Modules and Development Process Flow Chart

The next step is to write your main program, and any sub-routines using PSoC Designer's Application Editor subsystem. The Application Editor includes a Project Manager that allows you to open the project source code files (including all generated code files) from a hierarchal view. The source code editor provides syntax coloring and advanced edit features for both C and assembly language. File search capabilities include simple string searches and recursive "grep-style" patterns. A single mouse click invokes the Build Manager. It employs a professional-strength "makefile" system to automatically analyze all file dependencies and run the compiler and assembler as necessary. Project-level options control optimization strategies used by the compiler and linker. Syntax errors are displayed in a console window. Double clicking the error message takes you directly to the offending line of source code. When all is correct, the linker builds a ROM file image suitable for programming.

The last step in the development process takes place inside the PSoC Designer's Debugger subsystem. The Debugger downloads the ROM image to the In-Circuit Emulator (ICE) where it runs at full speed. Debugger capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the Debugger provides a large trace buffer and allows you define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CPU	central processing unit
СТ	continuous time
DAC	digital-to-analog converter
DC	direct current
EEPROM	electrically erasable programmable read-only memory
FSR	full scale range
GPIO	general purpose IO
Ю	input/output
IPOR	imprecise power on reset
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
PC	program counter
POR	power on reset
PPOR	precision power on reset
PSoC™	Programmable System-on-Chip
PWM	pulse width modulator
RAM	random access memory
ROM	read only memory
SC	switched capacitor
SMP	switch mode pump

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 3-1 on page 13 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexidecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexidecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (e.g., 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

Table of Contents

For an in depth discussion and more information on your PSoC device, obtain the *PSoC Mixed Signal Array Technical Reference Manual.* This document encompasses and is organized into the following chapters and sections.

1.	Pin	Information	8
	1.1	Pinouts	8
		1.1.1 8-Pin Part Pinout	
		1.1.2 20-Pin Part Pinout	
		1.1.3 32-Pin Part Pinout	9
2.	Reg	jister Reference	10
	2.1	Register Conventions	10
		2.1.1 Abbreviations Used	
	2.2	Register Mapping Tables	10
3.	Elec	ctrical Specifications	13
	3.1	Absolute Maximum Ratings	14
	3.2	Operating Temperature	14
	3.3	DC Electrical Characteristics	
		3.3.1 DC Chip-Level Specifications	
		3.3.2 DC General Purpose IO Specifications	15
		3.3.3 DC Operational Amplifier Specifications	
		3.3.4 DC Analog Output Buffer Specifications	18
		3.3.5 DC Analog Reference Specifications	
		3.3.6 DC Analog PSoC Block Specifications	
		3.3.7 DC POR and LVD Specifications	
		3.3.8 DC Programming Specifications	
	3.4	AC Electrical Characteristics	
		3.4.1 AC Chip-Level Specifications	
		3.4.2 AC General Purpose IO Specifications	
		3.4.3 AC Operational Amplifier Specifications	25
		3.4.4 AC Digital Block Specifications	
		3.4.5 AC Analog Output Buffer Specifications	
		3.4.6 AC External Clock Specifications	
		3.4.7 AC Programming Specifications	
		3.4.8 AC I2C Specifications	30
4.	Pac	kaging Information	
	4.1	Packaging Dimensions	
	4.2	Thermal Impedances	
	4.3	Capacitance on Crystal Pins	34
5.	Ord	ering Information	35
	5.1	Ordering Code Definitions	35
6.	Sale	es and Company Information	36
	6.1	Revision History	36
	6.2	Convrights	36

1. Pin Information

This chapter describes, lists, and illustrates the CY8C22x13 PSoC device pins and pinout configurations.

1.1 Pinouts

The CY8C22x13 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital IO. However, Vss, Vdd, SMP, and XRES are not capable of Digital IO.

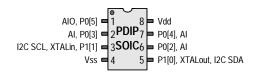

1.1.1 8-Pin Part Pinout

Table 1-1. 8-Pin Part Pinout (PDIP, SOIC)

Pin	Ту	ре	Pin	Description
No.	Digital	Analog	Name	Description
1	Ю	Ю	P0[5]	Analog column mux input and column output.
2	Ю	ı	P0[3]	Analog column mux input.
3	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)
4	Pov	wer	Vss	Ground connection.
5	Ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)
6	Ю	ı	P0[2]	Analog column mux input.
7	Ю	ı	P0[4]	Analog column mux input.
8	Pov	wer	Vdd	Supply voltage.

LEGEND: A = Analog, I = Input, and O = Output.

CY8C22113 8-Pin PSoC Device

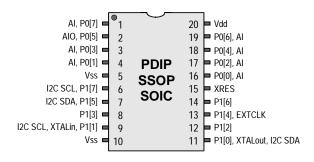

1.1.2 20-Pin Part Pinout

Table 1-2. 20-Pin Part Pinout (PDIP, SSOP, SOIC)

Pin	Ту	ре	Pin	Description			
No.	Digital	Analog	Name	Description			
1	Ю	ı	P0[7]	Analog column mux input.			
2	Ю	10	P0[5]	Analog column mux input and column output.			
3	Ю	ı	P0[3]	Analog column mux input.			
4	Ю	ı	P0[1]	Analog column mux input.			
5	Po	wer	Vss	Ground connection.			
6	Ю		P1[7]	I2C Serial Clock (SCL)			
7	Ю		P1[5]	I2C Serial Data (SDA)			
8	Ю		P1[3]				
9	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)			
10	Po	wer	Vss	Ground connection.			
11	Ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)			
12	Ю		P1[2]				
13	Ю		P1[4]	Optional External Clock Input (EXTCLK)			
14	10		P1[6]				
15	Inp	out	XRES	Active high external reset with internal pull down.			
16	Ю	ı	P0[0]	Analog column mux input.			
17	Ю	ı	P0[2]	Analog column mux input.			
18	Ю	ı	P0[4]	Analog column mux input.			
19	Ю	ı	P0[6]	Analog column mux input.			
20	Po	wer	Vdd	Supply voltage.			

LEGEND: A = Analog, I = Input, and O = Output.

CY8C22213 20-Pin PSoC Device

CY8C22x13 Final Data Sheet 1. Pin Information

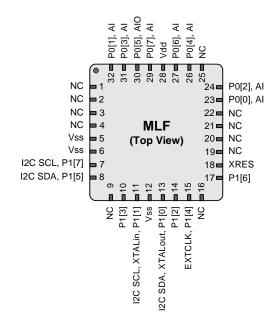

1.1.3 32-Pin Part Pinout

Table 1-3. 32-Pin Part Pinout (MLF*)

Pin	Ту	ре	Pin	December -
No.	Digital	Analog	Name	Description
1			NC	No connection. Do not use.
2			NC	No connection. Do not use.
3			NC	No connection. Do not use.
4			NC	No connection. Do not use.
5	Po	wer	Vss	Ground connection.
6	Po	wer	Vss	Ground connection.
7	Ю		P1[7]	I2C Serial Clock (SCL)
8	10		P1[5]	I2C Serial Data (SDA)
9			NC	No connection. Do not use.
10	Ю		P1[3]	
11	10		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)
12	Po	wer	Vss	Ground connection.
13	Ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)
14	Ю		P1[2]	
15	Ю		P1[4]	Optional External Clock Input (EXTCLK)
16			NC	No connection. Do not use.
17	Ю		P1[6]	
18	Inį	put	XRES	Active high external reset with internal pull down.
19			NC	No connection. Do not use.
20			NC	No connection. Do not use.
21			NC	No connection. Do not use.
22			NC	No connection. Do not use.
23	10	I	P0[0]	Analog column mux input.
24	10	I	P0[2]	Analog column mux input.
25			NC	No connection. Do not use.
26	10	I	P0[4]	Analog column mux input.
27	Ю	I	P0[6]	Analog column mux input.
28	Po	Power		Supply voltage.
29	Ю	I	P0[7]	Analog column mux input.
30	Ю	10	P0[5]	Analog column mux input and column output.
31	Ю	I	P0[3]	Analog column mux input.
32	Ю	I	P0[1]	Analog column mux input.

LEGEND: A = Analog, I = Input, and O = Output.

CY8C22213 PSoC Device

^{*} The MLF package has a center pad that must be connected to the same ground as the Vss pin.

CY8C22x13 Final Data Sheet 2. Register Reference

Register Map Bank 1 Table: Configuration Space

PRTODIAND OI	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRTOICO Q2 RW		_	RW					80				
PRTIOICI	PRT0DM1	01	RW		41			81			C1	
PRTIDMO												
PRTIOM 05	PRT0IC1	03	RW		43			83			C3	
PRTIICD							ASD11CR0	84				
PRT1IC1		05	RW		45		ASD11CR1	85	RW		C5	
08												
09	PRT1IC1		RW				ASD11CR3		RW			
OA		08			48			88			C8	
B												
OC												
DE												
OF												
OF												
10		0E									CE	
11					4F			8F			CF	
12												
13												
14											D2	
15		13			53					GDI_E_OU	D3	RW
16		14			54		ASC21CR0	94	RW		D4	
17	<u> </u>	15			55				RW		D5	
18		16			56		ASC21CR2	96	RW		D6	
19		17			57		ASC21CR3	97	RW		D7	
1A		18			58			98			D8	
18		19			59			99			D9	
1C		1A			5A			9A			DA	
1D		1B			5B			9B			DB	
1E		1C			5C			9C			DC	
1F		1D			5D			9D		OSC_GO_EN	DD	RW
1F		1E			5E			9E		OSC_CR4	DE	RW
DBBOOFN 20 RW CLK_CR0 60 RW A0 OSC_CR0 EO RW DBBOOIN 21 RW CLK_CR1 61 RW A1 OSC_CR2 E2 RW DBBOOOU 22 RW ABF_CR0 62 RW A2 OSC_CR2 E2 RW DBBO1FN 24 RW 64 A3 VLT_CR E3 RW DBB01IN 25 RW 65 A5 A5 E5 E5 DBB01OU 26 RW AMD_CR1 66 RW A6 E6 E5 DBB01OU 26 RW AMD_CR1 66 RW A6 E6 E5 DBB01OU 28 RW A68 A8 IMO_TR E8 W DCB02IN 28 RW 68 A8 A8 IMO_TR E8 W DCB02OU 2A RW 6A AA AB ECO_TR		1F			5F			9F			DF	RW
DBB00OU 22 RW ABF_CRO 62 RW A2 OSC_CR2 E2 RW 23 63 63 A3 VLT_CR E3 RW DBB01FN 24 RW 64 A4 VLT_CMP E4 R DBB01FN 25 RW 65 A5 VLT_CMP E4 R DBB01FN 25 RW 66 RW A6 VLT_CMP E4 R DBB01FU 26 RW AMD_CR1 66 RW A6 E5 E5 DBB01FU 26 RW AMD_CR1 66 RW A7 E7 E7 DCB02FN 28 RW 68 A8 A8 IMO_TR E9 W DCB02FN 29 RW 68 AA AB ECO_TR E9 W DCB03FN 20 RW 6C AC AC EC DC_TR EB W <	DBB00FN	20	RW	CLK_CR0	60	RW		A0			E0	RW
DBB01FN	DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB01FN 24 RW 64 A4 VLT_CMP E4 R DBB01IN 25 RW 65 A5 E5 E5 DBB01OU 26 RW AMD_CR1 66 RW A6 E6 27 ALT_CR0 67 RW A7 E7 E6 DCB02FN 28 RW 68 A8 IMO_TR E8 W DCB02IN 29 RW 69 A9 ILO_TR E9 W DCB02IN 29 RW 6A AA AA BDG_TR EA RW DCB03IN 20 RW 6C AC AC ECO_TR EB W DCB03IN 2D RW 6E AE AE EE EE DCB03OU 2E RW 6E AE AF EF EF 33 70 RDIORI B0 RW F6 EF F6 <	DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
DBB01IN 25 RW AMD_CR1 66 RW A6 E5 DBB01OU 26 RW AMD_CR1 66 RW A6 E6 27 ALT_CR0 67 RW A7 E7 DCB02FN 28 RW 68 A8 IMO_TR E8 W DCB02IN 29 RW 69 A9 ILO_TR E9 W DCB02OU 2A RW 6A AA AA BDG_TR EA RW DCB03FN 2C RW 6C AC AC EC EC DCB03IN 2D RW 6E AB ECO_TR EB W DCB03OU 2E RW 6E AE AE EE EC DCB03OU 2E RW 6E AF AF EF EF EF 33 1 71 RDIOSTN B1 RW F1 EF		23			63			A3		VLT_CR	E3	RW
DBB01OU 26 RW AMD_CR1 66 RW A6 E6 27 ALT_CR0 67 RW A7 E7 DCB02FN 28 RW 68 A8 IMO_TR E8 W DCB02IN 29 RW 69 A9 ILO_TR E9 W DCB02OU 2A RW 6A AA AB ECO_TR EB W DCB03FN 2C RW 6C AC AC EC EC DCB03IN 2D RW 6D AD AD ED ED DCB03OU 2E RW 6E AE AE EE EE 2F 6F 6F AF AF EF AF EF AF EF AF AF EF AF AF BR AF AF EF AF AF AF EF AF AF AF AF AF <	DBB01FN	24	RW		64			A4		VLT_CMP	E4	R
27	DBB01IN	25	RW		65			A5			E5	
DCB02FN 28 RW 68 A8 IMO_TR E8 W DCB02IN 29 RW 69 A9 ILO_TR E9 W DCB02OU 2A RW 6A AA BDG_TR EA RW DCB03FN 2C RW 6C AC EC EC DCB03IN DCB03IN 2D RW 6D AD ED DCB03IN ED DCB03IN DCB03IN DCB03IN ED ED DCB03IN ED ED DCB03IN ED	DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
DCB02IN 29		27		ALT_CR0	67	RW		A7			E7	
DCB02IN 29	DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02OU 2A RW 6A AA BDG_TR EA RW 2B 6B 6B AB ECO_TR EB W DCB03FN 2C RW 6C AC AC EC EC DCB03IN 2D RW 6D AD ED ED ED DCB03OU 2E RW 6E AE AE EE EA EE 2F 6F AF AF EF EF EA EF EA EB CPU_FR FA FB FB <	DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB03FN 2C RW 6C AC AC EC DCB03IN 2D RW 6D AD ED DCB03OU 2E RW 6E AE EE 2F 6F AF EF EF 30 70 RDIORI BO RW FO 31 71 RDIOSYN B1 RW F1 32 72 RDIOIS B2 RW F2 33 73 RDIOLTO B3 RW F3 34 ACB01CR3 74 RW RDIORO1 B4 RW F4 35 ACB01CR0 75 RW RDIORO0 B5 RW F6 37 ACB01CR2 77 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 78 88 88 F8	DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
DCB03IN 2D RW 6D AD AD ED DCB03OU 2E RW 6E AE AE EE 2F 6F 6F AF FE FC 30 70 RDIORI B0 RW F0 31 71 RDIOSYN B1 RW F1 32 72 RDIOIS B2 RW F2 33 73 RDIOLTO B3 RW F3 34 ACB01CR3 74 RW RDIORO1 B4 RW F4 35 ACB01CR0 75 RW RDIORO0 B5 RW F5 36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 78 B8 F8 F8 F8 39 79 B9 F9 <td></td> <td>2B</td> <td></td> <td></td> <td>6B</td> <td></td> <td></td> <td>AB</td> <td></td> <td>ECO_TR</td> <td>EB</td> <td>W</td>		2B			6B			AB		ECO_TR	EB	W
DCB03OU 2E RW 6E AE AE EE 2F 6F 6F AF EF 30 70 RDIORI B0 RW F0 31 71 RDIOSYN B1 RW F1 32 72 RDIOIS B2 RW F2 33 73 RDIOLTO B3 RW F3 34 ACB01CR3 74 RW RDIORO1 B4 RW F4 35 ACB01CR0 75 RW RDIORO0 B5 RW F5 36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 79 89 9 F9 3A 7A 8B 8B F8 39 79 8B 8B F8 30 7C	DCB03FN	2C	RW		6C			AC			EC	
2F 6F AF EF 30 70 RDIORI BO RW FO 31 71 RDIOSYN B1 RW F1 32 72 RDIOIS B2 RW F2 33 73 RDIOLTO B3 RW F3 34 ACB01CR3 74 RW RDIORO1 B4 RW F4 35 ACB01CR0 75 RW RDIORO0 B5 RW F5 36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 B8 F8 39 79 B9 F9 3A 7A BA BA FA 3B 7B BB BB FB 3C 7C BC FC FC 3D <	DCB03IN	2D	RW		6D			AD			ED	
30	DCB03OU	2E	RW		6E			AE			EE	
31 71 RDIOSYN B1 RW F1 32 72 RDIOIS B2 RW F2 33 73 RDIOLTO B3 RW F3 34 ACB01CR3 74 RW RDIOLT1 B4 RW F4 35 ACB01CR0 75 RW RDIORO0 B5 RW F5 36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 B8 F8 39 79 B9 F9 F9 3A 7A BA BA FA 3B 7B BB BB FB 3C 7C BC FC 3D 7D BD FD		2F			6F			AF			EF	
32 72 RDIOIS B2 RW F2 33 73 RDIOLTO B3 RW F3 34 ACB01CR3 74 RW RDIOLT1 B4 RW F4 35 ACB01CR0 75 RW RDIOROO B5 RW F5 36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 B8 F8 39 79 B9 B9 F9 3A 7A BA BA FA 3B 7B BB BB FB 3C 7C BC FC FC 3D 7D BD FD FD 3E FD FD FB FB FD		30			70		RDI0RI	B0	RW		F0	
32 72 RDIOIS B2 RW F2 33 73 RDIOLTO B3 RW F3 34 ACB01CR3 74 RW RDIOLT1 B4 RW F4 35 ACB01CR0 75 RW RDIOROO B5 RW F5 36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 B8 F8 39 79 B9 B9 F9 3A 7A BA BA FA 3B 7B BB BB FB 3C 7C BC FC FC 3D 7D BD FD FD 3E FD FD FB FB FD		31			71		RDI0SYN	B1	RW		F1	
34 ACB01CR3 74 RW RDIOLT1 B4 RW F4 35 ACB01CR0 75 RW RDIORO0 B5 RW F5 36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 B8 F8 39 79 B9 F9 3A 7A BA BA FA 3B 7B BB BB FB 3C 7C BC FC 3D 7D BD BD FD 3E 7E BE CPU_SCR1 FE #		32			72		RDI0IS	B2	RW		F2	
35 ACB01CR0 75 RW RDI0RO0 B5 RW F5 36 ACB01CR1 76 RW RDI0RO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 B8 F8 39 79 B9 F9 3A 7A BA BA FA 3B 7B BB BB FB 3C 7C BC FC FC 3D 7D BD BD FD FD 3E 7E BE CPU_SCR1 FE #		33			73			В3	RW			
35 ACB01CR0 75 RW RDI0RO0 B5 RW F5 36 ACB01CR1 76 RW RDI0RO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 B8 F8 39 79 B9 F9 3A 7A BA BA FA 3B 7B BB BB FB 3C 7C BC FC FC 3D 7D BD BD FD FD 3E 7E BE CPU_SCR1 FE #		34		ACB01CR3	74	RW		B4	RW		F4	
36 ACB01CR1 76 RW RDIORO1 B6 RW F6 37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 F8 F8 39 79 B9 F9 F9 3A 7A BA FA FA 3B 7B BB BB FB 3C 7C BC FC FC 3D 7D BD FD FD 3E 7E BE CPU_SCR1 FE #		35			75	RW		B5	RW		F5	
37 ACB01CR2 77 RW B7 CPU_F F7 RL 38 78 B8 F8 39 79 B9 F9 3A 7A BA FA 3B 7B BB BB FB 3C 7C BC FC 3D 7D BD FD 3E 7E BE CPU_SCR1 FE #		_	1			RW		_	RW			1
38 78 B8 F8 39 79 B9 F9 3A 7A BA FA 3B 7B BB FB 3C 7C BC FC 3D 7D BD FD 3E 7E BE CPU_SCR1 FE #						RW		B7		CPU_F		RL
39 79 B9 F9 3A 7A BA FA 3B 7B BB FB 3C 7C BC FC 3D 7D BD FD 3E 7E BE CPU_SCR1 FE #		38			78			B8			F8	
3B 7B BB FB 3C 7C BC FC 3D 7D BD FD 3E 7E BE CPU_SCR1 FE #			1			1						1
3B 7B BB FB 3C 7C BC FC 3D 7D BD FD 3E 7E BE CPU_SCR1 FE #					7A				1			1
3C 7C BC FC 3D 7D BD FD 3E 7E BE CPU_SCR1 FE #									1			1
3D			<u> </u>			1						1
3E 7E BE CPU_SCR1 FE #												
										CPU_SCR1		#
			1			1				_		

Blank fields are Reserved and should not be accessed.

Access is bit specific.

3.1 Absolute Maximum Ratings

Table 3-2. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	-	+100	°C	Higher storage temperatures will reduce data retention time.
T _A	Ambient Temperature with Power Applied	-40	-	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC Input Voltage	Vss - 0.5	-	Vdd + 0.5	V	
_	DC Voltage Applied to Tri-state	Vss - 0.5	-	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	_	+50	mA	
I _{MAIO}	Maximum Current into any Port Pin Configured as Analog Driver	-50	-	+50	mA	
_	Static Discharge Voltage	2000	-	-	V	
_	Latch-up Current	-	-	200	mA	

3.2 Operating Temperature

Table 3-3. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	-	+85	°C	
TJ	Junction Temperature	-40	_	+100	Ü	The temperature rise from ambient to junction is package specific. See "Thermal Impedances" on page 34. The user must limit the power consumption to comply with this requirement.

3.3.3 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 3-6. 5V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value) Low Power	-	1.6	10	mV	
	Input Offset Voltage (absolute value) Mid Power	-	1.3	8	mV	
	Input Offset Voltage (absolute value) High Power	_	1.2	7.5	mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	-	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pA	Gross tested to 1 μA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
V _{CMOA}	Common Mode Voltage Range	0.0	_	Vdd	٧	The common-mode input voltage range is mea-
	Common Mode Voltage Range (high power or high opamp bias)	0.5	-	Vdd - 0.5		sured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open Loop Gain		-	-	dB	Specification is applicable at high power. For all
	Power = Low	60				other bias modes (except high power, high opamp bias), minimum is 60 dB.
	Power = Medium	60				opamp bias), minimum is 60 db.
	Power = High	80				
V _{OHIGHOA}	High Output Voltage Swing (worst case internal load)					
	Power = Low	Vdd - 0.2	_	_	V	
	Power = Medium	Vdd - 0.2	_	-	V	
	Power = High	Vdd - 0.5	_	_	V	
V _{OLOWOA}	Low Output Voltage Swing (worst case internal load)					
	Power = Low	-	-	0.2	V	
	Power = Medium	-	_	0.2	V	
	Power = High	-	-	0.5	V	
I _{SOA}	Supply Current (including associated AGND buffer)					
	Power = Low	-	150	200	μΑ	
	Power = Low, Opamp Bias = High	-	300	400	μΑ	
	Power = Medium	-	600	800	μΑ	
	Power = Medium, Opamp Bias = High	_	1200	1600	μΑ	
	Power = High	_	2400	3200	μΑ	
	Power = High, Opamp Bias = High	-	4600	6400	μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	60	_	_	dB	

3.3.7 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the *PSoC Mixed Signal Array Technical Reference Manual* for more information on the VLT_CR register.

Table 3-13. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
	Vdd Value for PPOR Trip (positive ramp)					
V_{PPOR0R}	PORLEV[1:0] = 00b		2.908		V	
V_{PPOR1R}	PORLEV[1:0] = 01b	-	4.394	_	V	
V_{PPOR2R}	PORLEV[1:0] = 10b		4.548		V	
	Vdd Value for PPOR Trip (negative ramp)					
V_{PPOR0}	PORLEV[1:0] = 00b		2.816		V	
V_{PPOR1}	PORLEV[1:0] = 01b	_	4.394	_	V	
V_{PPOR2}	PORLEV[1:0] = 10b		4.548		V	
	PPOR Hysteresis					
V_{PH0}	PORLEV[1:0] = 00b	_	92	_	mV	
V_{PH1}	PORLEV[1:0] = 01b	-	0	_	mV	
V_{PH2}	PORLEV[1:0] = 10b	_	0	_	mV	
	Vdd Value for LVD Trip					
V_{LVD0}	VM[2:0] = 000b	2.863	2.921	2.979 ^a	V	
V_{LVD1}	VM[2:0] = 001b	2.963	3.023	3.083	V	
V_{LVD2}	VM[2:0] = 010b	3.070	3.133	3.196	V	
V_{LVD3}	VM[2:0] = 011b	3.920	4.00	4.080	V	
V_{LVD4}	VM[2:0] = 100b	4.393	4.483	4.573	V	
V_{LVD5}	VM[2:0] = 101b	4.550	4.643	4.736 ^b	V	
V_{LVD6}	VM[2:0] = 110b	4.632	4.727	4.822	V	
V_{LVD7}	VM[2:0] = 111b	4.718	4.814	4.910	V	

a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

3.3.8 DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Table 3-14. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
I _{DDP}	Supply Current During Programming or Verify	-	5	25	mA	
V _{ILP}	Input Low Voltage During Programming or Verify	_	_	0.8	V	
V _{IHP}	Input High Voltage During Programming or Verify	2.2	-	-	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low Voltage During Programming or Verify	_	_	Vss + 0.75	V	
V _{OHV}	Output High Voltage During Programming or Verify	Vdd - 1.0	_	Vdd	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000	-	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^a	1,800,000	_	_	_	Erase/write cycles.
Flash _{DR}	Flash Data Retention	10	_	-	Years	

a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

3.4 AC Electrical Characteristics

3.4.1 AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Table 3-15. AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO}	Internal Main Oscillator Frequency	23.4	24	24.6 ^a	MHz	Trimmed. Utilizing factory trim values.
F _{CPU1}	CPU Frequency (5V Nominal)	0.93	24	24.6 ^{a,b}	MHz	
F _{CPU2}	CPU Frequency (3.3V Nominal)	0.93	12	12.3 ^{b,c}	MHz	
F _{48M}	Digital PSoC Block Frequency	0	48	49.2 ^{a,b,d}	MHz	Refer to the AC Digital Block Specifications below.
F _{24M}	Digital PSoC Block Frequency	0	24	24.6 ^{b,e,d}	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	
F _{32K2}	External Crystal Oscillator	-	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL Frequency	-	23.986	-	MHz	Is a multiple (x732) of crystal frequency.
Jitter24M2	24 MHz Period Jitter (PLL)	-	-	600	ps	
T _{PLLSLEW}	PLL Lock Time	0.5	-	10	ms	
T _{PLLSLEWS} - LOW	PLL Lock Time for Low Gain Setting	0.5	-	50	ms	
T _{OS}	External Crystal Oscillator Startup to 1%	-	1700	2620	ms	
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	-	2800	3800 ^f	ms	
Jitter32k	32 kHz Period Jitter	-	100		ns	
T _{XRST}	External Reset Pulse Width	10	-	-	μs	
DC24M	24 MHz Duty Cycle	40	50	60	%	
Step24M	24 MHz Trim Step Size	-	50	-	kHz	
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^{a,c}	MHz	Trimmed. Utilizing factory trim values.
Jitter24M1	24 MHz Period Jitter (IMO)	-	600		ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
T _{RAMP}	Supply Ramp Time	0	-	-	μs	

- $a. \quad 4.75 V < V dd < 5.25 V.$
- b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.
- c. 3.0V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.
- d. See the individual user module data sheets for information on maximum frequencies for user modules.
- e. 3.0V < 5.25V.
- f. The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 uW maximum drive level 32.768 kHz crystal. $3.0V \le V$ dd $\le 5.5V$, -40 $^{\circ}$ C $\le T_A \le 85$ $^{\circ}$ C.

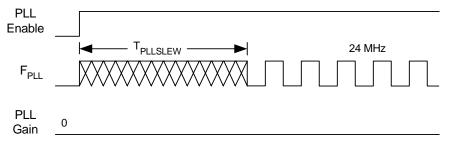


Figure 3-2. PLL Lock Timing Diagram

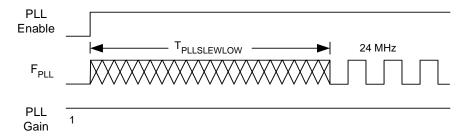


Figure 3-3. PLL Lock for Low Gain Setting Timing Diagram

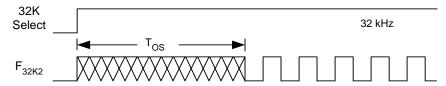


Figure 3-4. External Crystal Oscillator Startup Timing Diagram

Figure 3-5. 24 MHz Period Jitter (IMO) Timing Diagram

Figure 3-6. 32 kHz Period Jitter (ECO) Timing Diagram

3.4.3 AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Note Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Table 3-17. 5V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					Specification maximums for low power and high opamp bias, medium power, and
	Power = Low	_	_	3.9	μs	medium power and high opamp bias levels
	Power = Low, Opamp Bias = High	_		5.5	μs	are between low and high power levels.
	Power = Medium	_			μs	
	Power = Medium, Opamp Bias = High			0.72	μs	
	Power = High	<u> </u>	_	0.72	μs μs	
	Power = High, Opamp Bias = High	_		0.62	μs μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)			0.02	μο	Specification maximums for low power and high opamp bias, medium power, and
	Power = Low	_	_	5.9	μs	medium power and high opamp bias levels
	Power = Low, Opamp Bias = High	_		0.0	μs	are between low and high power levels.
	Power = Medium	_			μs	
	Power = Medium, Opamp Bias = High	_	_	0.92	μs	
	Power = High	_		0.02	μς	
	Power = High, Opamp Bias = High	_	_	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)			0.72	μο	Specification minimums for low power and
O. ROA	Power = Low	0.15	_		V/μs	high opamp bias, medium power, and
	Power = Low, Opamp Bias = High	0.10			V/μs	medium power and high power levels
	Power = Medium				V/μs	are between low and high power levels.
	Power = Medium, Opamp Bias = High	1.7	_		V/µs	
	Power = High				V/μs	
	Power = High, Opamp Bias = High	6.5	_		V/μs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)					Specification minimums for low power and
FOA	Power = Low	0.01	_		V/µs	high opamp bias, medium power, and
	Power = Low, Opamp Bias = High				V/μs	medium power and high opamp bias levels are between low and high power levels.
	Power = Medium				V/μs	are between low and high power levels.
	Power = Medium, Opamp Bias = High	0.5	_		V/μs	
	Power = High				V/μs	
	Power = High, Opamp Bias = High	4.0	_		V/μs	
BW _{OA}	Gain Bandwidth Product					Specification minimums for low power and
071	Power = Low	0.75	_		MHz	high opamp bias, medium power, and
	Power = Low, Opamp Bias = High				MHz	medium power and high opamp bias levels are between low and high power levels.
	Power = Medium				MHz	and sections and man power levels.
	Power = Medium, Opamp Bias = High	3.1	_		MHz	
	Power = High				MHz	
	Power = High, Opamp Bias = High	5.4	_		MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	_	200	_	nV/rt-Hz	

3.4.5 AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Table 3-20. 5V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100pF Load					
	Power = Low	-	-	2.5	μs	
	Power = High	-	-	2.5	μs	
T _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100pF Load					
	Power = Low	-	-	2.2	μs	
	Power = High	-	-	2.2	μs	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100pF Load					
	Power = Low	0.65	-	-	V/μs	
	Power = High	0.65	-	-	V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100pF Load					
	Power = Low	0.65	-	-	V/μs	
	Power = High	0.65	-	-	V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100pF Load					
	Power = Low	8.0	-	-	MHz	
	Power = High	8.0	-	-	MHz	
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100pF Load					
	Power = Low	300	_	_	kHz	
	Power = High	300	_	-	kHz	

Table 3-21. 3.3V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100pF Load					
	Power = Low	-	-	3.8	μs	
	Power = High	-	-	3.8	μs	
T _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100pF Load					
	Power = Low	-	-	2.6	μs	
	Power = High	-	-	2.6	μs	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100pF Load					
	Power = Low	0.5	-	-	V/μs	
	Power = High	0.5	-	_	V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100pF Load					
	Power = Low	0.5	-	-	V/μs	
	Power = High	0.5	-	_	V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100pF Load					
	Power = Low	0.7	-	_	MHz	
	Power = High	0.7	-	_	MHz	
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100pF Load					
	Power = Low	200	-	_	kHz	
	Power = High	200	-	_	kHz	

3.4.6 AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Table 3-22. 5V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0	_	24.24	MHz	
-	High Period	20.6	_	-	ns	
_	Low Period	20.6	_	_	ns	
-	Power Up IMO to Switch	150	_	-	μs	

Table 3-23. 3.3V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU Clock divide by 1 ^a	0	_	12.12	MHz	
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater ^b	0	_	24.24	MHz	
-	High Period with CPU Clock divide by 1	41.7	_	_	ns	
-	Low Period with CPU Clock divide by 1	41.7	_	_	ns	
_	Power Up IMO to Switch	150	_	_	μs	

a. Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

3.4.7 AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Table 3-24. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	_	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	_	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	_	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	-	15	-	ms	
T _{WRITE}	Flash Block Write Time	-	30	-	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	_	-	45	ns	

b. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty percent duty cycle requirement is met.

3.4.8 AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only or unless otherwise specified.

Table 3-25. AC Characteristics of the I²C SDA and SCL Pins

		Standard Mode		Fast Mode			
Symbol	Description	Min	Max	Min	Max	Units	Notes
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	_	0.6	_	μs	
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μs	
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	_	0.6	_	μs	
T _{SUSTAI2C}	Set-up Time for a Repeated START Condition	4.7	_	0.6	-	μs	
T _{HDDATI2C}	Data Hold Time	0	_	0	-	μs	
T _{SUDATI2C}	Data Set-up Time	250	-	100 ^a	-	ns	
T _{SUSTOI2C}	Set-up Time for STOP Condition	4.0	_	0.6	_	μs	
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	_	1.3	_	μs	
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	-	-	0	50	ns	

a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU;DAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

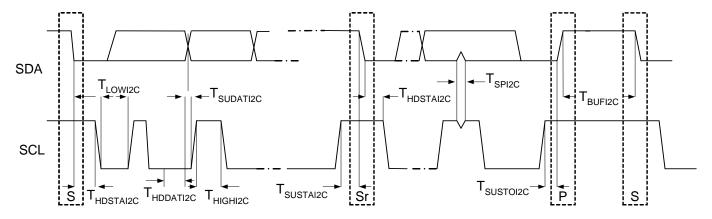


Figure 3-8. Definition for Timing for Fast/Standard Mode on the I²C Bus

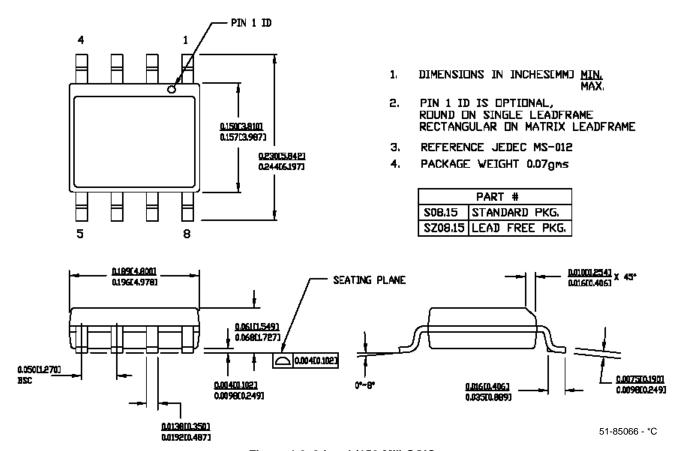


Figure 4-2. 8-Lead (150-Mil) SOIC

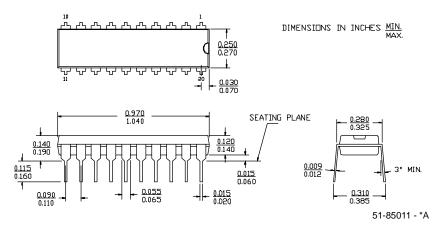


Figure 4-3. 20-Lead (300-Mil) Molded DIP

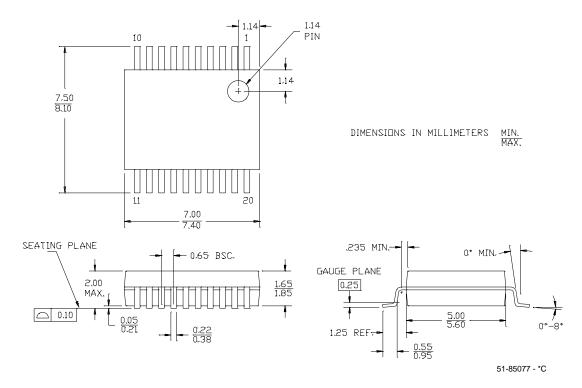


Figure 4-4. 20-Lead (210-Mil) SSOP

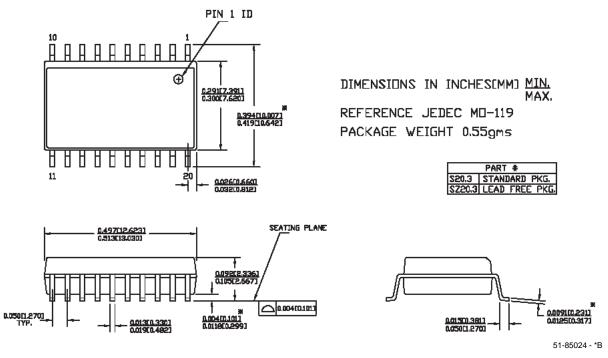


Figure 4-5. 20-Lead (300-Mil) Molded SOIC

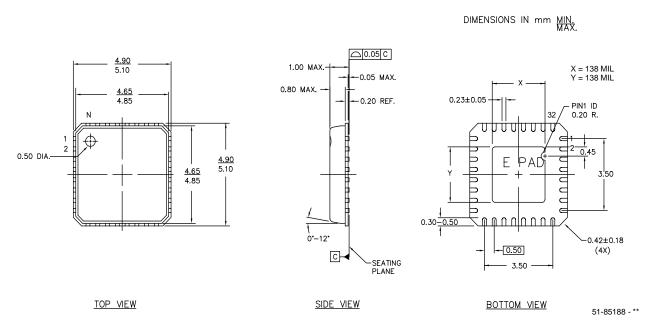


Figure 4-6. 32-Lead (5x5 mm) MLF

4.2 Thermal Impedances

Table 4-1. Thermal Impedances per Package

Package	Typical θ _{JA} *
8 PDIP	123 °C/W
8 SOIC	185 °C/W
20 PDIP	109 °C/W
20 SSOP	117 °C/W
20 SOIC	81 °C/W
32 MLF	22 °C/W

^{*} T_J = T_A + POWER x θ_{JA}

4.3 Capacitance on Crystal Pins

Table 4-2: Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
8 PDIP	2.8 pF
8 SOIC	2.0 pF
20 PDIP	3.0 pF
20 SSOP	2.6 pF
20 SOIC	2.5 pF
32 MLF	2.0 pF