

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9keazn8acfk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Orde	ering par	ts3
	1.1	Determ	ining valid orderable parts
2	Part	identific	ation
	2.1	Descrip	tion
	2.2	Format.	
	2.3	Fields	
	2.4	Exampl	e4
3	Rati	ngs	4
	3.1	Therma	l handling ratings
	3.2	Moistur	re handling ratings
	3.3	ESD ha	ndling ratings
	3.4	Voltage	e and current operating ratings
4	Gen	eral	
	4.1	Nonswi	tching electrical specifications
		4.1.1	DC characteristics
		4.1.2	Supply current characteristics
		4.1.3	EMC performance
	4.2	Switchi	ng specifications14
		4.2.1	Control timing

		4.2.2	FTM module timing15
	4.3	Therma	l specifications16
		4.3.1	Thermal characteristics
5	Peri	pheral of	perating requirements and behaviors17
	5.1	Core m	odules17
		5.1.1	SWD electricals
	5.2	Externa	l oscillator (OSC) and ICS characteristics19
	5.3	NVM s	pecifications21
	5.4	Analog	
		5.4.1	ADC characteristics
		5.4.2	Analog comparator (ACMP) electricals24
	5.5	Commu	inication interfaces
		5.5.1	SPI switching specifications
6	Dim	ensions.	
	6.1	Obtaini	ng package dimensions28
7	Pinc	out	
	7.1	Signal 1	nultiplexing and pin assignments
8	Rev	ision His	tory

Field	Description	Values
FFF	Program flash memory size	• 8 = 8 KB
M	Maskset revision	 A = 1st Fab version B = Revision after 1st version
Т	Temperature range (°C)	 C = -40 to 85 V= -40 to 105 M = -40 to 125
PP	Package identifier	 TG = 16 TSSOP (4.5 mm x 5 mm) FK = 24 QFN (4 mm x 4 mm)
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

S9KEAZN8AMFK

3 Ratings

3.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	TG Storage temperature		150	°C	1
T _{SDR}			260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

3.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of °C	-90	+95	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +95/-90 mA I-test with I_{DD} current limit at 200 mA (V_{DD} collapsed during positive injection).
 - + I/O pins pass +30/-90 mA I-test with I_{DD} current limit at 1000 mA for $V_{\text{DD}}.$
 - Supply groups pass 1.5 $V_{ccmax}.$
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

3.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	—	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	V _{DD} + 0.3 ¹	V
	Input voltage of true open drain pins	-0.3	6	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

 Table 1. Voltage and current operating ratings

1. Maximum rating of V_{DD} also applies to V_{IN}

Symbol	Descr	iption	Min	Тур	Max	Unit
V _{LVDL}	Falling low-vent	oltage detect ange (LVDV = 0)	2.56	2.61	2.66	V
V _{LVW1L}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	threshold—low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	-	Low range low-voltage detect hysteresis		40	-	mV
V _{HYSWL}	Low range low-v hyste	•	_	80	-	mV
V _{BG}	Buffered band	dgap output ³	1.14	1.16	1.18	V

Table 3. LVD and POR specification (continued)

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

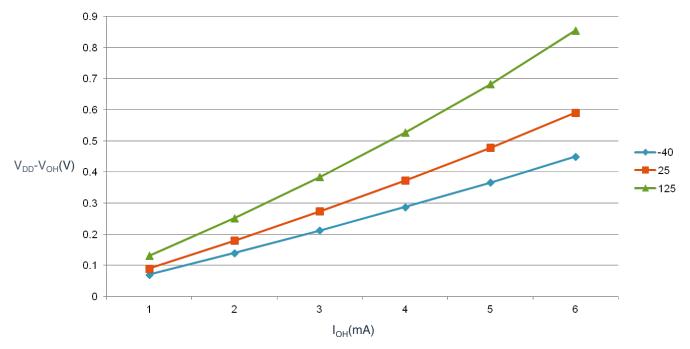


Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

Nonswitching electrical specifications

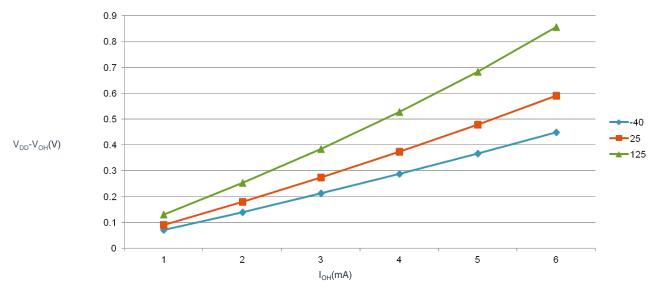


Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

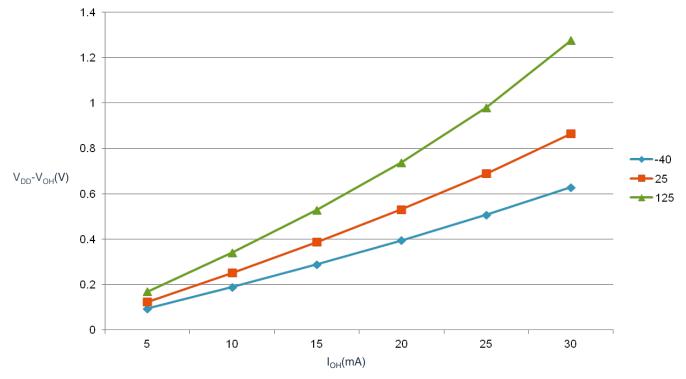


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

KEA8 Sub-Family Data Sheet, Rev4, 09/2014.

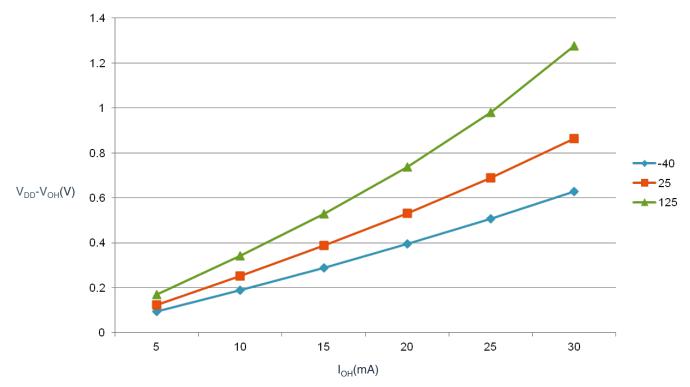


Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

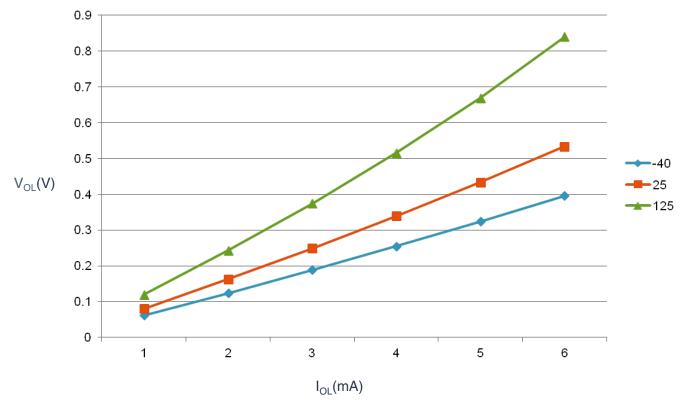


Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 5 V)

Nonswitching electrical specifications

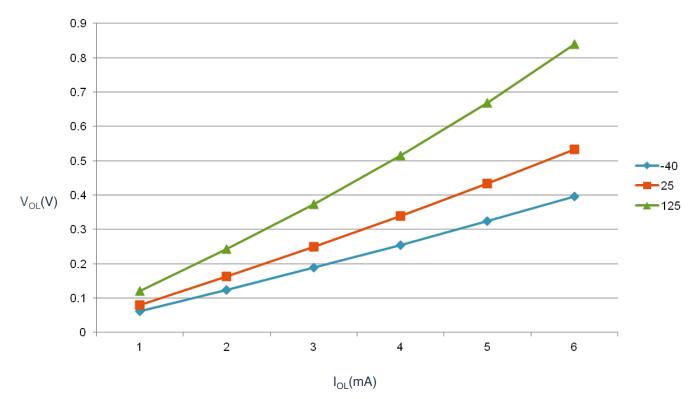


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 3 V)

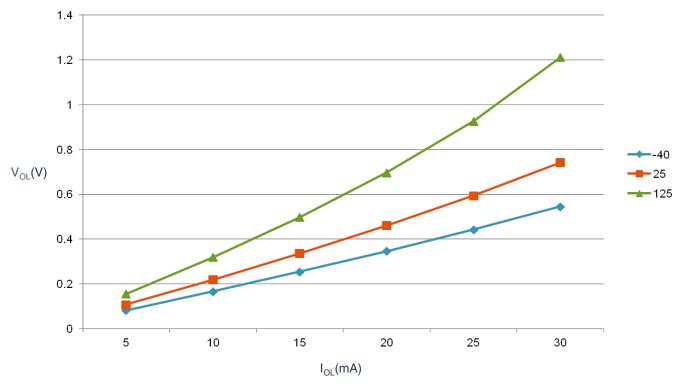


Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 5 V)

KEA8 Sub-Family Data Sheet, Rev4, 09/2014.

Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 3 V)

4.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
Run supply current FEI	RI _{DD}	48/24 MHz	5	10.1	—	mA	-40 to 125 °C
mode, all modules clocks enabled; run from flash		24/24 MHz		7.1	_]	
enabled, fun from hash		12/12 MHz		4.4	_		
		1/1 MHz		2.1	—]	
		48/24 MHz	3	9.9	_]	
		24/24 MHz		6.9	_]	
		12/12 MHz		4.2	_		
		1/1 MHz		1.9	_	1	
Run supply current FEI	RI _{DD}	48/24 MHz	5	7.4	_	mA	-40 to 125 °C
mode, all modules clocks disabled and gated; run from flash		24/24 MHz		5.2	_]	
		12/12 MHz		3.5	—]	
		1/1 MHz		2	_	1	

 Table 4.
 Supply current characteristics

Table continues on the next page...

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
		48/24 MHz	3	7.2	—		
		24/24 MHz		5			
		12/12 MHz		3.3	_		
		1/1 MHz		1.8	_		
Run supply current FBE	RI _{DD}	48/24 MHz	5	13.2		mA	-40 to 125 °C
mode, all modules clocks		24/24 MHz		9.1	10.8		
enabled; run from RAM		12/12 MHz		5.1	_		
		1/1 MHz		1.8	_		
		48/24 MHz	3	13	_		
		24/24 MHz		9	10.7		
		12/12 MHz		5			
		1/1 MHz		1.7	_		
Run supply current FBE	RI _{DD}	48/24 MHz	5	10.6		mA	-40 to 125 °C
mode, all modules clocks disabled and gated; run from		24/24 MHz		7.6	9.2		
RAM		12/12 MHz		4.3			
		1/1 MHz		1.7			
		48/24 MHz	3	10.5	_		
		24/24 MHz		7.5	9.1		
		12/12 MHz		4.2	_		
		1/1 MHz		1.6	_		
Wait mode current FEI	WI _{DD}	48/24 MHz	5	7.2	_	mA	-40 to 125 °C
mode, all modules clocks enabled		24/24 MHz		6.3	7.4		
Chabled		12/12 MHz		3.6	—		
		1/1 MHz		1.9	_		
		48/24 MHz	3	7.1	—		
		24/24 MHz		6.2	7.3		
		12/12 MHz		3.5	—		
		1/1 MHz		1.8	—		
Stop mode supply current no	SI _{DD}	—	5	2	110	μA	-40 to 125 °C
clocks active (except 1 kHz LPO clock) ^{3, 4}			3	1.9	105		-40 to 125 °C
ADC adder to Stop	—	—	5	86	—	μΑ	-40 to 125 °C
ADLPC = 1			3	82			
ADLSMP = 1							
ADCO = 1							
MODE = 10B							
ADICLK = 11B							
LVD adder to Stop ⁵	_	_	5	130	_	μA	-40 to 125 °C
			3	125	_	1	

Table 4. Supply current characteristics (continued)

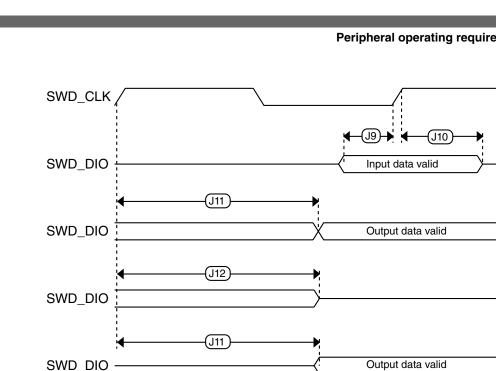


Figure 14. Serial wire data timing

External oscillator (OSC) and ICS characteristics 5.2

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	C	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	24	MHz
2	L	bad capacitors	C1, C2		See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F				MΩ
		Low Frequency, High-Gain Mode	-	_	10		MΩ
		High Frequency, Low-Power Mode			1		MΩ
		High Frequency, High-Gain Mode			1		MΩ
4	Series resistor -	Low-Power Mode ³	R _S	_	0	—	kΩ
	Low Frequency	High-Gain Mode		_	200	—	kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S		0		kΩ
	Series resistor -	4 MHz		_	0	—	kΩ
	High Frequency, High-Gain Mode	8 MHz		_	0	_	kΩ

Table continues on the next page ...

Num	Characteristic		Symbol	Min	Typical ¹	Max	Unit
		16 MHz		_	0	—	kΩ
6	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	—	ms
	time low range = 32.768 kHz	Low range, high gain		_	800	—	ms
	crystal; High	High range, low power	t _{CSTH}	_	3	—	ms
	range = 20 MHz crystal ^{4,5}	High range, high gain		—	1.5	—	ms
7	Internal r	eference start-up time	t _{IRST}	_	20	50	μs
8	Internal reference	ce clock (IRC) frequency trim range	f _{int_t}	31.25	—	39.0625	kHz
9	Internal reference clock frequency, factory trimmed [,]	T = 125 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	—	50	MHz
11	Factory trimmed internal oscillator accuracy	T = 125 °C, V _{DD} = 5 V	$\Delta f_{int_{ft}}$	-0.8	_	0.8	%
12	Deviation of IRC over temperature when trimmed at $T = 25 \degree$ C, $V_{DD} =$ 5 V	Over temperature range from -40 °C to 125°C	∆f _{int_t}	-1		0.8	%
13	Frequency accuracy of DCO output using factory trim value	Over temperature range from -40 °C to 125°C	∆f _{dco_ft}	-2.3	_	0.8	%
14	FLL	acquisition time ^{4,6}	t _{Acquire}	—	—	2	ms
15		f DCO output clock (averaged er 2 ms interval) ⁷	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

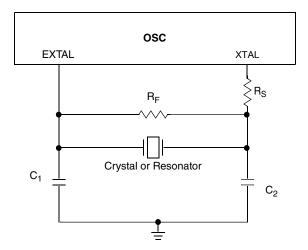


Figure 15. Typical crystal or resonator circuit

5.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Supply voltage for program/erase –40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
Supply voltage for read operation	V _{Read}	2.7	—	5.5	V
NVM Bus frequency	f _{NVMBUS}	1	—	24	MHz
NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
Erase Verify All Blocks	t _{VFYALL}	—	—	2605	t _{cyc}
Erase Verify Flash Block	t _{RD1BLK}	—	—	2579	t _{cyc}
Erase Verify Flash Section	t _{RD1SEC}	—	—	485	t _{cyc}
Read Once	t _{RDONCE}	—	—	464	t _{cyc}
Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
Verify Backdoor Access Key	t _{VFYKEY}	—	—	482	t _{cyc}
Set User Margin Level	t _{MLOADU}	—	-	415	t _{cyc}
FLASH Program/erase endurance T_L to T_H = -40 °C to 125 °C	N _{FLPE}	10 k	100 k		Cycles

Table 10. Flash characteristics

Table continues on the next page ...

rempheral operating requirements and behaviors

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100		years

Table 10. Flash characteristics (continued)

1. Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

5.4 Analog

5.4.1 ADC characteristics

 Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	—	5.5	V	
voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	ΔV_{DDA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input capacitance		C _{ADIN}	—	4.5	5.5	pF	_
Input resistance		R _{ADIN}	—	3	5	kΩ	-
Analog source	 12-bit mode f_{ADCK} > 4 MHz 	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	—	5		
	 10-bit mode f_{ADCK} > 4 MHz 		_	_	5		
	• f _{ADCK} < 4 MHz		—	_	10		
	8-bit mode		_	—	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	—	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	—	4.0		

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)		1.25	2	3.3	
Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20		ADCK cycles
	Long sample (ADLSMP = 1)		_	40	_	
Sample time	Short sample (ADLSMP = 0)	t _{ADS}	-	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	23.5	_	
Total unadjusted Error ²	12-bit mode	E _{TUE}	_	±3.0	_	LSB ³
	10-bit mode		_	±1.0	±6.0	-
	8-bit mode		_	±0.8	_	
Differential Non-	12-bit mode	DNL	_	±1.2	_	LSB ³
Liniarity	10-bit mode ⁴		_	±0.3	±4.0	
	8-bit mode ⁴		_	±0.15	_	
Integral Non-Linearity	12-bit mode	INL	_	±1.2	_	LSB ³
	10-bit mode		_	±0.3	±5.0	
	8-bit mode		_	±0.15	_	
Zero-scale error ⁵	12-bit mode	E _{ZS}	_	±1.2	_	LSB ³
	10-bit mode		_	±0.15	±6.0	
	8-bit mode		_	±0.3	_	
Full-scale error ⁶	12-bit mode	E _{FS}	_	±1.8	_	LSB ³
	10-bit mode		_	±0.7	±1.0	
	8-bit mode		_	±0.5	_	
Quantization error	≤12 bit modes	Eq	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	EIL		I _{In} x R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	m	-	3.266		mV/°C
	25 °C–125 °C		—	3.638	—	
Temp sensor voltage	25 °C	V _{TEMP25}	_	1.396	_	V

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK}=2.5 MHz under FBE mode and alternate clock source (ALTCLK) is selected as ADC clock.

2. Includes quantization

- 3. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5. $V_{ADIN} = V_{SSA}$
- 6. $V_{ADIN} = V_{DDA}$
- 7. I_{In} = leakage current (refer to DC characteristics)

14510					
Characteristic	Symbol	Min	Typical	Мах	Unit
Supply voltage	V _{DDA}	2.7	—	5.5	V
Supply current (Operation mode)	I _{DDA}	—	10	20	μA
Analog input voltage	V _{AIN}	V _{SS} - 0.3	—	V _{DDA}	V
Analog input offset voltage	V _{AIO}	_	_	40	mV
Analog comparator hysteresis (HYST=0)	V _H	—	15	20	mV
Analog comparator hysteresis (HYST=1)	V _H		20	30	mV
Supply current (Off mode)	IDDAOFF	—	60	—	nA
Propagation Delay	t _D		0.4	1	μs

5.4.2 Analog comparator (ACMP) electricals Table 13. Comparator electrical specifications

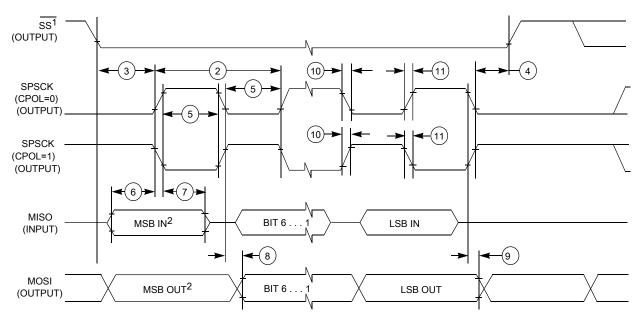
5.5 Communication interfaces

5.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} – 30	1024 x t _{Bus}	ns	—
6	t _{SU}	Data setup time (inputs)	8	—	ns	—
7	t _{HI}	Data hold time (inputs)	8	—	ns	—
8	t _v	Data valid (after SPSCK edge)	_	25	ns	
9	t _{HO}	Data hold time (outputs)	20		ns	

Table 14. SPI master mode timing


Table continues on the next page...

rempheral operating requirements and behaviors

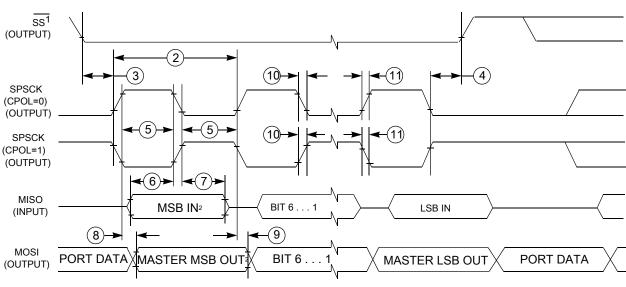

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input		t _{Bus} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

 Table 14.
 SPI master mode timing (continued)

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

KEA8 Sub-Family Data Sheet, Rev4, 09/2014.

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	—
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	—
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	—	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)		25	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

 Table 15.
 SPI slave mode timing

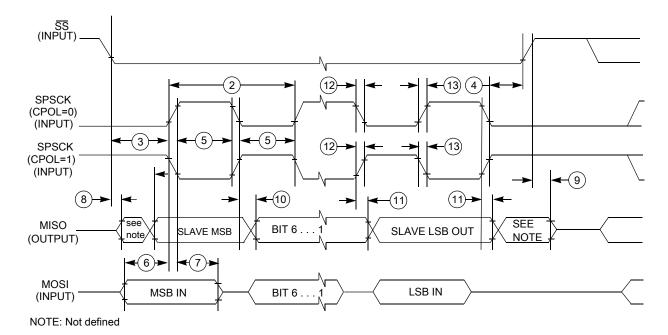
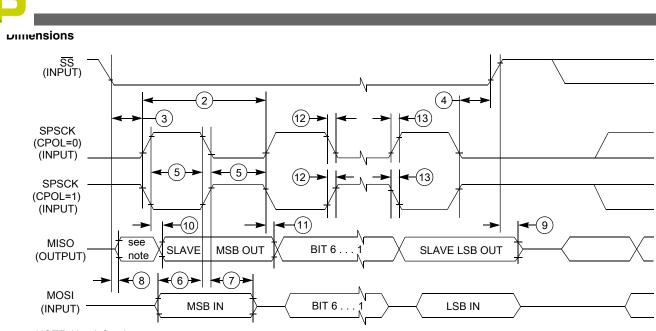



Figure 19. SPI slave mode timing (CPHA = 0)

NOTE: Not defined

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number		
16-pin TSSOP	98ASH70247A		
24-pin QFN	98ASA00474D		

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA8 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev. 1	11 March 2014	Initial Release
Rev. 2	18 June 2014	 Parameter Classification section is removed. Classification column is removed from all the tables in the document. New section added - Supply current characteristics.
Rev. 3	18 July 2014	 ESD handling ratings section is updated. Figures in DC characteristics section are updated. Specs updated in following tables: Table 9. Table 12.
Rev. 4	03 Sept 2014	Data Sheet type changed to "Technical Data".

Table 16. Revision History

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

©2014 Freescale Semiconductor, Inc.

Document Number S9KEA8P44M48SF0 Revision 4, 09/2014

