

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9keazn8amtgr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Orde	ering par	ts3
	1.1	Determ	ining valid orderable parts
2	Part	identific	ation
	2.1	Descrip	tion
	2.2	Format.	3
	2.3	Fields	3
	2.4	Exampl	e4
3	Rati	ngs	4
	3.1	Therma	l handling ratings4
	3.2	Moistur	re handling ratings
	3.3	ESD ha	ndling ratings5
	3.4	Voltage	and current operating ratings5
4	Gen	eral	6
	4.1	Nonswi	tching electrical specifications
		4.1.1	DC characteristics
		4.1.2	Supply current characteristics
		4.1.3	EMC performance
	4.2	Switchi	ng specifications
		4.2.1	Control timing

		4.2.2	FTM module timing	15
	4.3	Therma	ıl specifications	16
		4.3.1	Thermal characteristics	16
5	Peri	pheral op	perating requirements and behaviors	17
	5.1	Core m	odules	17
		5.1.1	SWD electricals	18
	5.2	Externa	d oscillator (OSC) and ICS characteristics	19
	5.3	NVM s	pecifications	21
	5.4	Analog		22
		5.4.1	ADC characteristics	22
		5.4.2	Analog comparator (ACMP) electricals	24
	5.5	Commu	inication interfaces	25
		5.5.1	SPI switching specifications	25
6	Dim	ensions.		28
	6.1	Obtaini	ng package dimensions	28
7	Pinc	out		28
	7.1	Signal 1	multiplexing and pin assignments	28
8	Rev	ision His	story	29

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: KEAZN8.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q B KEA A C FFF M T PP N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	S = Automotive qualifiedP = Prequalification
В	Memory type	• 9 = Flash
KEA	Kinetis Auto family	• KEA
A	Key attribute	 Z = M0+ core F = M4 W/ DSP & FPU C= M4 W/ AP + FPU
С	CAN availability	N = CAN not available (Blank) = CAN available

naungs

Field	Description	Values
FFF	Program flash memory size	• 8 = 8 KB
М	Maskset revision	 A = 1st Fab version B = Revision after 1st version
Т	Temperature range (°C)	 C = -40 to 85 V = -40 to 105 M = -40 to 125
PP	Package identifier	TG = 16 TSSOP (4.5 mm x 5 mm)FK = 24 QFN (4 mm x 4 mm)
N	Packaging type	R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

S9KEAZN8AMFK

3 Ratings

3.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.2 Moisture handling ratings

	Symbol	Description	Min.	Max.	Unit	Notes
Ī	MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.3 ESD handling ratings

Symbol	mbol Description		Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of °C	-90	+95	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +95/-90 mA I-test with I_{DD} current limit at 200 mA (V_{DD} collapsed during positive injection).
 - I/O pins pass +30/-90 mA I-test with I_{DD} current limit at 1000 mA for V_{DD}.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

3.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Table 1. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	V _{DD} + 0.3 ¹	V
	Input voltage of true open drain pins	-0.3	6	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Maximum rating of V_{DD} also applies to V_{IN}.

4 General

4.1 Nonswitching electrical specifications

4.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol	Descriptions			Min	Typical ¹	Max	Unit	
_		Operating voltage	_	2.7	_	5.5	V	
V _{OH}	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V	
	high voltage	and PTA3, standard-drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V	
		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	$V_{DD} - 0.8$	_	_	V	
		high-drive strength ²	3 V, $I_{load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	V	
I _{OHT}	T Output Max total I _{OH} for all port	Max total I _{OH} for all ports	5 V	_	_	-100	mA	
high current			3 V	_	_	-60		
V _{OL}	Output low voltage	-	All I/O pins, standard-drive	5 V, I _{load} = 5 mA	_	_	0.8	V
		3.	3 V, I _{load} = 2.5 mA	_	_	0.8	V	
		High current drive pins,	5 V, I _{load} =20 mA	_	_	0.8	V	
		high-drive strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V	
I _{OLT}	Output low current		Max total I _{OL} for all ports	5 V	_	_	100	mA
		-	3 V	_	_	60		
V _{IH}	Input high	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	V	
	voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_		
V _{IL}	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_	_	0.35 × V _{DD}	V	
			2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}		
V _{hys}	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV	
I _{In}	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ	

Table 2. DC characteristics (continued)

Symbol		Descriptions		Min	Typical ¹	Max	Unit
I _{INTOT}	Total leakage combined for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_		2	μА
R _{PU}	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-2	_	2	mA
	injection current ⁴ , 5, 6 Total MCU limit, includes sum of all stressed pins		-5	_	25		
C _{In}	Input capacitance, all pins		_	_	_	7	pF
V_{RAM}	RA	M retention voltage	_	2.0		_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB5, PTC1 and PTC5 support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true
 open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR specification

Symbol	Descr	iption	Min	Тур	Max	Unit
V _{POR}	POR re-arm voltage ¹		1.5	1.75	2.0	V
V _{LVDH}	Falling low-vo threshold—high 1)	range (LVDV =	4.2	4.3	4.4	V
V _{LVW1H}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	High range low-voltage detect/ warning hysteresis		_	100	_	mV

Nonswitching electrical specifications

Table 3. LVD and POR specification (continued)

Symbol	Descri	iption	Min	Тур	Max	Unit
V_{LVDL}		Falling low-voltage detect threshold—low range (LVDV = 0)		2.61	2.66	V
V _{LVW1L}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V_{LVW2L}	threshold—low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V_{LVW4L}		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	Low range low- hyste	•	_	40	_	mV
V _{HYSWL}	Low range low-v	0 0	_	80	_	mV
V _{BG}	Buffered band	lgap output ³	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

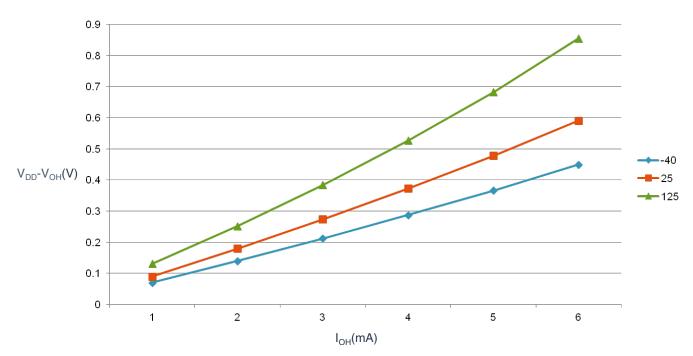


Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

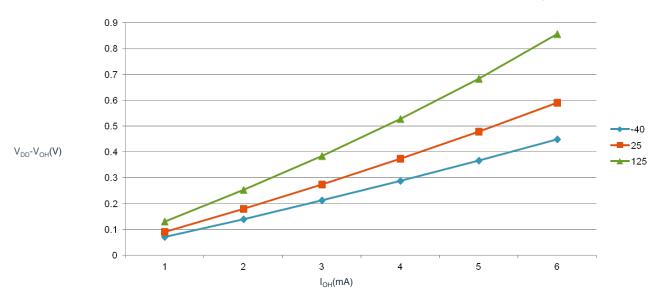


Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

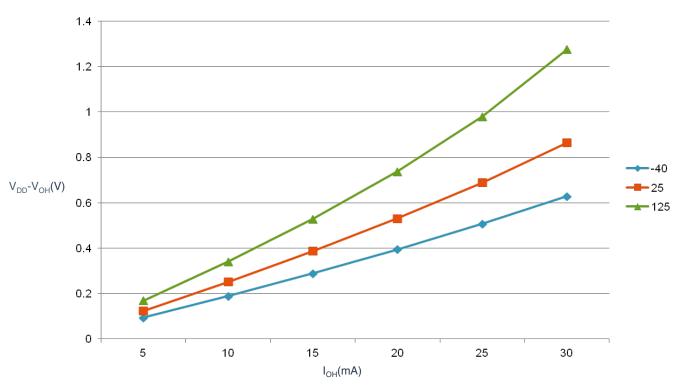


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

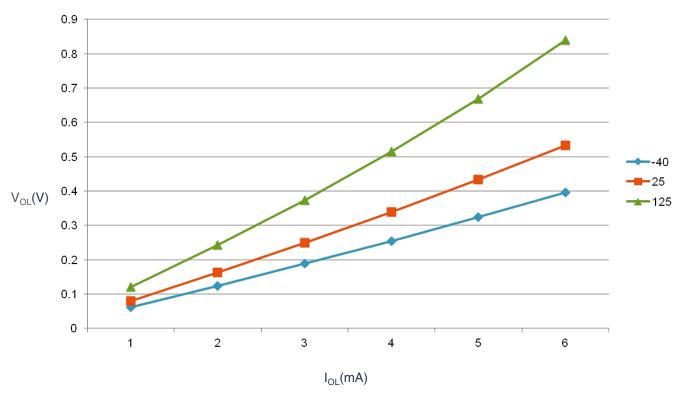


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

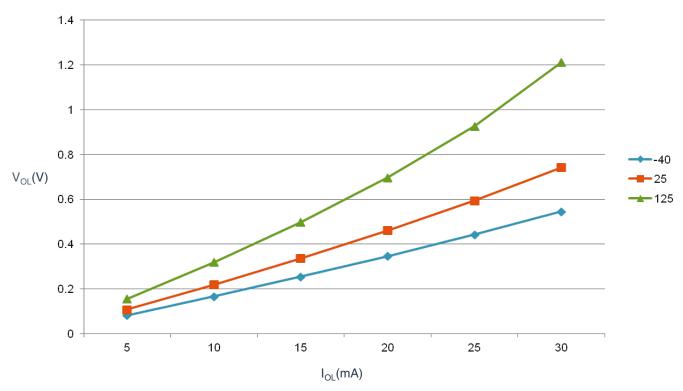


Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5$ V)

switching specifications

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The Max current is observed at high temperature of 125 °C.
- 3. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. ACMP adder cause <1 μ A I_{DD} increase typically.
- 5. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num	Rating	I	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock		f _{Sys}	DC	_	48	MHz
2	Bus frequency (t _{cyc} = 1/f _{Bus})		f _{Bus}	DC	_	24	MHz
3	Internal low power oscillator	requency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
				t _{cyc}			
5	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	Synchronous path ³		t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
7	Keyboard interrupt pulse Asynchronous path ²		t _{ILIH}	100	_	_	ns
	width	Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns

Num	Rating		Symbol	Min	Typical ¹	Max	Unit
8	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	Port rise and fall time - high	_	t _{Rise}	_	5.4	_	ns
	drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

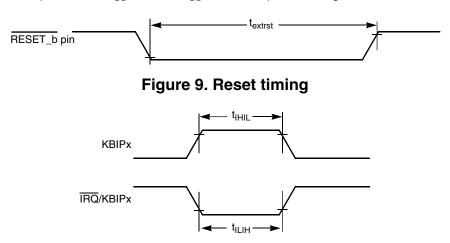


Figure 10. KBIPx timing

4.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter.

Table 6. FTM input timing

Function	Symbol	Min	Max	Unit
Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

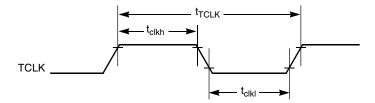


Figure 11. Timer external clock

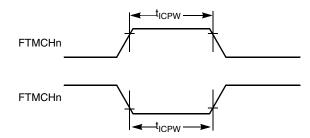


Figure 12. Timer input capture pulse

4.3 Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Board type	Symbol	Description	24 QFN	16 TSSOP	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	110	130	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	42	87	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	92	109	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	36	80	°C/W	1, 3
_	$R_{\theta JB}$	Thermal resistance, junction to board	18	48	°C/W	4
_	$R_{ heta JC}$	Thermal resistance, junction to case	3.7	33	°C/W	5

Table 7. Thermal attributes

Table continues on the next page...

KEA8 Sub-Family Data Sheet, Rev4, 09/2014.

Table 7. Thermal attributes (continued)

Board type	Symbol	Description	24 QFN	16 TSSOP	Unit	Notes
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	10	10	°C/W	6

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}\text{C}) + \theta_{JA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and P_D and the obtained by solving the above equations iteratively for any value of P_D .

5 Peripheral operating requirements and behaviors

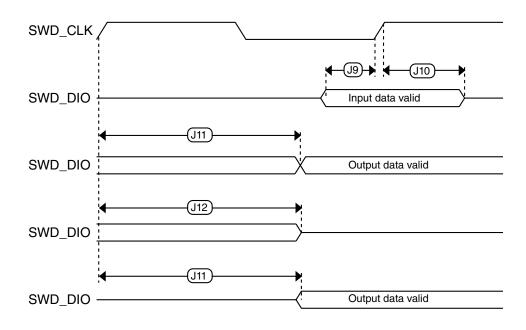


Figure 14. Serial wire data timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	(Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	24	MHz
2	L	oad capacitors	C1, C2		See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
		Low Frequency, High-Gain Mode		_	10	_	ΜΩ
	High Frequency, Lov Mode	High Frequency, Low-Power Mode			1	_	ΜΩ
		High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
	Low Frequency	High-Gain Mode		_	200	_	kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ
	Series resistor -	4 MHz		_	0	_	kΩ
	High Frequency, High-Gain Mode	8 MHz		_	0	_	kΩ

reripheral operating requirements and behaviors

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num		Characteristic	Symbol	Min	Typical ¹	Max	Unit
		16 MHz		_	0	_	kΩ
6	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	time low range = 32.768 kHz	Low range, high gain		_	800	_	ms
	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Internal r	eference start-up time	t _{IRST}	_	20	50	μs
8	Internal reference	ce clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Internal reference clock frequency, factory trimmed	T = 125 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Factory trimmed internal oscillator accuracy	T = 125 °C, V _{DD} = 5 V	Δf_{int_ft}	-0.8	_	0.8	%
12	Deviation of IRC over temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from -40 °C to 125°C	Δf_{int_t}	-1	_	0.8	%
13	Frequency accuracy of DCO output using factory trim value	Over temperature range from -40 °C to 125°C	$\Delta f_{ m dco_ft}$	-2.3	_	0.8	%
14	FLL:	acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15		f DCO output clock (averaged or 2 ms interval) ⁷	C_{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO =
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

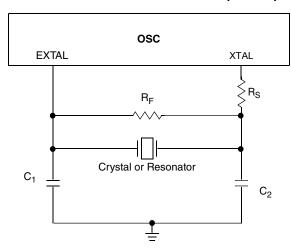


Figure 15. Typical crystal or resonator circuit

NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Table 10. Flash characteristics

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Supply voltage for program/erase –40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
NVM Bus frequency	f _{NVMBUS}	1	_	24	MHz
NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
Erase Verify All Blocks	t _{VFYALL}	_	_	2605	t _{cyc}
Erase Verify Flash Block	t _{RD1BLK}	_	_	2579	t _{cyc}
Erase Verify Flash Section	t _{RD1SEC}	_	_	485	t _{cyc}
Read Once	t _{RDONCE}	_	_	464	t _{cyc}
Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
Verify Backdoor Access Key	t _{VFYKEY}	_	_	482	t _{cyc}
Set User Margin Level	t _{MLOADU}	_	_	415	t _{cyc}
FLASH Program/erase endurance T _L to T _H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles

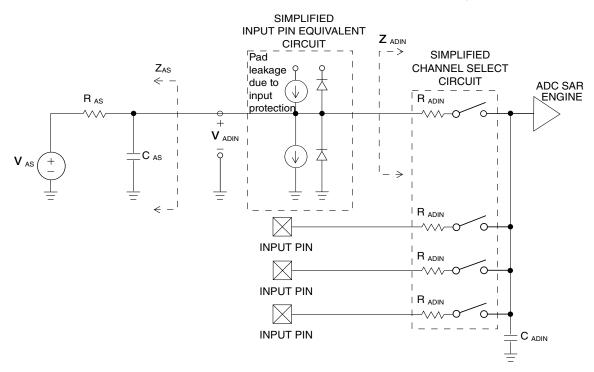


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
Supply current		I _{DDA}	_	133	_	μΑ
ADLPC = 1						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	218	_	μA
ADLPC = 1						
ADLSMP = 0						
ADCO = 1						
Supply current		I _{DDA}	_	327	_	μΑ
ADLPC = 0						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	582	990	μΑ
ADLPC = 0						
ADLSMP = 0						
ADCO = 1						
Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA
ADC asynchronous clock source	High speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz

reripheral operating requirements and behaviors

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)		1.25	2	3.3	
Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	40	_	
Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	23.5	_	
Total unadjusted Error ²	12-bit mode	E _{TUE}	_	±3.0	_	LSB ³
	10-bit mode		_	±1.0	±6.0	
	8-bit mode		_	±0.8	_	
Differential Non- Liniarity	12-bit mode	DNL	_	±1.2	_	LSB ³
	10-bit mode ⁴		_	±0.3	±4.0	
	8-bit mode ⁴		_	±0.15	_	
Integral Non-Linearity	12-bit mode	INL	_	±1.2	_	LSB ³
	10-bit mode		_	±0.3	±5.0	
	8-bit mode		_	±0.15	_	
Zero-scale error ⁵	12-bit mode	E _{ZS}	_	±1.2	_	LSB ³
	10-bit mode		_	±0.15	±6.0	
	8-bit mode		_	±0.3	_	
Full-scale error ⁶	12-bit mode	E _{FS}	_	±1.8	_	LSB ³
	10-bit mode		_	±0.7	±1.0	
	8-bit mode		_	±0.5	_	
Quantization error	≤12 bit modes	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	E _{IL}		I _{In} x R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	m	_	3.266	_	mV/°C
	25 °C–125 °C		_	3.638	_	
Temp sensor voltage	25 °C	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} =2.5 MHz under FBE mode and alternate clock source (ALTCLK) is selected as ADC clock.

^{2.} Includes quantization

^{3. 1} LSB = $(V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{ln} = leakage current (refer to DC characteristics)

ensionsוווע

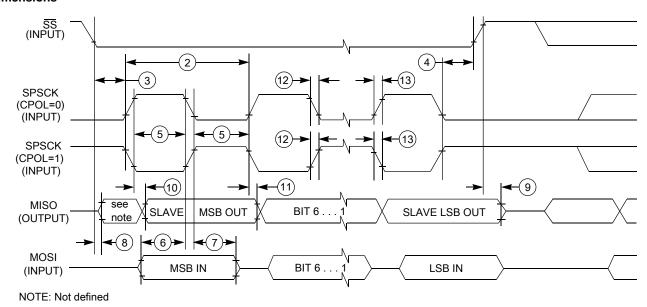


Figure 20. SPI slave mode timing (CPHA=1)

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin TSSOP	98ASH70247A
24-pin QFN	98ASA00474D

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA8 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Table 16. Revision History

Rev. No.	Date	Substantial Changes
Rev. 1	11 March 2014	Initial Release
Rev. 2	18 June 2014	 Parameter Classification section is removed. Classification column is removed from all the tables in the document. New section added - Supply current characteristics.
Rev. 3	18 July 2014	 ESD handling ratings section is updated. Figures in DC characteristics section are updated. Specs updated in following tables: Table 9. Table 12.
Rev. 4	03 Sept 2014	Data Sheet type changed to "Technical Data".