

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16КВ (16К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs502t-e-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin I	Name ⁽¹⁾	Pin Type	Buffer Type	PPS	S Description				
MCLR		I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
AVdd		Ρ	Р	No	Positive supply for analog modules. This pin must be connected at all times.				
AVss		Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.				
Vdd		Р	_	No	Positive supply for peripheral logic and I/O pins.				
VCAP		Р	—	No	CPU logic filter capacitor connection.				
Vss		Р	_	No	Ground reference for logic and I/O pins.				
Legend:	CMOS = CM ST = Schmit	IOS co t Trigg	mpatible er input v	input ovith CN	or output Analog = Analog input P = Power MOS levels O = Output I = Input				

PPS = Peripheral Pin Select

TTL = TTL input buffer

1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

3.7 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0		
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC		
bit 15							bit 8		
R/W-0 ⁽²	²⁾ R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
IPL2 ⁽¹) IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	IPLO ⁽¹⁾ RA N OV Z C						
bit 7							bit 0		
(
Legend:		C = Clearable	e bit						
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value	at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	OA: Accumul	lator A Overflov	v Status bit						
		ator A has over	flowed						
bit 14		lator B Ovorflov	v Status bit						
DIL 14		ator B has over							
	0 = Accumula	ator B has not c	verflowed						
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾					
	1 = Accumula	ator A is saturat	ted or has bee	en saturated at	some time				
	0 = Accumula	ator A is not sat	urated						
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾					
	1 = Accumula 0 = Accumula	ator B is saturat ator B is not sat	ted or has bee curated	en saturated at	some time				
bit 11	0ab: 0a C	B Combined A	ccumulator O	verflow Status	bit				
	1 = Accumula	ators A or B hav	ve overflowed	arflowed					
bit 10		B Combined A	cumulator 'St	icky' Status bit					
	1 = Accumula	ators A or B are	saturated or	have been sat	urated at some	time			
	0 = Neither A	ccumulator A c	r B are satura	ited					
bit 9	DA: DO Loop	Active bit							
	1 = DO loop ir	n progress							
	0 = DO loop n	ot in progress							
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit						
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized (data) or 8th low-	order bit (for wo	ord-sized data)		
	0 = No carry data) of t	-out from the 4	th low-order b red	oit (for byte-siz	ed data) or 8th	low-order bit (f	or word-sized		
Note 1:	The IPL<2:0> bits Level. The value ir	are concatenat	ted with the IP ndicates the I	PL<3> bit (COF PL, if IPL<3> =	CON<3>) to for 1. User interru	rm the CPU Inte pts are disable	errupt Priority d when		
	IPL<3> = 1.			,			-		

2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

4.5.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.5.3 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXGS50X devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-11 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-11. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-11: CALL STACK FRAME

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXGS50X family device to be serially programmed while in the end application circuit. This is done with a programming clock and programming data (PGECx/PGEDx) line, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive, to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data with a single program memory word and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1. The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

© 2013-2015 Microchip Technology Inc.

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

| R-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VECNUM7 | VECNUM6 | VECNUM5 | VECNUM4 | VECNUM3 | VECNUM2 | VECNUM1 | VECNUM0 |
| bit 7 | | | | | | | bit 0 |

Legend:							
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-12	Unimplemen	ited: Read as '0'					
bit 11-8	ILR<3:0>: Ne	ew CPU Interrupt Priority Lev	vel bits				
	1111 = CPU	Interrupt Priority Level is 15					
	•						
	•						
	• 0001 = CPU	Interrupt Priority Level is 1					
	0000 = CPU Interrupt Priority Level is 0						
bit 7-0	VECNUM<7:	0>: Vector Number of Pendi	na Interrupt bits				
	111111111 =	255, Reserved; do not use					
	•	,,,					
	•						
	•						
	00001001 =	9, IC1 – Input Capture 1	0				
	00001000 =	7 Reserved: do not use	0				
	00000110 =	6, Generic soft error trap					
	00000101 =	5, Reserved; do not use					
	00000100 =	4, Math error trap					
	00000011 =	3, Stack error trap					
	00000010=	2, Generic naru trap					
	000000000	0, Oscillator fail trap					

REGISTER 15-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾
 1111 = 1:16 Postscaler generates a Special Event Trigger on every sixteenth compare match event
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 <l

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-2: PTCON2: PWMx CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	F	PCLKDIV<2:0>	(1)
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		0° = Bit is cleared x = Bit is unknown			

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

- 110 = Divide-by-64, maximum PWM timing resolution
- 101 = Divide-by-32, maximum PWM timing resolution
- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

x = Bit is unknown

REGISTER 15-15: PHASEX: PWMx PRIMARY PHASE-SHIFT REGISTER (x = 1 to 5)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, read	d as '0'	

bit 15-0 **PHASEx<15:0>:** PWMx Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:

'1' = Bit is set

- Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
- True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Phase-shift value for PWMxH only
- When the PHASEx/SPHASEx registers provide the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through period

'0' = Bit is cleared

- **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxH only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000 through 0xFFF8

-n = Value at POR

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on \overline{SSx} .

Note:	This	ensures	that	the	first	fra	ame
	transmission		after in	nitializa	ation	is	not
	shifte	d or corru	pted.				

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
 - **Note:** This will ensure that during power-up and initialization, the master/slave will not lose synchronization due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive, appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the frame sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 26.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

16.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

17.2 I²C Control Registers

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	I2CEN: I2Cx Enable bit
	 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module; all I²C[™] pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)
	1 = Releases SCLx clock0 = Holds SCLx clock low (clock stretch)
	If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception. Hardware is clear at the end of every slave data byte reception.
	<u>If STREN = 0:</u> Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception.
bit 11	STRICT: Strict I2Cx Reserved Address Enable bit
	 1 = <u>Strict Reserved Addressing is Enabled:</u> In Slave mode, the device will NACK any reserved address. In Master mode, the device is allowed to generate addresses within the reserved address space.
	 0 = <u>Reserved Addressing is Acknowledged:</u> In Slave mode, the device will ACK any reserved address. In Master mode, the device should not address a slave device with a reserved address.
bit 10	A10M: 10-Bit Slave Address bit
	 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit
	1 = Slew rate control is disabled0 = Slew rate control is enabled
bit 8	SMEN: SMBus Input Levels bit
	 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	 1 = Enables interrupt when a general call address is received in I2CxRSR (module is enabled for reception) 0 = General call address is disabled

23.2 Device Calibration and Identification

The PGAx and current source modules on the dsPIC33EPXXGS50X family devices require Calibration Data registers to improve performance of the module over a wide operating range. These Calibration registers are read-only and are stored in configuration memory space. Prior to enabling the module, the calibration data must be read (TBLPAG and Table Read instruction) and loaded into their respective SFR registers. The device calibration addresses are shown in Table 23-3.

The dsPIC33EPXXGS50X devices have two identification registers near the end of configuration memory space that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the mask, variant and manufacturing information about the device. These registers are read-only and are shown in Register 23-1 and Register 23-2.

TABI E 23-3	DEVICE CALIBRATION ADDRESSES ⁽¹⁾

Calibration Name	Address	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGA1CAL	800E48	—	_	_	_	_	_	_	_	-	_	_	PGA1 Calibration Data					
PGA2CAL	800E4C	_	_	-		_	-		—	—		_	PGA2 Calibration Data					
ISRCCAL	800E78	_	_	-		_	-		—	—		_	Current Source Calibration Data		ata			

Note 1: The calibration data must be copied into its respective registers prior to enabling the module.

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

 Table 24-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

25.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

25.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

TABLE 26-20: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating	d Operatir g tempera	n g Condit ture -40° -40°	ions: 3.0\ °C ≤ TA ≤ · °C ≤ TA ≤ ·	/ to 3.6V (unless other +85°C for Industrial +125°C for Extended	wise stated)		
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	<mark>(1</mark>)					
F20a	FRC	-2	0.5	+2	%	$-40^\circ C \le T A \le -10^\circ C$	VDD = 3.0-3.6V		
		-0.9	0.5	+0.9	%	$-10^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 26-21: INTERNAL LPRC ACCURACY

АС СН	ARACTERISTICS	Standard Operating	l Operatin g temperati	g Conditi ure -40° -40°	ons: 3.0V C ≤ TA ≤ + C ≤ TA ≤ +	to 3.6V (unless other 85°C for Industrial 125°C for Extended	wise stated)		
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
LPRC (@ 32.768 kHz ⁽¹⁾								
F21a	LPRC	-30	-	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V		
		-20		+20	%	$-10^\circ C \le TA \le +85^\circ C$	VDD = 3.0-3.6V		
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

Note 1: This is the change of the LPRC frequency as VDD changes.

TABLE 26-22: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard (unless Operating	d Operatin otherwise g temperat	ng Condi stated) ure -40°0 -40°0	itions: 3. C ≤ Ta ≤ + C ≤ Ta ≤ +	0V to 3.6V 85°C for Industrial ⊦125°C for Extended
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Time		5	10	ns	
DO32	TIOF	Port Output Fall Time	—	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20		_	ns	
DI40	Trbp	CNx High or Low Time (input)	2			TCY	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

FIGURE 26-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 26-34:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard (unless of Operating	I Operatin otherwise g temperat	ture -40 -40	ions: 3.0 °C ≤ TA ≤ °C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions					
SP10	FscP	Maximum SCKx Frequency		_	9	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCKx Output Fall Time	_	_	—	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	_	_	—	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

- **2:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	N		28	-	
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] With Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	N		48		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0° 3.5° 7°			
Overall Width	E	9.00 BSC			
Overall Length	D		9.00 BSC		
Molded Package Width	E1		7.00 BSC		
Molded Package Length	D1		7.00 BSC		
Exposed Pad Width	E2		3.50 BSC		
Exposed Pad Length	D2	3.50 BSC			
Lead Thickness	С	0.09 - 0.16			
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-183A Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (June 2013)

This is the initial released version of the document.

Revision B (May 2015)

Adds dsPIC33EPXXGS505 (48-pin) devices to the document:

- Amends the table on page 2 to add the three new devices of this group
- Adds the 48-pin TQFP pin diagram on page 7
- Amends Table 26-3 to include thermal packaging characteristics for 48-pin packages
- Updates Section 28.1 "Package Marking Information" to include package marking details for 48-pin TQFP devices
- Updates Section 28.2 "Package Details" to include Microchip Drawings C04-183A and C04-2183A (7x7x1.0 mm 48-lead TQFP)

Changes all references to Dual Boot Flash Program Memory throughout the text to "Dual Partition Flash Program Memory". In addition, all accompanying references to "panels" and "Boot modes" are changed to "partitions" and "Partition modes". This includes, but is not limited, to:

- Section 4.1 "Program Address Space"
- Section 5.4 "Dual Partition Flash Configuration", and Register 5-1
- Section 23.10 "Code Protection and CodeGuard™ Security", and Table 23-2

Replaces the high-speed pipeline A/D Converter present in pre-production samples with a high-speed, multiple SAR A/D Converter in production devices:

- Replaces Section 19.0 "High-Speed, 12-Bit Analog-to-Digital Converter (ADC)" with an entirely new section of the same title, replacing all previous figures and registers
- Updates the summary bullet points under "High-Speed ADC Module" on Page 1 to reflect the feature set of the new module
- Updates Table 4-3 and Table 7-1 to reflect the new module's interrupt structure
- Replaces Table 4-16 with a new register map
- Removes Table 4-16 ("ADC Calibration Register Map"); subsequent tables are renumbered accordingly
- Updates Section 23.2 "Device Calibration and Identification" and Table 23-3 to remove the ADCAL registers from the Calibration register table
- Removes all references to the internal temperature sensor, including Table 26-44 (Temperature Sensor Specifications) and Figure 27-11 (Typical Temperature Sensor Voltage vs. Current)

Changes the ESR specification of the VCAP filter capacitor from < 4Ω to < $0.5\Omega.$

Removes the internal voltage reference in all occurrences. For analog modules, the internal band gap reference is substituted as a replacement source.

Changes the following register names in all occurrences throughout the text:

- "CMPCONx" to "CMPxCON"
- "CMPDACx" to "CMPxDAC"
- "I2CxCON1" to "I2CxCONL"
- "I2CxCON2" to "I2CxCONH"

Updates the text of **Section 5.4.2 "Dual Partition Modes"** to change "Untrusted Dual Panel mode" to "Privileged Dual Partition mode" and clarifies the mode's code security features.

Changes the BSS2 Configuration bit to "BSEN" throughout the text.

Replaces **Section 23.3 "User OTP Memory**" with new text to describe the 64-word User OTP Memory space; also removes Table 23-4.

Amends Table 24-2 with a footnote indicating an increase of instruction execution cycles for most instructions under certain conditions.

Updates the following tables in **Section 26.0 "Electrical Characteristics"** (in addition to changes previously noted):

- Table 26-4, with new specification DC12 (and accompanying footnote)
- Table 26-6, with updated Typical and new Maximum data throughout, and the addition of Parameter DC27 (with accompanying footnote)
- Table 26-7, Table 26-8 and Table 26-10 with updated Typical and Maximum data throughout
- Table 26-9 with updated Typical and Maximum data for Parameters DC61a and DC61b
- Footnotes 6 and 7 of Table 26-11 to clarify the behavior of 5V tolerant pins
- The "ADC Accuracy" specifications of Table 26-43
- Table 26-45 (Table 26-45 in Revision A) with updated specifications for Parameter CM15
- Table 26-46 (Table 26-46 in Revision A) with updated specifications for Parameters DA03 through DA06

Clarifies the text of Footnotes 6 and 7 in Table 26-11 (I/O Pin Input Specifications).

Removes the "Reference Inputs" specifications from Table 26-43 in their entirety.

Replaces Figure 27-5 through Figure 27-10 with new characterization graphs to reflect the most current data and removes "TBD" watermarks.

Updates **Section 28.1 "Package Marking Information**" to reflect the removal of redundant temperature and package code information from all package markings; this is in addition to the new 48-pin package markings previously described.

Other minor typographic corrections throughout the document.

INDEX

Α	
Absolute Maximum Ratings	303
AC Characteristics	315
ADC Specifications	343
Analog Current Specifications	342
Analog-to-Digital Conversion Requirements	345
Auxiliary PLL Clock	317
Capacitive Loading Requirements on	
Output Pins	315
External Clock Requirements	316
High-Speed PWMx Requirements	325
I/O Requirements	319
I2Cx Bus Data Requirements (Master Mode)	339
I2Cx Bus Data Requirements (Slave Mode)	341
Input Capture x Requirements	323
Internal FRC Accuracy	318
Internal LPRC Accuracy	318
Load Conditions	315
OCx/PWMx Module Requirements	324
Output Compare x Requirements	324
PLL Clock	317
Reset, WDT, OST, PWRT Requirements	320
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	329
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Requirements	328
SPIx Master Mode (Half-Duplex,	
Transmit Only) Requirements	327
SPIx Maximum Data/Clock Rate Summary	326
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0) Requirements	337
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0) Requirements	335
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0) Requirements	331
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0) Requirements	333
Temperature and Voltage Specifications	315
Timer1 External Clock Requirements	321
Timer2/Timer4 External Clock Requirements	322
Timer3/Timer5 External Clock Requirements	322
UARTx I/O Requirements	342
AC/DC Characteristics	
DACx Specifications	346
High-Speed Analog Comparator Specifications	345
PGAx Specifications	347
Analog-to-Digital Converter. See ADC.	
Arithmetic Logic Unit (ALU)	30
Assembler	
MPASM Assembler	300
MPLAB Assembler, Linker, Librarian	300
R	
	_
Bit-Reversed Addressing	73
Example	74
Implementation	73
Sequence Table (16-Entry)	74
Block Diagrams	

Addressing for Table Registers	77
CALL Stack Frame	69
Connections for On-Chip Voltage Regulator	285
Constant-Current Source	275
CPU Core	
Data Access from Program Space	
Address Generation	75
Dedicated ADC Cores 0-3	231
dsPIC33EPXXGS50X Family	11
High-Speed Analog Comparator x	264
High-Speed PWM Architecture	183
Hysteresis Control	266
I2Cx Module	216
Input Capture x	171
Interleaved PFC	
MCLR Pin Connections	
Multiplexing Remappable Outputs for RPn	130
Off-Line UPS	20
Oscillator System	104
Output Compare x Module	175
PGAx Functions	272
PGAx Module	271
Phase-Shifted Full-Bridge Converter	19
PLL Module	105
Programmer's Model	
PSV Read Address Generation	66
Recommended Minimum Connection	16
Remappable Input for U1RX	128
Reset System	85
Security Segments for dsPIC33EP64GS50X	288
Security Segments for dsPIC33EP64GS50X	
(Dual Partition Mode)	288
Shared Port Structure	125
Simplified Conceptual of High-Speed PWM	184
SPIx Module	207
Suggested Oscillator Circuit Placement	17
Timerx (x = 2 through 5)	168
Type B/Type C Timer Pair (32-Bit Timer)	168
UARTx Module	223
Watchdog Timer (WDT)	286
Brown-out Reset (BOR)	. 277, 285
c	
C Compilers	300
Code Examples	

Port Write/Read 126

Unlock Sequence 182 PWRSAV Instruction Syntax 115 CodeGuard Security 277, 287 Configuration Bits 277 Configuration Register Map 278 Constant-Current Source...... 275 Description...... 275

PWM Write-Protected Register

ADC Module......230