

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	27
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21334tnfp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/33T Group 1. Overview

1.2 Product List

Table 1.3 lists Product List for R8C/33T Group. Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/33T Group.

Table 1.3 Product List for R8C/33T Group

Current of Apr 2011

Part No.	ROM C	apacity	RAM	Package Type	Remarks
rait No.	Program ROM	Data flash	Capacity	rackage Type	Remarks
R5F21334TNFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0032GB-A	N version
R5F21335TNFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0032GB-A	
R5F21336TNFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0032GB-A	
R5F21334TNXXXFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0032GB-A	N version
R5F21335TNXXXFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0032GB-A	Factory-
R5F21336TNXXXFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0032GB-A	programming product ⁽¹⁾

Note:

1. The user ROM is programmed before shipment.

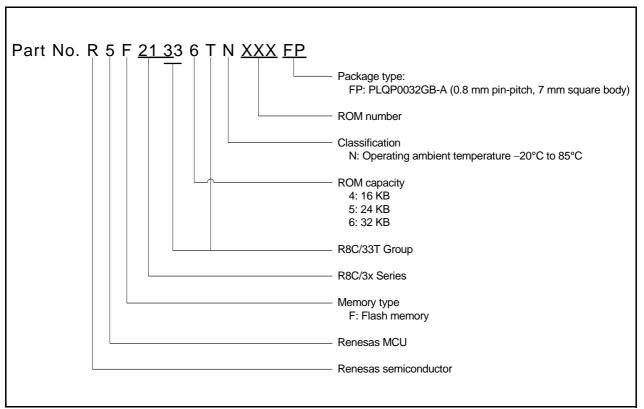


Figure 1.1 Part Number, Memory Size, and Package of R8C/33T Group

R8C/33T Group 1. Overview

1.4 Pin Assignment

Figure 1.3 shows Pin Assignment (Top View). Table 1.4 outlines the Pin Name Information by Pin Number.

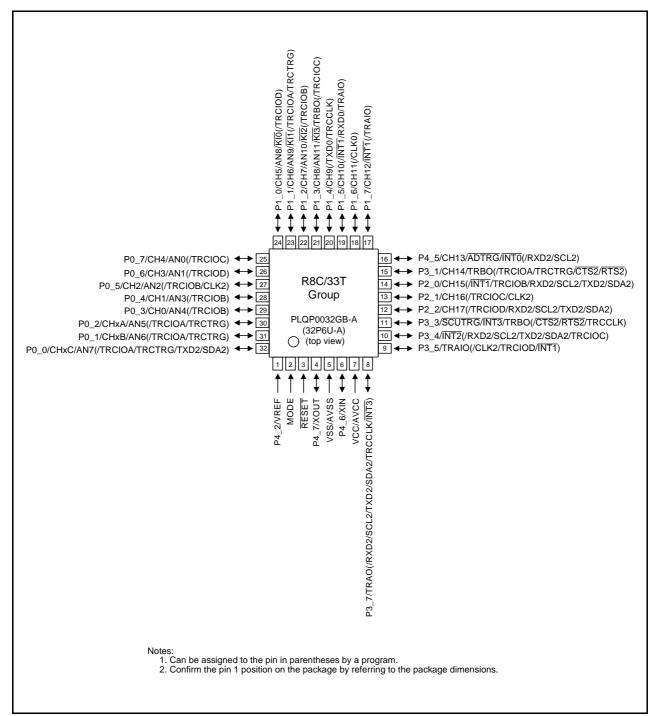


Figure 1.3 Pin Assignment (Top View)

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

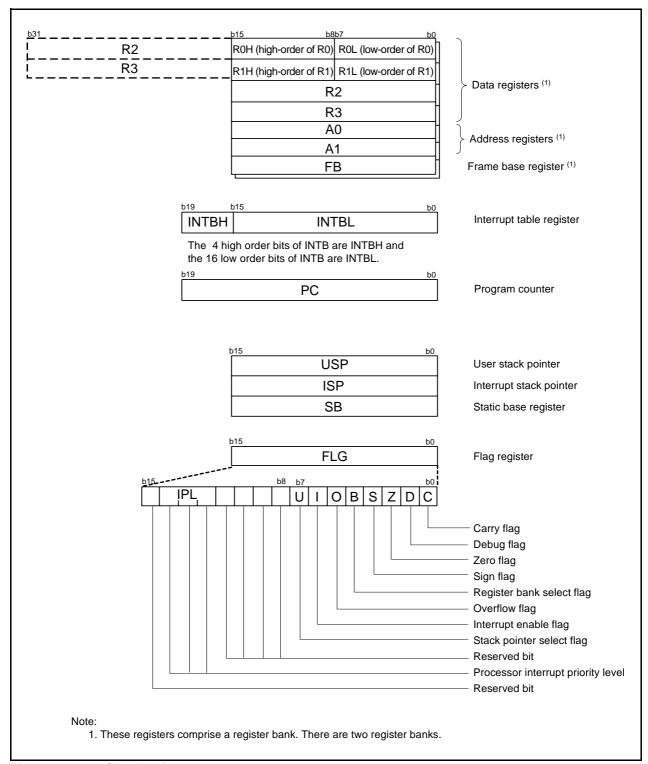


Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

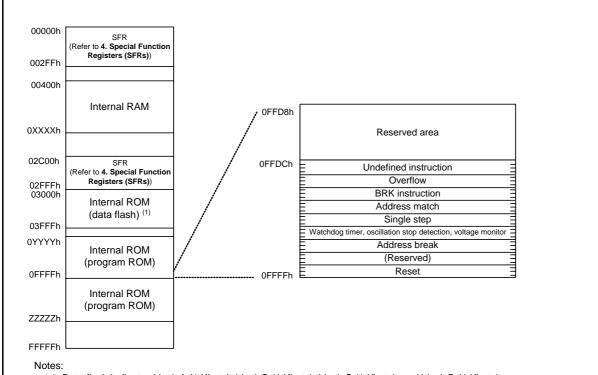
2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

R8C/33T Group 3. Memory

3. Memory

3.1 R8C/33T Group


Figure 3.1 is a Memory Map of R8C/33T Group. The R8C/33T Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

- - 1. Data flash indicates block A (1 Kbyte), block B (1 Kbyte), block C (1 Kbyte), and block D (1 Kbyte).
 - The blank areas are reserved and cannot be accessed by users.

Part Number		Internal ROM	Internal RAM		
Fait Number	Size	Address 0YYYYh	Address ZZZZZh	Size	Address 0XXXXh
R5F21334TNFP, R5F21334TDFP,	16 Kbytes	0C000h		1.5 Kbytes	009FFh
R5F21334TNXXXFP, R5F21334TDXXXFP	10 NDytes	0000011	_	1.5 Kbytes	009FFII
R5F21335TNFP, R5F21335TDFP,	24 Kbytes	0A000h	_	2 Kbytes	00BFFh
R5F21335TNXXXFP, R5F21335TDXXXFP	24 Noyles	OAOOON	_	Z Noytes	OODITII
R5F21336TNFP, R5F21336TDFP,	32 Kbytes	08000h		2.5 Kbytes	00DFFh
R5F21336TNXXXFP, R5F21336TDXXXFP	32 Noytes	0000011		2.0 Rbytes	OODITII

Figure 3.1 Memory Map of R8C/33T Group

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers. Table 4.13 lists the ID Code Areas and Option Function Select Area.

Table 4.1 SFR Information (1) (1)

Address	Register	Symbol	After Reset
0000h	register	Symbol	Alter Neset
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	00101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h	Module Standby Control Register	MSTCR	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb (2)
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Neset Negister Watchdog Timer Start Register	WDTS	XXh
000En	Watchdog Timer Control Register	WDTC	00111111b
000111 0010h	Watchdog Timer Control Register	WDIC	OOTITITID
0010h			
0011h			
0012H			
0013h			
0014h	High Speed On Chip Oscillator Control Register 7	FRA7	When shipping
0015h	High-Speed On-Chip Oscillator Control Register 7	rra/	when shipping
0016H			
001711 0018h			
0019h			
0019H			
001An			
001Ch	Count Source Protection Mode Register	CSPR	00h
001011	Count Source i Totection Mode Register	CSI K	
004Db			10000000b (3)
001Dh			
001Eh			
001Fh			
0020h			
0021h 0022h			
	High County On Chin Conillator Control Desirator C	FDAG	001-
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2 OCVREFCR	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h	Olask Danas Isa Danat Flan	ODODE	001-
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping
002Ah	High-Speed On-Chip Oscillator Control Register 5 High-Speed On-Chip Oscillator Control Register 6	FRA5	When shipping
002Bh 002Ch	riigh-speed On-Onip Oscillator Control Register 6	FRA6	When shipping
002Dh			
002Eh	Lligh Coand On Chin Coaillater Control Basister 2	LEDA2	Mhan ahinning
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping
0030h	Voltage Monitor Circuit Control Register	CMPA	00h
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	00h
0032h	Voltage Detect Register 1	1/0/4	00001000b
0033h	Voltage Detect Register 1	VCA1	
0034h	Voltage Detect Register 2	VCA2	00h ⁽⁴⁾
			00100000b ⁽⁵⁾
0035h			
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
	I		
0037h			
0037h 0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b (4)
	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b ⁽⁴⁾ 1100X011b ⁽⁵⁾

X: Undefined

- 1. The blank areas are reserved and cannot be accessed by users.
- 2. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, Software reset, or watchdog timer reset does not affect this bit.
- 3. The CSPROINI bit in the OFS register is set to 0.
- 4. The LVDAS bit in the OFS register is set to 1.
- 5. The LVDAS bit in the OFS register is set to 0.

Table 4.8 SFR Information (8) (1)

14510 4.0	Of it information (o) ()		
Address	Register	Symbol	After Reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
01C5h			XXh
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D2h			
01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
01E1H	T dii op control (cegister i	1 61(1	0011
01E3h			
01E4h			
01E5h			
01E6h			
01E7h			
01E7H			
01E8f1			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh	D (D) D () D () D	5:555	
01F0h	Port P1 Drive Capacity Control Register	P1DRR	00h
01F1h	Port P2 Drive Capacity Control Register	P2DRR	00h
01F2h	Drive Capacity Control Register 0	DRR0	00h
01F3h	Drive Capacity Control Register 1	DRR1	00h
01F4h			
01F5h	Input Threshold Control Register 0	VLT0	00h
01F6h	Input Threshold Control Register 1	VLT1	00h
01F7h			
01F8h			
01F9h			
01FAh	External Input Enable Register 0	INTEN	00h
01FBh			
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh			1
01FEh	Key Input Enable Register 0	KIEN	00h
01FFh	, ,		<u> </u>
X: Undefined	<u>L</u>		

X: Undefined

Note

1. The blank areas are reserved and cannot be accessed by users.

Table 5.2 Recommended Operating Conditions

0					0 1111		Standard		112
Symbol		Pa	rameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8		5.5	V
Vss/AVss	Supply voltage					_	0	_	V
VIH	Input "H" voltage	Other th	nan CMOS ir	put		0.8 Vcc	_	Vcc	V
		CMOS		Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0.5 Vcc	_	Vcc	V
		input	switching	: 0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0.55 Vcc	_	Vcc	V
			function		1.8 V ≤ Vcc < 2.7 V	0.65 Vcc		Vcc	V
			(I/O port)	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0.65 Vcc		Vcc	V
				: 0.5 Vcc	2.7 V ≤ Vcc < 4.0 V	0.7 Vcc		Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.8 Vcc		Vcc	V
				Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0.85 Vcc		Vcc	V
				: 0.7 Vcc	2.7 V ≤ Vcc < 4.0 V	0.85 Vcc		Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.85 Vcc	_	Vcc	V
		Externa	l clock input	(XOUT)		1.2	_	Vcc	V
VIL	Input "L" voltage	Other th	an CMOS ir	nput		0	_	0.2 Vcc	V
		CMOS	Input level	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.2 Vcc	V
		input	switching	: 0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0	_	0.2 Vcc	V
			function		1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
			(I/O port)	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.4 Vcc	V
				: 0.5 Vcc	2.7 V ≤ Vcc < 4.0 V	0	_	0.3 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
				Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0		0.55 Vcc	V
				: 0.7 Vcc	2.7 V ≤ Vcc < 4.0 V	0		0.45 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0		0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	_	0.4 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of	all pins Iон(р	eak)		_	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of	all pins Iон(а	vg)		_	_	-80	mA
IOH(peak)	Peak output "H"	Drive ca	apacity Low			_	_	-10	mA
, ,	current		apacity High			_		-40	mA
IOH(avg)	Average output	Drive ca	apacity Low			_		-5	mA
	"H" current	Drive ca	apacity High			_	_	-20	mA
IOL(sum)	Peak sum output "L" current	Sum of	all pins IOL(p	eak)		_	_	160	mA
IOL(sum)	Average sum output "L" current	Sum of	all pins IOL(a	vg)		_	_	80	mA
IOL(peak)	Peak output "L"	Drive ca	apacity Low			_	_	10	mA
	current		apacity High			_	_	40	mA
IOL(avg)	Average output	Drive ca	apacity Low			_	_	5	mA
	"L" current	Drive ca	apacity High			_	_	20	mA
f(XIN)	XIN clock input osc	cillation fr	equency		2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
					1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
fOCO40M	When used as the	count so	urce for time	er RC ⁽³⁾	2.7 V ≤ Vcc ≤ 5.5 V	32	_	40	MHz
fOCO-F	fOCO-F frequency				2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
					1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
_	System clock frequ	iency			2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
		•			1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
f(BCLK)	CPU clock frequer	су			2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
		-			1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz

- 1. Vcc = 1.8 V to 5.5 V at Topr = -20°C to 85°C (N version), unless otherwise specified.
- 2. The average output current indicates the average value of current measured during 100 ms.
- 3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V.

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Cumbal	Parameter	Conditions		Standa	ard	Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
_	Program/erase endurance (2)		1,000 (3)	_	_	times
_	Byte program time		_	80	500	μS
_	Block erase time		_	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		_	_	5 + CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	_	_	μS
_	Time from suspend until erase restart		_	_	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly terminated until reading is enabled		_	_	30 + CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		1.8	_	5.5	V
_	Program, erase temperature		0	_	60	°C
_	Data hold time (7)	Ambient temperature = 55°C	20	_	_	year

Notes:

- 1. Vcc = 2.7 V to 5.5 V at Topr = 0°C to 60°C, unless otherwise specified.
- 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.5 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Symbol	bol Parameter Conditions		ard	Unit		
Symbol	Falanetei	Conditions	Min.	Тур.	Max.	Offic
_	Program/erase endurance (2)		10,000 (3)	_	_	times
_	Byte program time (program/erase endurance ≤ 1,000 times)		_	160	1,500	μS
_	Byte program time (program/erase endurance > 1,000 times)		_	300	1,500	μS
_	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	1	S
_	Block erase time (program/erase endurance > 1,000 times)			0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		_	_	5 + CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	_	_	μS
_	Time from suspend until erase restart		_	_	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly terminated until reading is enabled				30 + CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		1.8	_	5.5	V
_	Program, erase temperature		-20	_	85	°C
_	Data hold time (7)	Ambient temperature = 55°C	20	_	_	year

- 1. Vcc = 2.7 V to 5.5 V at Topr = -20° C to 85°C (N version), unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.
 - However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

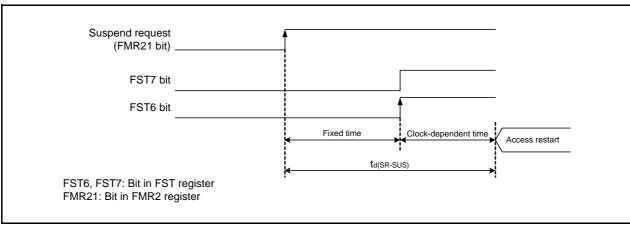


Figure 5.2 Time delay until Suspend

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Cumbal	Parameter Condition			Unit			
Symbol	Parameter	Condition	Min.	Тур.	Max.	Uill	
_	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V -20°C ≤ Topr ≤ 85°C	38.4	40	41.6	MHz	
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into the FRA1 register and the FRA5 register correction value into the FRA3 register (2)	Vcc = 1.8 V to 5.5 V -20°C ≤ Topr ≤ 85°C	35.389	36.864	38.338	MHz	
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into the FRA1 register and the FRA7 register correction value into the FRA3 register	Vcc = 1.8 V to 5.5 V -20°C ≤ Topr ≤ 85°C	30.72	32	33.28	MHz	
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	_	0.5	3	ms	
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	400	_	μА	

Notes:

- 1. Vcc = 1.8 V to 5.5 V, $Topr = -20^{\circ}C to 85^{\circ}C (N version)$, unless otherwise specified.
- 2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		
Syllibol	Falametei	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	_	30	100	μS
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	2	_	μΑ

Note:

1. Vcc = 1.8 V to 5.5 V, $Topr = -20^{\circ}\text{C}$ to 85°C (N version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		_	_	2000	μS

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Table 5.13 Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]

Symbol		Parameter	Condition		St	andard		Unit
Symbol		raiaillelei	Condition -		Min.	Тур.	Max.	Offit
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5 V	Iон = −20 mA	Vcc - 2.0	_	Vcc	V
	voltage		Drive capacity Low Vcc = 5 V	Iон = −5 mA	Vcc - 2.0	_	Vcc	V
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5 V	IoL = 20 mA	_	_	2.0	V
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	_	_	2.0	V
		XOUT	Vcc = 5 V	IOL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2			0.1	1.2	_	V
		RESET			0.1	1.2		V
Іін	Input "H" cu	rrent	VI = 5 V, Vcc = 5.0 V				5.0	μА
lıL	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		_	_	-5.0	μА
RPULLUP	Pull-up resis	stance	$V_1 = 0 \text{ V}, \text{ Vcc} = 5.0 \text{ V}$		25	50	100	kΩ
RfXIN	Feedback resistance	XIN			_	0.3	_	ΜΩ
VRAM	RAM hold v	oltage	During stop mode		1.8			V

^{1. 4.2} V ≤ Vcc ≤ 5.5 V at Topr = −20°C to 85°C (N version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.14 Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V] (Topr = -20° C to 85°C (N version), unless otherwise specified.)

Symbol	Parameter	Parameter Condition			Standar		Unit
Cymbol	. 3.3	Talamotor		Min.	Тур.	Max.	O.III
Icc	Power supply current (Vcc = 3.3 V to 5.5 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.5	15	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.3	12.5	mA
		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	_	mA	
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3		mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7	15	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	_	mA	
		XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1	_	mA	
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μА
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	100	μА	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μА	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5		μА	
	Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2	5.0	μА	
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	5	_	μА

Table 5.17	Serial	Interface

Symbol	Parameter Sta		dard	Unit
			Max.	Offic
tc(CK)	CLKi input cycle time	200	_	ns
tW(CKH)	CLKi input "H" width	100	_	ns
tW(CKL)	CLKi input "L" width	100	_	ns
td(C-Q)	TXDi output delay time	_	50	ns
th(C-Q)	TXDi hold time 0		_	ns
tsu(D-C)	RXDi input setup time 50 —			ns
th(C-D)	RXDi input hold time 90 —			

i = 0 to 2

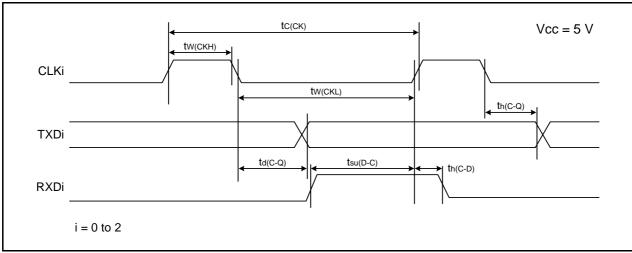


Figure 5.6 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.18 External Interrupt $\overline{\text{INTi}}$ (i = 0 to 3) Input, Key Input Interrupt $\overline{\text{Kli}}$ (i = 0 to 3)

Symbol	Parameter	Stan	Standard	
Symbol	Faidilletei	Min.	Max.	Unit
tW(INH)	INTi input "H" width, Kli input "H" width	250 ⁽¹⁾	_	ns
tW(INL)	INTi input "L" width, Kli input "L" width	-	ns	

- 1. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

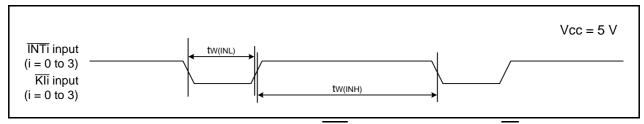


Figure 5.7 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Table 5.19 Electrical Characteristics (3) [2.7 V \leq Vcc < 4.2 V]

Symbol		Parameter	Conditio	.n		Standard		Unit
Syllibol		Falailletei	Conditio			Тур.	Max.	Offic
Vон	Output "H"	Other than XOUT	Drive capacity High	Iон = −5 mA	Vcc - 0.5	_	Vcc	V
	voltage		Drive capacity Low	Iон = −1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		IOH = -200 μA	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High	IoL = 5 mA	_	_	0.5	V
	voltage		Drive capacity Low	IoL = 1 mA	_	_	0.5	V
		XOUT		IOL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2	Vcc = 3.0 V		0.1	0.4		V
		RESET	Vcc = 3.0 V		0.1	0.5		V
Iн	Input "H" current		$V_1 = 3 \text{ V}, \text{ Vcc} = 3.0 \text{ V}$		_		4.0	μΑ
lı∟	Input "L" current		$V_1 = 0 \ V, \ V_{CC} = 3.0 \ V$		_	_	-4.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 3.0 V		42	84	168	kΩ
RfXIN	Feedback resistance	XIN			_	0.3		ΜΩ
VRAM	RAM hold v	oltage	During stop mode		1.8	_		V

^{1. 2.7} V ≤ Vcc < 4.2 V at Topr = −20°C to 85°C (N version), f(XIN) = 10 MHz, unless otherwise specified.

Timing requirements

(Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C)

Table 5.21 External Clock Input (XOUT)

Symbol	Parameter	Standard		Unit
Symbol	Falanielei	Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	50	_	ns
twh(xout)	XOUT input "H" width 24 —			ns
twl(xout)	XOUT input "L" width	24	_	ns

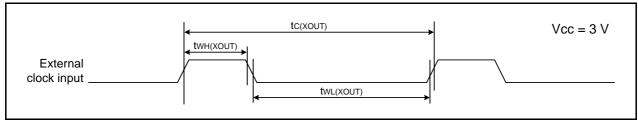


Figure 5.8 External Clock Input Timing Diagram when Vcc = 3 V

Table 5.22 TRAIO Input

Symbol	Parameter	Standard		Unit
Symbol	Farameter		Max.	
tc(TRAIO)	TRAIO input cycle time	300	_	ns
twh(traio)	TRAIO input "H" width 120 —			
tWL(TRAIO)	TRAIO input "L" width 120 —			

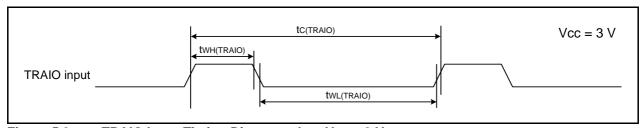


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.29 Serial Inte	erface
------------------------	--------

Symbol	Parameter	Porameter Stand		Unit
	Falameter		Max.	Offic
tc(CK)	CLKi input cycle time	800	_	ns
tW(CKH)	CLKi input "H" width	400	_	ns
tW(CKL)	CLKi input "L" width	400	_	ns
td(C-Q)	TXDi output delay time	_	200	ns
th(C-Q)	TXDi hold time 0		_	ns
tsu(D-C)	RXDi input setup time 150 —		ns	
th(C-D)	RXDi input hold time 90 —			

i = 0 to 2

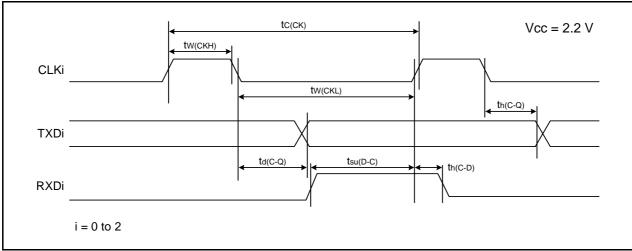


Figure 5.14 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.30 External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	Unit	
Symbol	Faidilletei	Min.	Max.	Oill
tW(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	_	ns
tW(INL)	INTi input "L" width, Kli input "L" width	-	ns	

- 1. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

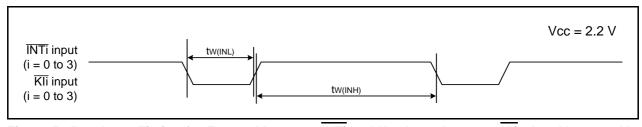
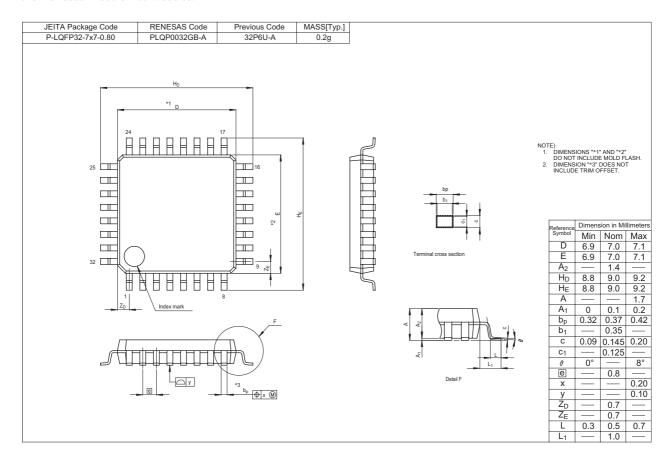



Figure 5.15 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

R8C/33T Group Package Dimensions

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

RF\	/121	ON	HIST	TORY
	/ IOI	OIN	ПІО	

R8C/33T Group Datasheet

Rev.	Date		Description
Rev.	Date	Page	Summary
1.00	Mar 16, 2010	_	First Edition issued
1.10	Apr 26, 2011	All pages	"UART1" deleted
		3	Table 1.2 revised, Note 1 deleted
		4	Table 1.3, Note 1, Figure 1.1 revised
		5	Figure 1.2 revised
		6	Figure 1.3 revised
		7	Table 1.4 revised
		8	Table 1.5 revised
		12	3.1 "The internal ROM with address 0FFFFh." deleted
		14	Table 4.2 revised
		18	Table 4.6 revised
		19	Table 4.7 revised
		26	Table 5.1 revised
		27	Note 1 revised
		29	Table 5.3, Note 1 revised
		31	Table 5.5, Note 1, Note 7 revised, and Note 8 added
		32	Note 1 of Table 5.6 and Table 5.7 revised
		33	Note 1 of Table 5.8 and Table 5.9 revised
		34	Table 5.10, Note 1 of Table 5.10 and Table 5.11 revised
		35	Table 5.13, Note 1 revised
		36	Table 5.14 revised
		39	Table 5.19, Note 1 revised
		40	Table 5.20 revised
		43	Table 5.25, Note 1 revised
		44	Table 5.26 revised

All trademarks and registered trademarks are the property of their respective owners.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical "Specific": implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

enesas Electronics America Inc. 80 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. dl: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-2825-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-5887-7589

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiv Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: 482-2-558-5141

© 2011 Renesas Electronics Corporation. All rights reserved.