

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21336tnfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

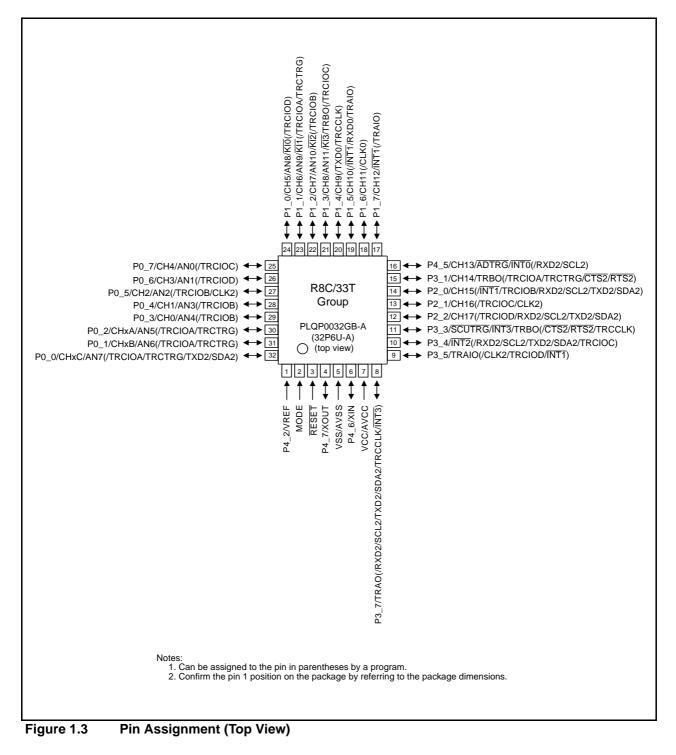

Item	Function	Specification	
Serial	UART0	Clock synchronous serial I/O/UART	
Interface	UART2	Clock synchronous serial I/O/UART, I ² C mode (I ² C-bus), SSU mode, multiprocessor communication function	
LIN Module		Hardware LIN: 1 (timer RA, UART0)	
A/D Converter		10-bit resolution \times 12 channels, includes sample and hold function, with sweep mode	
Sensor Contro	l Unit	System CH x 3, electrostatic capacitive touch detection x 18	
Flash Memory		 Programming and erasure voltage: VCC = 2.7 V to 5.5 V Programming and erasure endurance: 10,000 times (data flash) 1,000 times (program ROM) Program security: ROM code protect, ID code check Debug functions: On-chip debug, on-board flash rewrite function Background operation (BGO) function 	
Operating Frequency/Supply Voltage		f(XIN) = 20 MHz (VCC = 2.7 V to 5.5 V) f(XIN) = 5 MHz (VCC = 1.8 V to 5.5 V)	
Current Consumption		Typ. 6.5 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 3.5 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 3.5 μ A (VCC = 3.0 V, wait mode) Typ. 2.0 μ A (VCC = 3.0 V, stop mode)	
Operating Amb	pient Temperature	-20 to 85°C (N version)	
Package		32-pin LQFP Package code: PLQP0032GB-A (previous code: 32P6U-A)	

Table 1.2 Specifications for R8C/33T Group (2)

1.4 Pin Assignment

Figure 1.3 shows Pin Assignment (Top View). Table 1.4 outlines the Pin Name Information by Pin Number.

1.5 Pin Functions

Table 1.5 lists Pin Functions.

Table 1.5Pin Functions

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	—	Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin
Analog power supply input	AVCC, AVSS	—	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	I/O	the XIN and XOUT pins. ⁽¹⁾ To use an external clock, input it to the XOUT pin and leave the XIN pin open.
INT interrupt input	INT0 to INT3	Ι	INT interrupt input pins. INT0 is timer RB, and RC input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Serial interface	CLK0, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD2	I	Serial data input pins
	TXD0, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	AD external trigger input pin
Sensor control unit	CHxA, CHxB, CHxC	I/O	Control pins for electrostatic capacitive touch detection
	CH0 to CH17	I	Electrostatic capacitive touch detection pins
	SCUTRG	I	Sensor control unit external trigger input
I/O port	P0_0 to P0_7,	I/O	CMOS I/O ports. Each port has an I/O select direction
	P1_0 to P1_7, P2_0 to P2_2, P3_1, P3_3 to P3_5, P3_7,		register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
	P4_5 to P4_7		
	1	1	

Note:

State was the second second

1. Refer to the oscillator manufacturer for oscillation characteristics.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

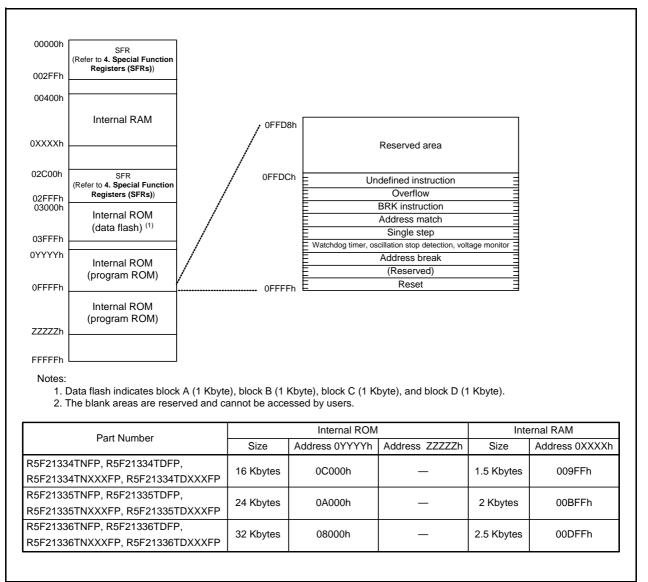
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

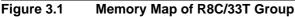
The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3.1 R8C/33T Group


Figure 3.1 is a Memory Map of R8C/33T Group. The R8C/33T Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.


The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

RENESAS

Address	Register	Symbol	After Reset
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			1
0154h		1	1
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Eh			
0160h			
0161h			
0162h			
0162h			
0164h			
0165h			
0166h			
0166h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh		1	1
017Eh			
017Eh			
Note:		1	

Table 4.6	SFR Information (6) ⁽¹⁾
-----------	------------------------------------

Note:

1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
	Address Match Interrupt Register 1	RIVIADI	
01C5h			XXh
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D1h 01D2h			
01D2h 01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
01E2h			0011
01E2h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
	Port P1 Drive Capacity Control Register	P1DRR	00h
01F1h	Port P2 Drive Capacity Control Register	P2DRR	00h
01F2h	Drive Capacity Control Register 0	DRR0	00h
01F3h	Drive Capacity Control Register 0	DRR1	00h
01F4h			0011
01F5h	Input Threshold Control Register 0	VLT0	00h
01F5h	Input Threshold Control Register 0	VLT0 VLT1	
01500		VLII	00h
01F7h			
01F8h			
01F9h			
01FAh	External Input Enable Register 0	INTEN	00h
01FBh			
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh			
01FEh	Key Input Enable Register 0	KIEN	00h
01FFh	-		
X: Undefined		1	

Table 4.8SFR Information (8) (1)

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

A -1 -1		2 · · ·	
Address	Register	Symbol	After Reset
02C0h	SCU Control Register 0	SCUCR0	00h
02C1h	SCU Mode Register	SCUMR	00h
02C2h	SCU Timing Control Register 0	SCTCR0	00000011b
02C3h	SCU Timing Control Register 1	SCTCR1	0000001b
02C4h	SCU Timing Control Register 2	SCTCR2	00010000b
02C5h	SCU Timing Control Register 3	SCTCR3	00h
02C6h	SCU Channel Control Register	SCHCR	00h
02C7h	SCU Channel Control Counter	SCUCHC	00h
02C8h	SCU Flag Register	SCUFR	00h
02C8h	SCU Status Counter	SCUSTC	00h
02CAh	SCU Secondary Counter Set Register	SCSCSR	00000111b
02CBh	SCU Secondary Counter	SCUSCC	00000111b
02CCh			
02CDh			
02CEh	SCU Destination Address Register	SCUDAR	00h
02CFh			00001100b
02D0h	SCU Data Buffer Register	SCUDBR	00h
02D1h		000000	00h
02D1h	SCU Primary Counter	SCUPRC	00h
		SCOFIC	
02D3h			00h
02D4h			
02D5h			
02D6h			
02D7h			
02D8h		1	
02D9h		1	
02DOh			
02DBh			
02DBh 02DCh	Touch Sensor Input Enable Register 0		0.01
		TSIER0	00h
02DDh	Touch Sensor Input Enable Register 1	TSIER1	00h
02DEh	Touch Sensor Input Enable Register 2	TSIER2	00h
02DFh			
:			
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C05h			XXh
	DTC Transfer Vector Area		
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3An 2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h	1	1	XXh
2C42h	1		XXh
2C43h	1		XXh
2C43h	4		XXh
	4		
2C45h	4		XXh
2C46h	1		XXh
			XXh
2C47h	DTC Control Data 1	DTCD1	XXh
2C47h 2C48h		1	XXh
2C48h 2C49h			
2C48h 2C49h 2C4Ah			XXh
2C48h 2C49h 2C4Ah 2C4Bh			XXh XXh
2C48h 2C49h 2C4Ah 2C4Bh 2C4Ch			XXh XXh XXh
2C48h 2C49h 2C4Ah 2C4Bh 2C4Ch 2C4Ch			XXh XXh XXh XXh
2C48h 2C49h 2C4Ah 2C4Bh 2C4Ch			XXh XXh XXh

Table 4.9SFR Information (9) (1)

Note:

1. The blank areas are reserved and cannot be accessed by users.

Address	Area Name	Symbol After R		
:				
FFDBh	Option Function Select Register 2	OFS2	(Note 1)	
:				
FFDFh	ID1		(Note 2)	
:				
FFE3h	ID2		(Note 2)	
:				
FFEBh	ID3		(Note 2)	
:				
FFEFh	ID4		(Note 2)	
:				
FFF3h	ID5		(Note 2)	
:	100			
FFF7h	ID6		(Note 2)	
:				
FFFBh	ID7		(Note 2)	
	Ortion Function Colort Desister	050	(NI-4- 4)	
FFFFh	Option Function Select Register	OFS	(Note 1)	

Table 4.13 ID Code Areas and Option Function Select Area

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Cumhal	Parameter			Conditions	Standard			Unit	
Symbol		Pa	arameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8		5.5	V
Vss/AVss	Supply voltage					—	0	_	V
Viн	Input "H" voltage	Other th	nan CMOS ir	nput		0.8 Vcc	—	Vcc	V
		CMOS	Input level	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	_	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc		Vcc	V
			function (I/O port)		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc		Vcc	V
			(1/0 port)	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc		Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc		Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	_	Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	—	Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.85 Vcc	—	Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.85 Vcc	_	Vcc	V
			I clock input	. ,		1.2	—	Vcc	V
VIL	Input "L" voltage	-	nan CMOS ir			0	_	0.2 Vcc	V
		CMOS	Input level	Input level selection		0	—	0.2 Vcc	V
		input	switching function	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.2 Vcc	V
			(I/O port)		$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	0.2 Vcc	V
			(Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0		0.4 Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0		0.3 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0		0.2 Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0		0.55 Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0		0.45 Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	0.35 Vcc	V
			I clock input			0		0.4 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)			_	_	-160	mA	
IOH(sum)	Average sum output "H" current	Sum of	Sum of all pins IOH(avg)			—	—	-80	mA
IOH(peak)	Peak output "H"	Drive ca	apacity Low			—		-10	mA
	current	Drive ca	apacity High			—	—	-40	mA
IOH(avg)	Average output	Drive ca	apacity Low			—		-5	mA
	"H" current	Drive ca	apacity High			—		-20	mA
IOL(sum)	Peak sum output "L" current	Sum of	all pins IOL(p	eak)		—	_	160	mA
IOL(sum)	Average sum output "L" current	Sum of	all pins IOL(a	vg)		—	—	80	mA
IOL(peak)	Peak output "L"	Drive ca	apacity Low			_	_	10	mA
	current	Drive ca	apacity High			_	_	40	mA
IOL(avg)	Average output	Drive ca	apacity Low			_	_	5	mA
	"L" current	Drive ca	apacity High			_	_	20	mA
f(XIN)	XIN clock input os	cillation fr	requency		$2.7~V \leq Vcc \leq 5.5~V$	—	_	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	—	_	5	MHz
fOCO40M	When used as the	as the count source for timer RC ⁽³⁾			$2.7~V \leq Vcc \leq 5.5~V$	32	—	40	MHz
fOCO-F	fOCO-F frequency				$2.7~V \leq Vcc \leq 5.5~V$	_	—	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	_	—	5	MHz
—	System clock frequ	lency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$		_	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	_	—	5	MHz
f(BCLK)	CPU clock frequer	ю			$2.7~V \leq Vcc \leq 5.5~V$		—	20	MHz
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	_	_	5	MHz

Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 V to 5.5 V at Topr = -20° C to 85°C (N version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V.

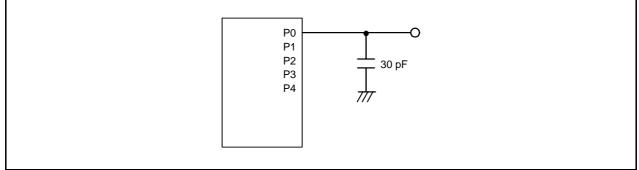


Figure 5.1 Ports P0 to P4 Timing Measurement Circuit

Symbol	Parameter		Standard			Unit
	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time ⁽⁴⁾	At the falling of Vcc from 5 V to $(Vdet0_0 - 0.1) V$	—	6	150	μS
_	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	—	1.5		μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		—	—	100	μS

Table 5.6	Voltage Detection 0 Circuit Electrical Characteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20° C to 85°C (N version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.7	Voltage Detection 1 Circuit Electrical Characteristics
-----------	--

Symbol	Deremeter	Condition		Standard	l	Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage	Vdet1_0 to Vdet1_5 selected	_	0.07		V
	detection 1 circuit	Vdet1_6 to Vdet1_F selected	—	0.10	_	V
_	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5 V to $(Vdet1_0 - 0.1) V$	_	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	—	1.7		μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾				100	μs

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20° C to 85° C (N version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

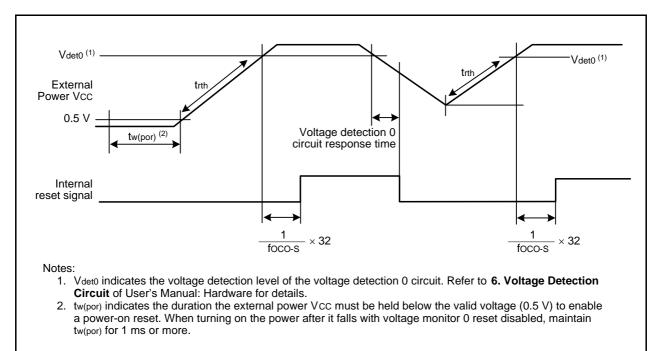
4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Standard		Unit
Symbol	Faranielei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
_	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		—	0.10	—	V
	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to $(Vdet2_0 - 0.1)$ V	—	20	150	μS
—	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V		1.7		μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		—	—	100	μS

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20° C to 85° C (N version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.


Table 5.9 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Standard	1	Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
trth	External power Vcc rise gradient	(Note 1)	0	—	50000	mV/msec

Notes:

1. The measurement condition is Topr = -20°C to 85°C (N version), unless otherwise specified.

2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
—	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	38.4	40	41.6	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into the FRA1 register and the FRA5 register correction value into the FRA3 register ⁽²⁾	$\label{eq:Vcc} \begin{array}{l} Vcc = 1.8 \ V \ to \ 5.5 \ V \\ -20^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	35.389	36.864	38.338	MHz
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into the FRA1 register and the FRA7 register correction value into the FRA3 register	Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	30.72	32	33.28	MHz
—	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	—	0.5	3	ms
—	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	400	_	μΑ

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Notes:

1. Vcc = 1.8 V to 5.5 V, Topr = -20° C to 85° C (N version), unless otherwise specified.

2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
—	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	—	30	100	μS
—	Self power consumption at oscillation	$Vcc = 5.0 V$, Topr = $25^{\circ}C$	_	2	_	μΑ

Note:

1. Vcc = 1.8 V to 5.5 V, Topr = -20° C to 85° C (N version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

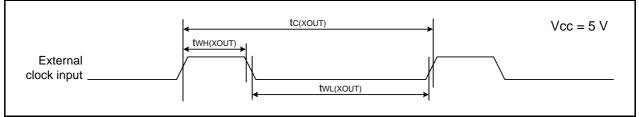
Symbol	Parameter	Condition		Standard		Unit
Symbol	i arameter	Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾			—	2000	μs

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = 25° C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Table 5.14	Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
	(Topr = -20° C to 85° C (N version), unless otherwise specified.)


Symbol	Parameter		Condition		Standar	d	Unit
Symbol	i alametei		Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 3.3 V to 5.5 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.3	12.5	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.6	—	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	3	—	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	15	100	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μA
Stop		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA	
		Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off		2	5.0	μA
			VCA27 = VCA26 = VCA25 = 0 XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	-	5		μA

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.15 External Clock Input (XOUT)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	50	—	ns
twh(xout)	XOUT input "H" width	24	—	ns
twl(xout)	XOUT input "L" width	24	—	ns

Figure 5.4 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.16 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	100	_	ns
twh(traio)	TRAIO input "H" width	40	_	ns
twl(traio)	TRAIO input "L" width	40		ns

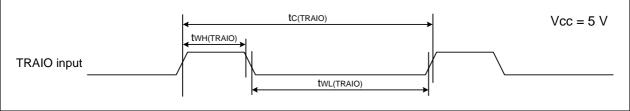


Figure 5.5 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5	.20	Characteristics (4) [2.7 V \leq Vcc $<$ 3.3 V] $^{\circ}$ C to 85 $^{\circ}$ C (N version), unless otherwise specified.)
1		

Cume had	Deremeter	Condition		Standard			Unit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Uni
сс	Power supply current (Vcc = 2.7 V to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	10	m/
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	7.5	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division		7	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3		m/
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	4	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	m/
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1		m/
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	390	μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		2	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5		μA

