

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	54
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f702-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28.2.1 Assigning Port I/O Pins to Analog Functions	182
28.2.2. Assigning Port I/O Pins to Digital Functions	102
28.2.3 Assigning Port I/O Pins to External Event Trigger Eurotions	104
28.3 Priority Crossbar Decoder	185
28.4 Port I/O Initialization	180
28.5. Port Match	109
20.5. FUIL Malch	192
20.0. Special Function Registers for Accessing and Configuring Fort I/O	194 244
29. Cyclic Redundancy Check Onit (CRC0)	210
29.1. TO-Dit CICC Algorithm	212
29.2. 52-bit CRC Algorithm	213
29.3. Flepaling for a CRC Calculation	214
29.4. Periorning a CRC Calculation	214
29.5. Accessing the CRC0 Result	214
29.6. CRCU Bit Reverse Feature	218
30. SMBUS	219
30.1. Supporting Documents	220
30.2. SMBus Configuration	220
30.3. SMBus Operation	220
30.3.1. Transmitter Vs. Receiver	221
30.3.2. Arbitration	221
30.3.3. Clock Low Extension	221
30.3.4. SCL Low Timeout	221
30.3.5. SCL High (SMBus Free) Timeout	222
30.4. Using the SMBus	222
30.4.1. SMBus Configuration Register	222
30.4.2. SMB0CN Control Register	226
30.4.2.1. Software ACK Generation	226
30.4.2.2. Hardware ACK Generation	226
30.4.3. Hardware Slave Address Recognition	228
30.4.4. Data Register	231
30.5. SMBus Transfer Modes	232
30.5.1. Write Sequence (Master)	232
30.5.2. Read Sequence (Master)	233
30.5.3. Write Sequence (Slave)	234
30.5.4. Read Sequence (Slave)	235
30.6. SMBus Status Decoding	235
31. Enhanced Serial Peripheral Interface (SPI0)	241
31.1. Signal Descriptions	242
31.1.1. Master Out, Slave In (MOSI)	242
31.1.2. Master In, Slave Out (MISO)	242
31.1.3. Serial Clock (SCK)	242
31.1.4. Slave Select (NSS)	242
31.2. SPI0 Master Mode Operation	242
31.3. SPI0 Slave Mode Operation	244
31.4. SPI0 Interrupt Sources	245

12. Voltage and Ground Reference Options

The voltage reference MUX is configurable to use an externally connected voltage reference, the on-chip voltage reference, or one of two power supply voltages (see Figure 12.1). The ground reference MUX allows the ground reference for ADC0 to be selected between the ground pin (GND) or a port pin dedicated to analog ground (P0.1/AGND).

The voltage and ground reference options are configured using the REF0CN SFR described on page 71. Electrical specifications are can be found in the Electrical Specifications Chapter.

Important Note About the V_{REF} and AGND Inputs: Port pins are used as the external V_{REF} and AGND inputs. When using an external voltage reference, P0.0/VREF should be configured as an analog input and skipped by the Digital Crossbar. When using AGND as the ground reference to ADC0, P0.1/AGND should be configured as an analog input and skipped by the Digital Crossbar. Refer to Section "28. Port Input/Output" on page 180 for complete Port I/O configuration details. The external reference voltage must be within the range $0 \le V_{REF} \le V_{DD}$ and the external ground reference must be at the same DC voltage potential as GND.

Figure 12.1. Voltage Reference Functional Block Diagram

Mnemonic	Description	Bytes	Clock Cycles
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer		1	
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
Boolean Manipulation	-	<u>.</u>	
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2

 Table 16.1. CIP-51 Instruction Set Summary (Continued)

SFR Definition 16.6. PSW: Program Status Word

Bit	7	6	5	4	3	2	1	0			
Nam	e CY	AC	F0	RS	[1:0]	OV	F1	PARITY			
Туре	R/W	R/W	R/W	R	/W	R/W	R/W	R			
Rese	t O	0	0	0	0	0	0	0			
SFR A	ddress = 0	kD0; SFR Page	e = All Pages	s; Bit-Addres	sable		L	1			
Bit	Name		Function								
7	CY	Carry Flag.	Carry Flag.								
		This bit is set row (subtraction	This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow (subtraction). It is cleared to logic 0 by all other arithmetic operations.								
6	AC	Auxiliary Car	ry Flag.								
		This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations.									
5	F0	User Flag 0.									
		This is a bit-ad	dressable,	general purp	oose flag for	use under so	oftware cont	rol.			
4:3	RS[1:0]	Register Ban	k Select.								
		These bits sel 00: Bank 0, Ad 01: Bank 1, Ad	ect which re ddresses 0x0 ddresses 0x0	gister bank i 00-0x07 08-0x0F	is used durin	ig register ac	cesses.				

		01: Bank 1, Addresses 0x08-0x0F
		10: Bank 2, Addresses 0x10-0x17
		11: Bank 3, Addresses 0x18-0x1F
2	OV	Overflow Flag.
		This bit is set to 1 under the following circumstances:
		 An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
		 A MUL instruction results in an overflow (result is greater than 255).
		 A DIV instruction causes a divide-by-zero condition.
		The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all
		other cases.
1	F1	User Flag 1.
		This is a bit-addressable, general purpose flag for use under software control.
0	PARITY	Parity Flag.
		This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared
		if the sum is even.

27.2. Programmable Internal High-Frequency (H-F) Oscillator

All C8051F70x/71x devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 27.2.

On C8051F70x/71x devices, OSCICL is factory calibrated to obtain a 24.5 MHz base frequency.

The internal oscillator output frequency may be divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

The precision oscillator supports a spread spectrum mode which modulates the output frequency in order to reduce the EMI generated by the system. When enabled (SSE = 1), the oscillator output frequency is modulated by a stepped triangle wave whose frequency is equal to the oscillator frequency divided by 384 (63.8 kHz using the factory calibration). The maximum deviation from the center frequency is $\pm 0.75\%$. The output frequency updates occur every 32 cycles and the step size is typically 0.25% of the center frequency.

SFR Definition 27.2. OSCICL: Internal H-F Oscillator Calibration

	-	4	3	2	1	0		
		OSCIO	CL[6:0]					
R/W								
Varies	Varies	Varies	Varies	Varies	Varies	Varies		
	Varies	Varies Varies	OSCIC R/ Varies Varies Varies	OSCICL[6:0] R/W Varies Varies Varies	OSCICL[6:0] R/W Varies Varies Varies Varies	OSCICL[6:0] R/W Varies Varies Varies Varies Varies		

SFR Address = 0xBF; SFR Page = F

Bit	Name	Function
6:0	OSCICL[7:0]	Internal Oscillator Calibration Bits.
		These bits determine the internal oscillator period. When set to 00000000b, the H-F oscillator operates at its fastest setting. When set to 1111111b, the H-F oscillator operates at its slowest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.

28.1.3. Interfacing Port I/O to 5 V Logic

All Port I/O configured for digital, open-drain operation are capable of interfacing to digital logic operating at a supply voltage up to 2 V higher than VDD and less than 5.25 V. An external pull-up resistor to the higher supply voltage is typically required for most systems.

Important Note: In a multi-voltage interface, the external pull-up resistor should be sized to allow a current of at least 150 μ A to flow into the Port pin when the supply voltage is between (VDD + 0. 6V) and (VDD + 1.0V). Once the Port pin voltage increases beyond this range, the current flowing into the Port pin is minimal. Figure 28.3 shows the input current characteristics of port pins driven above VDD. The port pin requires 150 μ A peak overdrive current when its voltage reaches approximately (VDD + 0.7 V).

Port I/O Overdrive Test Circuit

Port I/O Overdrive Current vs. Voltage

Figure 28.3. Port I/O Overdrive Current

28.1.4. Increasing Port I/O Drive Strength

Port I/O output drivers support a high and low drive strength; the default is low drive strength. The drive strength of a Port I/O can be configured using the PnDRV registers. See Section "9. Electrical Characteristics" on page 47 for the difference in output drive strength between the two modes.

28.2. Assigning Port I/O Pins to Analog and Digital Functions

Port I/O pins P0.0–P2.7 can be assigned to various analog, digital, and external interrupt functions. The Port pins assigned to analog functions should be configured for analog I/O, and Port pins assigned to digital or external interrupt functions should be configured for digital I/O.

28.2.1. Assigning Port I/O Pins to Analog Functions

Table 28.1 shows all available analog functions that require Port I/O assignments. **Port pins selected for these analog functions should have their corresponding bit in PnSKIP set to 1.** This reserves the pin for use by the analog function and does not allow it to be claimed by the Crossbar. Table 28.1 shows the potential mapping of Port I/O to each analog function.

Port				P	0							Ρ	1							Ρ	2			
Pin Number	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
Special Function Signals	VREF	AGND	XTAL1	XTAL2			CNVSTR																	
ТХО																								
RX0																								
SCK																								
MISO																								
MOSI																								
NSS*																								
SDA																								
SCL																								
CP0																								
CP0A																								
SYSCLK																								
CEX0																								
CEX1																								
CEX2																								
ECI																								
ТО																								
T1																								
Pin Skip Settings	Pin Skip 0<																							
The crossbar peripherals are assigned in priority order from top to bottom, according to this diagram.																								
These boxes represent Port pins which can potentially be assigned to a peripheral.																								
enabled, the	Special Function Signals are not assigned by the crossbar. When these signals are enabled, the Crossbar should be manually configured to skip the corresponding port pins.																							

Pins can be "skipped" by setting the corresponding bit in PnSKIP to 1.

* NSS is only pinned out when the SPI is in 4-wire mode.

SFR Definition 28.23. P3MDIN: Port 3 Input Mode

Bit	7	6	5	4	3	2	1	0	
Name	P3MDIN[7:0]								
Туре		R/W							
Reset	1	1	1	1	1	1	1	1	

SFR Address = 0xF4; SFR Page = F

Bit	Name	Function
7:0	P3MDIN[7:0]	Analog Configuration Bits for P3.7–P3.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P3.n pin is configured for analog mode.
		1: Corresponding P3.n pin is not configured for analog mode.

SFR Definition 28.24. P3MDOUT: Port 3 Output Mode

Bit	7	6	5	4	3	2	1	0		
Name		P3MDOUT[7:0]								
Туре		R/W								
Reset	0	0 0 0 0 0 0						0		

SFR Address = 0xAF; SFR Page = F

Bit	Name	Function
7:0	P3MDOUT[7:0]	Output Configuration Bits for P3.7–P3.0 (respectively).
		These bits are ignored if the corresponding bit in register P3MDIN is logic 0. 0: Corresponding P3.n Output is open-drain. 1: Corresponding P3.n Output is push-pull.

SFR Definition 28.35. P6MDIN: Port 6 Input Mode

Bit	7	6	5	4	3	2	1	0	
Name			P6MDIN[5:0]						
Туре	R	R		R/W					
Reset	0	0	1	1	1	1	1	1	

SFR Address = 0xF7; SFR Page = F

Bit	Name	Function
7:6	Unused	Read = 00b; Write = Don't Care
5:0	P6MDIN[5:0]	Analog Configuration Bits for P6.5–P6.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled. 0: Corresponding P6.n pin is configured for analog mode. 1: Corresponding P6.n pin is not configured for analog mode.

SFR Definition 28.36. P6MDOUT: Port 6 Output Mode

Bit	7	6	5	4	3	2	1	0	
Name			P6MDOUT[5:0]						
Туре	R	R	R/W						
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0x9C; SFR Page = F

Bit	Name	Function
7:6	Unused	Read = 00b; Write = Don't Care
5:0	P6MDOUT[5:0]	Output Configuration Bits for P6.5–P6.0 (respectively).
		These bits are ignored if the corresponding bit in register P6MDIN is logic 0.
		0: Corresponding P6.n Output is open-drain.
		1: Corresponding P6.n Output is push-pull.

imum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTH	IOLD	Minimum SDA Setup Time	Minimum SDA Hold Time		
C)	T _{low} – 4 system clocks or 1 system clock + s/w delay [*]	3 system clocks		
1		11 system clocks	12 system clocks		
Note: S S A tt	Setup Tim oftware a ACK is wi hat define	ne for ACK bit transmissions and the acknowledgement, the s/w delay occ ritten and when SI is cleared. Note th es the outgoing ACK value, s/w dela	MSB of all data transfers. When using curs between the time SMB0DAT or nat if SI is cleared in the same write y is zero.		

Table 30.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "30.3.4. SCL Low Timeout" on page 221). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 30.4).

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

32. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "32.1. Enhanced Baud Rate Generation" on page 255). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

Figure 32.1. UART0 Block Diagram

SFR Definition 33.4. TL0: Timer 0 Low Byte

		1								
Bit	7	6	5	4	3	2	1	0		
Nam	e	TL0[7:0]								
Туре	R/W									
Rese	et 0	0	0	0	0	0	0	0		
SFR A	SFR Address = 0x8A; SFR Page = All Pages									
Bit	Name	Function								
7:0	TL0[7:0]	Timer 0 Lo	w Byte.							

The TEO register is the low byte of the To bit Timer e	The TLU register is the low byte of the To-bit Timer
--	--

SFR Definition 33.5. TL1: Timer 1 Low Byte

Bit	7	6	5	4	3	2	1	0		
Nam	е	TL1[7:0]								
Туре	R/W									
Rese	et O	0	0	0	0	0	0	0		
SFR A	SFR Address = 0x8B; SFR Page = All Pages									
Bit	Name		Function							
7:0	TL1[7:0]	[7:0] Timer 1 Low Byte.								
	The TL1 register is the low byte of the 16-bit Timer 1.									

SFR Definition 33.6. TH0: Timer 0 High Byte

Bit	7	6	5	4	3	2	1	0		
Nam	e	TH0[7:0]								
Туре	e	R/W								
Rese	et 0	0	0	0	0	0	0	0		
SFR A	SFR Address = 0x8C; SFR Page = All Pages									
Bit	Name		Function							
7:0	TH0[7:0]	Timer 0 Hig	gh Byte.							

The TH0 register is the high byte of the 16-bit Timer 0.
--

SFR Definition 33.7. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0		
Nam	e	TH1[7:0]								
Туре	R/W									
Rese	et 0	0	0	0	0	0	0	0		
SFR Address = 0x8D; SFR Page = All Pages										
Bit	Name		Function							
7:0	TH1[7:0]	Timer 1 Hig	gh Byte.							

The TH1 register is the high byte of the 16-bit Time	r 1.
--	------

33.2.3. Comparator 0 Capture Mode

The capture mode in Timer 2 allows Comparator 0 rising edges to be captured with the timer clocking from the system clock or the system clock divided by 12. Timer 2 capture mode is enabled by setting TF2CEN to 1 and T2SPLIT to 0.

When capture mode is enabled, a capture event will be generated on every Comparator 0 rising edge. When the capture event occurs, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set (triggering an interrupt if Timer 2 interrupts are enabled). By recording the difference between two successive timer capture values, the Comparator 0 period can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading.

This mode allows software to determine the time between consecutive Comparator 0 rising edges, which can be used for detecting changes in the capacitance of a capacitive switch, or measuring the frequency of a low-level analog signal.

Figure 33.6. Timer 2 Capture Mode Block Diagram

SFR Definition 33.8. TMR2CN: Timer 2 Control

Bit	7	6	5	4	3	2	1	0						
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2		T2XCLK						
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W						
Rese	t 0	0	0	0	0	0	0	0						
SFR A	ddress = 0xC	8; SFR Page = All Pages; Bit-Addressable												
Bit	Name			·	Function									
7	TF2H	Timer 2 High Byte Overflow Flag.												
		Set by hard mode, this v Timer 2 inte interrupt set	ware when t vill occur wh rrupt is enat vice routine	he Timer 2 h en Timer 2 c bled, setting . This bit is r	igh byte ove overflows from this bit cause not automatic	rflows from (m 0xFFFF to es the CPU t ally cleared	0xFF to 0x00 0x00000. Wi to vector to t by hardware	D. In 16 bit hen the he Timer 2 9.						
6	TF2L	Timer 2 Lor Set by hard be set wher automatical	w Byte Over ware when t in the low byte ly cleared by	r flow Flag. he Timer 2 le e overflows v hardware.	ow byte over regardless of	flows from 0 f the Timer 2	xFF to 0x00 2 mode. This	. TF2L will bit is not						
5	TF2LEN	Timer 2 Low Byte Interrupt Enable.												
		When set to also enable	1, this bit e d, an interru	nables Time pt will be gei	r 2 Low Byte nerated whei	interrupts. In the low byte	f Timer 2 inte te of Timer 2	errupts are overflows.						
4	TF2CEN	Timer 2 Co	mparator C	apture Enak	ole.									
		When set to on a rising e TMR2H:TM enabled, an	1, this bit er edge of the 0 R2L will be o interrupt wil	nables Timer Comparator0 copied to TM I be generat	2 Comparat output the c R2RLH:TMF ed on this ev	or Capture I surrent 16-bit R2RLL. If Tin vent.	Mode. If TF2 t timer value ner 2 interrup	CEN is set, in ots are also						
3	T2SPLIT	Timer 2 Sp	lit Mode En	able.										
		 When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload. 0: Timer 2 operates in 16-bit auto-reload mode. 1: Timer 2 operates as two 8-bit auto-reload timers. 												
2	TR2	Timer 2 Run Control.												
		Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.												
1	Unused	Read = 0b; Write = Don't Care.												
0	T2XCLK	Timer 2 External Clock Select.												
		This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).												

SFR Definition 33.16. TMR3L: Timer 3 Low Byte

Bit	7	6	5	4	3	2	1	0				
Name	TMR3L[7:0]											
Туре	R/W											
Reset	0	0	0	0	0	0	0	0				

SFR Address = 0x94; SFR Page = 0

Bit	Name	Function
7:0	TMR3L[7:0]	Timer 3 Low Byte.
		In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-bit mode, TMR3L contains the 8-bit low byte timer value.

SFR Definition 33.17. TMR3H Timer 3 High Byte

Bit	7	6	5	4	3	2	1	0					
Name	TMR3H[7:0]												
Туре	R/W												
Reset	0	0	0	0	0	0	0	0					

SFR Address = 0x95; SFR Page = 0

Bit	Name	Function
7:0	TMR3H[7:0]	Timer 3 High Byte.
		In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-bit mode, TMR3H contains the 8-bit high byte timer value.

Operational Mode			PCA0CPMn									PCA0PWM				
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4:2	1:0			
Capture triggered by positive edge on CEXn	Х	Х	1	0	0	0	0	А	0	Х	В	XXX	XX			
Capture triggered by negative edge on CEXn	Х	Х	0	1	0	0	0	А	0	Х	В	XXX	XX			
Capture triggered by any transition on CEXn	Х	Х	1	1	0	0	0	А	0	Х	В	XXX	XX			
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	XXX	XX			
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	XXX	XX			
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	XXX	XX			
8-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	0	Х	В	XXX	00			
9-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	01			
10-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	10			
11-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	11			
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	XXX	XX			
Notes:																

Table 34.2. PCA0CPM and PCA0PWM Bit Settings for PCA Modules

1. X = Don't Care (no functional difference for individual module if 1 or 0).

2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).

3. B = Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL[1:0]).

4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).

5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA0CPHn and PCA0CPLn.

6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.

7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

34.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.

Figure 34.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

