E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, WDT
Number of I/O	39
Program Memory Size	15KB (15K x 8)
Program Memory Type	FLASH
EEPROM Size	32 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f705-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F70x/71x

22.1.2. Flash Erase Procedure	148
22.1.3. Flash Write Procedure	149
22.2. Non-volatile Data Storage	149
22.3. Security Options	149
22.4. Flash Write and Erase Guidelines	150
22.4.1. VDD Maintenance and the VDD Monitor	151
22.4.2. PSWE Maintenance	151
22.4.3. System Clock	152
23. EEPROM	155
23.1. RAM Reads and Writes	155
23.2. Auto Increment	155
23.3. Interfacing with the EEPROM	155
23.4. EEPROM Security	156
24. Power Management Modes	160
24.1. Idle Mode	160
24.2. Stop Mode	161
24.3. Suspend Mode	161
25. Reset Sources	163
25.1. Power-On Reset	164
25.2. Power-Fail Reset / VDD Monitor	165
25.3. External Reset	166
25.4. Missing Clock Detector Reset	166
25.5. Comparator0 Reset	167
25.6. Watchdog Timer Reset	167
25.7. Flash Error Reset	167
25.8. Software Reset	167
26. Watchdog Timer	169
26.1. Enable/Reset WDT	169
26.2. Disable WDT	169
26.3. Disable WDT Lockout	169
26.4. Setting WDT Interval	169
27. Oscillators and Clock Selection	171
27.1. System Clock Selection	171
27.2. Programmable Internal High-Frequency (H-F) Oscillator	173
27.3. External Oscillator Drive Circuit	175
27.3.1. External Crystal Example	177
27.3.2. External RC Example	178
27.3.3. External Capacitor Example	179
28. Port Input/Output	180
28.1. Port I/O Modes of Operation	181
28.1.1. Port Pins Configured for Analog I/O	181
28.1.2. Port Pins Configured For Digital I/O	181
28.1.3. Interfacing Port I/O to 5 V Logic	182
28.1.4. Increasing Port I/O Drive Strength	182
28.2. Assigning Port I/O Pins to Analog and Digital Functions	182

Name	TQFP64	TQFP48 QFN48	QFN32	QFN24	Туре	Description
P5.1	10	10	7	_	D I/O or A In	Port 5.0. CS0 input pin 26.
P5.2	7	7	6	—	D I/O or A In	Port 5.2. CS0 input pin 27
P5.3	6	6	5	—	D I/O or A In	Port 5.3. CS0 input pin 28.
P5.4	5	5	4	—	D I/O or A In	Port 5.4. CS0 input pin 29.
P5.5	4	4	3	—	D I/O or A In	Port 5.5. CS0 input pin 30.
P5.6	3	3	2	—	D I/O or A In	Port 5.6. CS0 input pin 31.
P5.7	2	2	1	—	D I/O or A In	Port 5.7. CS0 input pin 32.
P6.0	1	—	—	—	D I/O	Port 6.0. CS0 input pin 33.
P6.1	64	—	—	—	D I/O	Port 6.1. CS0 input pin 34.
P6.2	63	—	—	—	D I/O	Port 6.2. CS0 input pin 35.
P6.3	62	1	32	—	D I/O	Port 6.3. CS0 input pin 36.
P6.4	61	48	31	1	D I/O	Port 6.4. CS0 input pin 37.
P6.5	60	47	30	24	D I/O	Port 6.5. CS0 input pin 38.

 Table 3.1. Pin Definitions for the C8051F70x/71x (Continued)

7. QFN-32 Package Specifications

Figure 7.1. QFN-32 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.90	1.00	E2	3.50	3.60	3.70
A1	0.00	0.02	0.05	L	0.30	0.35	0.40
b	0.18	0.25	0.30	L1	0.00	—	0.10
D		5.00 BSC.		aaa		0.15	
D2	3.50	3.60	3.70	bbb		0.10	
е	0.50 BSC.			ddd		0.05	
E	5.00 BSC.			eee		0.08	

Table 7.1. QFN-32 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

- **3.** This drawing conforms to the JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, L and L1 which are toleranced per supplier designation.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 9.5. Internal Voltage Regulator Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
Input Voltage Range		1.8		3.6	V
Bias Current	Normal mode, 25 °C		80	90	μΑ
	Bypass mode, 25 °C	—	2	4	μA

Table 9.6. Flash Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units
Flash Size*	C8051F702/3/6/7, C8051F716/7		16384		bytes
	C8051F700/1/4/5		15360		bytes
	C8051F708/9, C8051F710/1/2/3/4/5		8192		bytes
Endurance (Erase/Write)		10000			cycles
Erase Cycle Time	25 MHz Clock	15	20	26	ms
Write Cycle Time	25 MHz Clock	15	20	26	μs
Clock Speed During Flash Write/Erase Operations		1	—	—	MHz
*Note: Includes Security Lock By	te.				

Table 9.7. Internal High-Frequency Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Тур	Max	Units
Oscillator Frequency	IFCN = 11b	24	24.5	25	MHz
Oscillator Supply Current	25 °C, V _{DD} = 3.0 V,	_	350	650	μA
	OSCICN.7 = 1,				
	OCSICN.5 = 0				

Table 9.8. Capacitive Sense Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_{A} = –40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Single Conversion Time ¹	12-bit Mode	20	29	40	μs
	13-bit Mode (default)	21	31	42.5	
	14-bit Mode	23	33	45	
	16-bit Mode	26	38	50	
Number of Channels	64-pin Packages		38		Channels
	48-pin Packages	1	27		
	32-pin Packages	1	26		
	24-pin Packages	l	18		
Capacitance per Code	Default Configuration	<u> </u>	1		fF
External Capacitive Load	CS0CG = 111b (Default)	—		45	pF
	CS0CG = 000b	I —	I <u> </u>	500	pF
External Series Impedance	CS0CG = 111b (Default)	—	—	50	kΩ
Quantization Noise ¹²	RMS	—	3		fF
	Peak-to-Peak	—	20		fF
Power Supply Current	CS module bias current, 25 °C		50	60	μA
	CS module alone, maximum code output, 25 °C	—	90	105	μA
	Wake-on-CS threshold (suspend mode with regulator and CS module on) ³	—	130	145	μA
Notes:					

1. Conversion time is specified with the default configuration.

2. RMS Noise is equivalent to one standard deviation. Peak-to-peak noise encompasses ±3.3 standard deviations. The RMS noise value is specified with the default configuration.

3. Includes only current from regulator, CS module, and MCU in suspend mode.

SFR Definition 13.1. REG0CN: Voltage Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	STOPCF	BYPASS						
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xB9; SFR Page = F

Bit	Name	Function
7	STOPCF	 Stop Mode Configuration. This bit configures the regulator's behavior when the device enters STOP mode. 0: Regulator is still active in STOP mode. Any enabled reset source will reset the device. 1: Regulator is shut down in STOP mode. Only the RST pin or power cycle can reset the device.
6	BYPASS	 Bypass Internal Regulator. This bit places the regulator in bypass mode, allowing the core to run directly from the V_{DD} supply pin. 0: Normal Mode—Regulator is on and regulates V_{DD} down to the core voltage. 1: Bypass Mode—Regulator is in bypass mode, and the microcontroller core operates directly from the V_{DD} supply voltage. IMPORTANT: Bypass mode is for use with an external regulator as the supply voltage only. Never place the regulator in bypass mode when the V_{DD} supply voltage is greater than the specifications given in Table 9.1 on page 47. Doing so may cause permanent damage to the device.
5:0	Reserved	Reserved. Must Write 000000b.

15. Capacitive Sense (CS0)

The Capacitive Sense subsystem uses a capacitance-to-digital circuit to determine the capacitance on a port pin. The module can take measurements from different port pins using the module's analog multiplexer. The module is enabled only when the CS0EN bit (CS0CN) is set to 1. Otherwise the module is in a low-power shutdown state. The module can be configured to take measurements on one port pin or a group of port pins, using auto-scan. A selectable gain circuit allows the designer to adjust the maximum allowable capacitance. An accumulator is also included, which can be configured to average multiple conversions on an input channel. Interrupts can be generated when CS0 completes a conversion or when the measured value crosses a threshold defined in CS0THH:L.

Figure 15.1. CS0 Block Diagram

15.6. CS0 Conversion Accumulator

CS0 can be configured to accumulate multiple conversions on an input channel. The number of samples to be accumulated is configured using the CS0ACU2:0 bits (CS0CF2:0). The accumulator can accumulate 1, 4, 8, 16, 32, or 64 samples. After the defined number of samples have been accumulated, the result is divided by either 1, 4, 8, 16, 32, or 64 (depending on the CS0ACU[2:0] setting) and copied to the CS0DH:CS0DL SFRs.

Auto-Scan Enabled	Accumulator Enabled	CS0 Conversion Complete Interrupt Behavior	CS0 Greater Than Interrupt Behavior	CS0MX Behavior
N	N N CS0INT Interrupt serviced after 1 conversion com- pletes		Interrupt serviced after 1 con- version completes if value in CS0DH:CS0DL is greater than CS0THH:CS0THL	CS0MX unchanged.
N	Y	CS0INT Interrupt serviced after <i>M</i> conversions com- plete	Interrupt serviced after <i>M</i> conversions complete if value in CS0DH:CS0DL (post accumulate and divide) is greater than CS0THH:CS0THL	CS0MX unchanged.
Y	N	CS0INT Interrupt serviced after 1 conversion com- pletes	Interrupt serviced after con- version completes if value in CS0DH:CS0DL is greater than CS0THH:CS0THL; Auto-Scan stopped	If greater-than comparator detects conver- sion value is greater than CS0THH:CS0THL, CS0MX is left unchanged; otherwise, CS0MX updates to the next channel (CS0MX + 1) and wraps back to CS0SS after passing CS0SE
Y	Y Y CSOINT Interrupt serviced after <i>M</i> conversions com- plete		Interrupt serviced after <i>M</i> conversions complete if value in CS0DH:CS0DL (post accumulate and divide) is greater than CS0THH:CS0THL; Auto-Scan stopped	If greater-than comparator detects conver- sion value is greater than CS0THH:CS0THL, CS0MX is left unchanged; otherwise, CS0MX updates to the next channel (CS0MX + 1) and wraps back to CS0SS after passing CS0SE
		M =	Accumulator setting (1x, 4x, 8	3x, 16x, 32x, 64x)

 Table 15.2. Operation with Auto-scan and Accumulate

16.2. CIP-51 Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should always be written to the value indicated in the SFR description. Future product versions may use these bits to implement new features in which case the reset value of the bit will be the indicated value, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the data sheet associated with their corresponding system function.

SFR Definition 16.1. DPL: Data Pointer Low Byte

Bit	7	6	5	4	3	2	1	0	
Name DPL[7:0]									
Type R/W									
Rese	et 0	0	0	0	0	0	0	0	
SFR A	Address = 0x8	32; SFR Page	= All Pages	i.					
Bit	Name	Function							
7:0	DPL[7:0]	7:0] Data Pointer Low.							
		The DPL reg	gister is the l	ow byte of th	e 16-bit DP	TR.			

SFR Definition 16.2. DPH: Data Pointer High Byte

Bit	7	6	5	4	3	2	1	0
Name	DPH[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
SFR Address = 0x83: SFR Page = All Pages								

•••••								
Bit	Name	Function						
7:0	DPH[7:0]	Data Pointer High.						
		The DPH register is the high byte of the 16-bit DPTR.						

18.4. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

18.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 18.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the Q outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section "18.6.2. Multiplexed Mode" on page 123 for more information.

Figure 18.1. Multiplexed Configuration Example

SFR Definition 21.6. EIP2: Extended Interrupt Priority 2

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PSCGRT	PSCCPT
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xCF; SFR Page = F

Bit	Name	Function
7:2	Reserved	Must Write 000000b.
1	PSCGRT	 Capacitive Sense Greater Than Comparator Priority Control. This bit sets the priority of the Capacitive Sense Greater Than Comparator interrupt. 0: CS0 Greater Than Comparator interrupt set to low priority level. 1: CS0 Greater Than Comparator set to high priority level.
0	PSCCPT	 Capacitive Sense Conversion Complete Priority Control. This bit sets the priority of the Capacitive Sense Conversion Complete interrupt. 0: CS0 Conversion Complete set to low priority level. 1: CS0 Conversion Complete set to high priority level.

SFR Definition 22.1. PSCTL: Program Store R/W Control

Bit	7	6	5	4	3	2	1	0
Name							PSEE	PSWE
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address =0x8F; SFR Page = All Pages

Bit	Name	Function
7:2	Unused	Read = 000000b, Write = don't care.
1	PSEE	Program Store Erase Enable.
		 Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	Program Store Write Enable.
		 Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.

SFR Definition 27.3. OSCICN: Internal H-F Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	IOSCEN	IFRDY	SUSPEND	STSYNC	SSE		IFCN[1:0]	
Туре	R/W	R	R/W	R	R/W	R	R/W	
Reset	1	1	0	0	0	0	0	0

SFR Address = 0xA9; SFR Page = F

Bit	Name	Function
7	IOSCEN	Internal H-F Oscillator Enable Bit.
		0: Internal H-F Oscillator Disabled.
		1: Internal H-F Oscillator Enabled.
6	IFRDY	Internal H-F Oscillator Frequency Ready Flag.
		0: Internal H-F Oscillator is not running at programmed frequency.
		1: Internal H-F Oscillator is running at programmed frequency.
5	SUSPEND	Internal Oscillator Suspend Enable Bit.
		Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The inter- nal oscillator resumes operation when one of the SUSPEND mode awakening events occurs.
4	STSYNC	Suspend Timer Synchronization Bit.
		This bit is used to indicate when it is safe to read and write the registers associated with the suspend wake-up timer. If a suspend wake-up source other than Timer 3 has brought the oscillator out of suspend mode, it make take up to three timer clocks before the timer can be read or written.
		0: Timer 3 registers can be read safely.
		1: Timer 3 register reads and writes should not be performed.
3	SSE	Spread Spectrum Enable.
		Spread spectrum enable bit.
		0: Spread Spectrum clock dithering disabled.
		1: Spread Spectrum clock dithering enabled.
2	Unused	Read = 0b; Write = Don't Care
1:0	IFCN[1:0]	Internal H-F Oscillator Frequency Divider Control Bits.
		00: SYSCLK derived from Internal H-F Oscillator divided by 8.
		01: SYSCLK derived from Internal H-F Oscillator divided by 4.
		10: SYSULK derived from Internal H-F Oscillator divided by 2.
		11. STOCK derived from internal H-F Oscillator divided by 1.

C8051F70x/71x

SFR Definition 29.2. CRC0IN: CRC Data Input

Bit	7	6	5	4	3	2	1	0
Name	CRC0IN[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x94; SFR Page = F

Bit	Name	Function
7:0	CRC0IN[7:0]	CRC0 Data Input.
		Each write to CRC0IN results in the written data being computed into the existing CRC result according to the CRC algorithm described in Section 29.1

SFR Definition 29.3. CRC0DATA: CRC Data Output

Bit	7	6	5	4	3	2	1	0
Name	CRC0DAT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD9; SFR Page = F

Bit	Name	Function
7:0	CRC0DAT[7:0]	CRC0 Data Output.
		Each read or write performed on CRC0DAT targets the CRC result bits pointed to by the CRC0 Result Pointer (CRC0PNT bits in CRC0CN).

Table 30.5.	SMBus Status	Decoding:	Hardware	ACK Disabled	(EHACK = 0)	(Continued)
	ombao otatao	Decouning.	i lui a mui c	Aon Disubica	$(\Box II A O I = 0)$	(Continuou)

đ	Valu	es I	Rea	d		Typical Response Options		ues Nrit	tus ected	
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State			STO	ACK	Next Sta Vector Exp
_		0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
smitte	0100	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	X	0100
⁄e Tran		0	1	x	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	X	0001
Slav	0101	0	x	x	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.		0	Х	—
						If Write, Acknowledge received address	0	0	1	0000
		1	0	x	A slave address + R/W was received; ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
		'				NACK received address.	0	0	0	<u> </u>
	0010				Lost arbitration as master; slave address + R/W received;	If Write, Acknowledge received address	0	0	1	0000
iver		1	1	x		If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
sece					ACK requested.	NACK received address.	0	0	0	<u> </u>
slave R	 					Reschedule failed transfer; NACK received address.	1	0	0	1110
	0001	0	0	x	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	X	
	ļ	1	1	x	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	<u> </u>
	0000	1	0	x	A slave byte was received;	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000
		'			AUN requested.	NACK received byte.	0	0	0	- I

32.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown in Figure 32.3.

Figure 32.3. UART Interconnect Diagram

32.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 32.4. 8-Bit UART Timing Diagram

32.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 32.6. UART Multi-Processor Mode Interconnect Diagram

33.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode. Timer 2 can also be used in capture mode to capture rising edges of the Comparator 0 output.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. The external oscillator source divided by 8 is synchronized with the system clock.

33.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 33.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

Figure 33.4. Timer 2 16-Bit Mode Block Diagram

33.2.3. Comparator 0 Capture Mode

The capture mode in Timer 2 allows Comparator 0 rising edges to be captured with the timer clocking from the system clock or the system clock divided by 12. Timer 2 capture mode is enabled by setting TF2CEN to 1 and T2SPLIT to 0.

When capture mode is enabled, a capture event will be generated on every Comparator 0 rising edge. When the capture event occurs, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set (triggering an interrupt if Timer 2 interrupts are enabled). By recording the difference between two successive timer capture values, the Comparator 0 period can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading.

This mode allows software to determine the time between consecutive Comparator 0 rising edges, which can be used for detecting changes in the capacitance of a capacitive switch, or measuring the frequency of a low-level analog signal.

Figure 33.6. Timer 2 Capture Mode Block Diagram

SFR Definition 33.8. TMR2CN: Timer 2 Control

Bit	7	6	5	4	3	2	1	0		
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2		T2XCLK		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W		
Rese	t 0	0	0	0	0	0	0	0		
SFR A	ddress = 0xC	8: SFR Page = All Pages; Bit-Addressable								
Bit	Name			Function						
7	TF2H	Timer 2 High Byte Overflow Flag.								
		Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.								
6	TF2L	Timer 2 Low Byte Overflow Flag. Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.								
5	TF2LEN	Timer 2 Low Byte Interrupt Enable.								
		When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.								
4	TF2CEN	Timer 2 Comparator Capture Enable.								
		When set to 1, this bit enables Timer 2 Comparator Capture Mode. If TF2CEN is set, on a rising edge of the Comparator0 output the current 16-bit timer value in TMR2H:TMR2L will be copied to TMR2RLH:TMR2RLL. If Timer 2 interrupts are also enabled, an interrupt will be generated on this event.								
3	T2SPLIT	Timer 2 Split Mode Enable.								
		When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.0: Timer 2 operates in 16-bit auto-reload mode.1: Timer 2 operates as two 8-bit auto-reload timers.								
2	TR2	Timer 2 Run Control.								
		Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.								
1	Unused	Read = 0b; Write = Don't Care.								
0	T2XCLK	Timer 2 External Clock Select.								
		 This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK). 								

