

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	54
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	32 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f708-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 18.3.	EMIF Operating Modes	117
	Non-multiplexed 16-bit MOVX Timing	
	Non-multiplexed 8-bit MOVX without Bank Select Timing	
	Non-Multiplexed 8-Bit MOVX with Bank Select Timing	
	Multiplexed 16-bit MOVX Timing	
Figure 18.8.	Multiplexed 8-Bit MOVX without Bank Select Timing	124
-	Multiplexed 8-Bit MOVX with Bank Select Timing	
-	EEPROM Block Diagram	
	Reset Sources	
Figure 25.2.	Power-On and VDD Monitor Reset Timing	164
Figure 27.1.	Oscillator Options	171
Figure 27.2.	External 32.768 kHz Quartz Crystal Oscillator Connection Diagram	178
Figure 28.1.	Port I/O Functional Block Diagram	180
	Port I/O Cell Block Diagram	
	Port I/O Overdrive Current	
Figure 28.4.	Crossbar Priority Decoder—Possible Pin Assignments	186
	Crossbar Priority Decoder in Example Configuration—	
-	No Pins Skipped	187
Figure 28.6.	Crossbar Priority Decoder in Example Configuration—	
	3 Pins Skipped	
Figure 29.1.	CRC0 Block Diagram	211
Figure 30.1.	SMBus Block Diagram	219
Figure 30.2.	Typical SMBus Configuration	220
	SMBus Transaction	
Figure 30.4.	Typical SMBus SCL Generation	223
Figure 30.5.	Typical Master Write Sequence	232
Figure 30.6.	Typical Master Read Sequence	233
Figure 30.7.	Typical Slave Write Sequence	234
Figure 30.8.	Typical Slave Read Sequence	235
	SPI Block Diagram	
	Multiple-Master Mode Connection Diagram	
	3-Wire Single Master and Single Slave Mode Connection Diagram .	
	4-Wire Single Master Mode and Slave Mode Connection Diagram	
	Master Mode Data/Clock Timing	
	Slave Mode Data/Clock Timing (CKPHA = 0)	
-	Slave Mode Data/Clock Timing (CKPHA = 1)	
	SPI Master Timing (CKPHA = 0)	
	SPI Master Timing (CKPHA = 1)	
). SPI Slave Timing (CKPHA = 0)	
	. SPI Slave Timing (CKPHA = 1)	
	UART0 Block Diagram	
	UART0 Baud Rate Logic	
	UART Interconnect Diagram	
	8-Bit UART Timing Diagram	
Figure 32.5.	9-Bit UART Timing Diagram	257

SFR Definition 21.5. EIP1: Extended Interrupt Priority 1	. 144
SFR Definition 21.6. EIP2: Extended Interrupt Priority 2	. 145
SFR Definition 21.7. IT01CF: INT0/INT1 Configuration	
SFR Definition 22.1. PSCTL: Program Store R/W Control	. 153
SFR Definition 22.2. FLKEY: Flash Lock and Key	. 154
SFR Definition 23.1. EEADDR: EEPROM Byte Address	
SFR Definition 23.2. EEDATA: EEPROM Byte Data	
SFR Definition 23.3. EECNTL: EEPROM Control	. 158
SFR Definition 23.4. EEKEY: EEPROM Protect Key	
SFR Definition 24.1. PCON: Power Control	. 162
SFR Definition 25.1. VDM0CN: VDD Monitor Control	. 166
SFR Definition 25.2. RSTSRC: Reset Source	
SFR Definition 26.1. WDTCN: Watchdog Timer Control	. 170
SFR Definition 27.1. CLKSEL: Clock Select	. 172
SFR Definition 27.2. OSCICL: Internal H-F Oscillator Calibration	. 173
SFR Definition 27.3. OSCICN: Internal H-F Oscillator Control	. 174
SFR Definition 27.4. OSCXCN: External Oscillator Control	. 176
SFR Definition 28.1. XBR0: Port I/O Crossbar Register 0	. 190
SFR Definition 28.2. XBR1: Port I/O Crossbar Register 1	
SFR Definition 28.3. P0MASK: Port 0 Mask Register	
SFR Definition 28.4. P0MAT: Port 0 Match Register	
SFR Definition 28.5. P1MASK: Port 1 Mask Register	
SFR Definition 28.6. P1MAT: Port 1 Match Register	
SFR Definition 28.7. P0: Port 0	. 195
SFR Definition 28.8. P0MDIN: Port 0 Input Mode	. 195
SFR Definition 28.9. P0MDOUT: Port 0 Output Mode	
SFR Definition 28.10. P0SKIP: Port 0 Skip	
SFR Definition 28.11. P0DRV: Port 0 Drive Strength	. 197
SFR Definition 28.12. P1: Port 1	
SFR Definition 28.13. P1MDIN: Port 1 Input Mode	. 198
SFR Definition 28.14. P1MDOUT: Port 1 Output Mode	
SFR Definition 28.15. P1SKIP: Port 1 Skip	. 199
SFR Definition 28.16. P1DRV: Port 1 Drive Strength	
SFR Definition 28.17. P2: Port 2	
SFR Definition 28.18. P2MDIN: Port 2 Input Mode	
SFR Definition 28.19. P2MDOUT: Port 2 Output Mode	
SFR Definition 28.20. P2SKIP: Port 2 Skip	
SFR Definition 28.21. P2DRV: Port 2 Drive Strength	
SFR Definition 28.22. P3: Port 3	. 202
SFR Definition 28.23. P3MDIN: Port 3 Input Mode	. 203
SFR Definition 28.24. P3MDOUT: Port 3 Output Mode	. 203
SFR Definition 28.25. P3DRV: Port 3 Drive Strength	
SFR Definition 28.26. P4: Port 4	
SFR Definition 28.27. P4MDIN: Port 4 Input Mode	
SFR Definition 28.28. P4MDOUT: Port 4 Output Mode	
	-

1. System Overview

C8051F70x/71x devices are fully integrated, system-on-a-chip, capacitive sensing mixed-signal MCUs. Highlighted features are listed below. Refer to Table 2.1 for specific product feature selection and part ordering numbers.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- Capacitive Sense interface with 38 input channels
- 10-bit 500 ksps single-ended ADC with 16 external channels and integrated temperature sensor
- Precision calibrated 24.5 MHz internal oscillator
- 16 kB of on-chip Flash memory
- 512 bytes of on-chip RAM
- SMBus/I²C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with three capture/compare modules
- On-chip internal voltage reference
- On-chip Watchdog timer
- On-chip Power-On Reset and Supply Monitor
- On-chip Voltage Comparator
- 54 general purpose I/O

With on-chip power-on reset, V_{DD} monitor, watchdog timer, and clock oscillator, the C8051F70x/71x devices are truly stand-alone, system-on-a-chip solutions. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The C8051F70x/71x processors include Silicon Laboratories' 2-Wire C2 Debug and Programming interface, which allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection of memory, viewing and modification of special function registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 1.8–3.6 V operation over the industrial temperature rang<u>e</u> (–45 to +85 °C). An internal LDO is used to supply the processor core voltage at 1.8 V. The Port I/O and RST pins are tolerant of input signals up to 2 V above the V_{DD} supply, with the exception of P0.3. See Table 2.1 for ordering information. Block diagrams of the devices in the C8051F70x/71x family are shown in Figure 1.1.

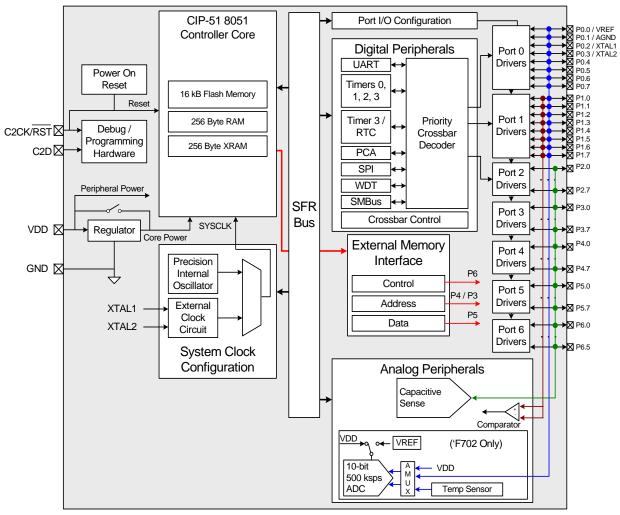


Figure 1.2. C8051F702/3 Block Diagram

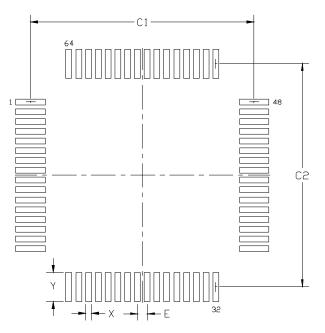


Figure 4.2. TQFP-64 PCB Land Pattern

Table 4.2. TQFP-64 PCB Land Pattern Dimensions

Dimension	Min	Мах
C1	11.30	11.40
C2	11.30	11.40
E	0.50	BSC
X	0.20	0.30
Y	1.40	1.50

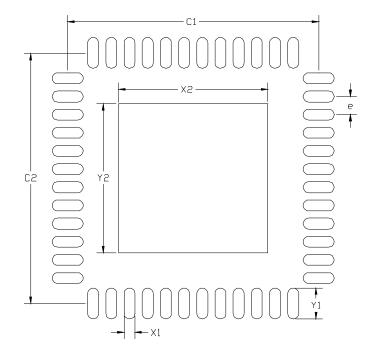
Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.


Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.

Card Assembly

- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 6.2. QFN-48 PCB Land Pattern

Table 6.2. QFN-48 PCB Land Pattern Dimensions

Dimension	Min	Max
e	0.50	BSC
C1	6.80	6.90
C2	6.80	6.90
X1	0.20	0.30
X2	4.00	4.10
Y1	0.75	0.85
Y2	4.00	4.10

Notes: General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-7351 guidelines.
- 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Stencil Design

- 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 7. The stencil thickness should be 0.125 mm (5 mils).
- 8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

9. A 3x3 array of 1.20 mm square openings on 1.40 mm pitch should be used for the center ground pad.

Card Assembly

- 10. A No-Clean, Type-3 solder paste is recommended.
- 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.2. Electrical Characteristics

Table 9.2. Global Electrical Characteristics

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage ¹	Regulator in Normal Mode Regulator in Bypass Mode	1.8 1.7	3.0 1.8	3.6 1.9	V V
Digital Supply Current with CPU Active (Normal Mode ^{2,3})	$V_{DD} = 1.8 \text{ V}, \text{ Clock} = 25 \text{ MHz}$ $V_{DD} = 1.8 \text{ V}, \text{ Clock} = 1 \text{ MHz}$ $V_{DD} = 1.8 \text{ V}, \text{ Clock} = 32 \text{ kHz}$ $V_{DD} = 3.0 \text{ V}, \text{ Clock} = 25 \text{ MHz}$ $V_{DD} = 3.0 \text{ V}, \text{ Clock} = 1 \text{ MHz}$ $V_{DD} = 3.0 \text{ V}, \text{ Clock} = 32 \text{ kHz}$		5.0 1.2 175 5.5 1.3 190	6.5 — 7.0 —	mA mA μA mA mA μA
Digital Supply Current with CPU Inactive (Idle Mode ^{2,3})	$V_{DD} = 1.8 \text{ V}, \text{ Clock} = 25 \text{ MHz}$ $V_{DD} = 1.8 \text{ V}, \text{ Clock} = 1 \text{ MHz}$ $V_{DD} = 1.8 \text{ V}, \text{ Clock} = 32 \text{ kHz}$ $V_{DD} = 3.0 \text{ V}, \text{ Clock} = 25 \text{ MHz}$ $V_{DD} = 3.0 \text{ V}, \text{ Clock} = 1 \text{ MHz}$ $V_{DD} = 3.0 \text{ V}, \text{ Clock} = 32 \text{ kHz}$		2.5 180 90 3.2 200 110	4.0 — 4.5 —	mA μA μA mA μA
Digital Supply Current (shutdown) ³	Stop/suspend mode, Reg On, 25 °C		80	90	μA
(shuldown)*	Stop/suspend mode, Reg Bypass, 25 °C	—	2	4	μA
Digital Supply RAM Data Retention Voltage		_	1.3		V
Specified Operating Temperature Range		-40	_	+85	°C
SYSCLK (system clock frequency)	See Note 3.	0	—	25	MHz
Tsysl (SYSCLK low time)		18	_		ns
Tsysh (SYSCLK high time)		18	_		ns

2. Includes bias current for internal voltage regulator.

3. SYSCLK must be at least 32 kHz to enable debugging.

Table 9.14. Comparator Electrical Characteristics

 V_{DD} = 3.0 V, –40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Response Time:	CP0+ - CP0- = 100 mV		300		ns
Mode 0, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	_	200	_	ns
Response Time:	CP0+ – CP0– = 100 mV		400	_	ns
Mode 1, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	_	350	_	ns
Response Time:	CP0+ – CP0– = 100 mV	_	570	_	ns
Mode 2, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV		870	_	ns
Response Time:	CP0+ - CP0- = 100 mV		1500		ns
Mode 3, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	_	4500	_	ns
Common-Mode Rejection Ratio			1	4	mV/V
Positive Hysteresis 1	Mode 2, CP0HYP1–0 = 00	_	0	1	mV
Positive Hysteresis 2	Mode 2, CP0HYP1–0 = 01	2	5	10	mV
Positive Hysteresis 3	Mode 2, CP0HYP1–0 = 10	7	10	20	mV
Positive Hysteresis 4	Mode 2, CP0HYP1–0 = 11	10	20	30	mV
Negative Hysteresis 1	Mode 2, CP0HYN1–0 = 00	—	0	1	mV
Negative Hysteresis 2	Mode 2, CP0HYN1–0 = 01	2	5	10	mV
Negative Hysteresis 3	Mode 2, CP0HYN1–0 = 10	7	10	20	mV
Negative Hysteresis 4	Mode 2, CP0HYN1–0 = 11	10	20	30	mV
Inverting or Non-Inverting Input Voltage Range		-0.25	_	V _{DD} + 0.25	V
Input Offset Voltage		-7.5	_	7.5	mV
Power Specifications					
Power Supply Rejection		_	0.1	_	mV/V
Powerup Time		—	10	—	μs
Supply Current at DC	Mode 0	—	25		μA
	Mode 1	—	10	_	μA
	Mode 2	—	3	—	μA
	Mode 3	—	0.5	_	μA
Note: Vcm is the common-mode vol	tage on CP0+ and CP0–.				

SFR Definition 13.1. REG0CN: Voltage Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	STOPCF	BYPASS						
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xB9; SFR Page = F

Bit	Name	Function
7	STOPCF	Stop Mode Configuration.
		This bit configures the regulator's behavior when the device enters STOP mode. 0: Regulator is still active in STOP mode. Any enabled reset source will reset the device. 1: Regulator is shut down in STOP mode. Only the RST pin or power cycle can reset
		the device.
6	BYPASS	Bypass Internal Regulator.
		This bit places the regulator in bypass mode, allowing the core to run directly from the V_{DD} supply pin.
		0: Normal Mode—Regulator is on and regulates V _{DD} down to the core voltage.
		1: Bypass Mode—Regulator is in bypass mode, and the microcontroller core operates directly from the V _{DD} supply voltage.
		IMPORTANT: Bypass mode is for use with an external regulator as the supply voltage only. Never place the regulator in bypass mode when the V_{DD} supply voltage is greater than the specifications given in Table 9.1 on page 47. Doing so may cause permanent damage to the device.
5:0	Reserved	Reserved. Must Write 000000b.

Mnemonic	Description	Bytes	Clock Cycles	
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3	
CLR A	Clear A	1	1	
CPL A	Complement A	1	1	
RL A	Rotate A left	1	1	
RLC A	Rotate A left through Carry	1	1	
RR A	Rotate A right	1	1	
RRC A	Rotate A right through Carry	1	1	
SWAP A	Swap nibbles of A	1	1	
Data Transfer				
MOV A, Rn	Move Register to A	1	1	
MOV A, direct	Move direct byte to A	2	2	
MOV A, @Ri	Move indirect RAM to A	1	2	
MOV A, #data	Move immediate to A	2	2	
MOV Rn, A	Move A to Register	1	1	
MOV Rn, direct	Move direct byte to Register	2	2	
MOV Rn, #data	Move immediate to Register	2	2	
MOV direct, A	Move A to direct byte	2	2	
MOV direct, Rn	Move Register to direct byte	2	2	
MOV direct, direct	Move direct byte to direct byte	3	3	
MOV direct, @Ri	Move indirect RAM to direct byte	2	2	
MOV direct, #data	Move immediate to direct byte	3	3	
MOV @Ri, A	Move A to indirect RAM	1	2	
MOV @Ri, direct	Move direct byte to indirect RAM	2	2	
MOV @Ri, #data	Move immediate to indirect RAM	2	2	
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3	
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3	
MOVC A, @A+PC	Move code byte relative PC to A	1	3	
MOVX A, @Ri	Move external data (8-bit address) to A	1	3	
MOVX @Ri, A	Move A to external data (8-bit address)	1	3	
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3	
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3	
PUSH direct	Push direct byte onto stack	2	2	
POP direct	Pop direct byte from stack	2	2	
XCH A, Rn	Exchange Register with A	1	1	
XCH A, direct	Exchange direct byte with A	2	2	
XCH A, @Ri	Exchange indirect RAM with A	1	2	
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2	
Boolean Manipulation	5			
CLR C	Clear Carry	1	1	
CLR bit	Clear direct bit	2	2	
SETB C	Set Carry	1	1	
SETB bit	Set direct bit	2	2	
CPL C	Complement Carry	1	1	
CPL bit	Complement direct bit	2	2	

 Table 16.1. CIP-51 Instruction Set Summary (Continued)

18. External Data Memory Interface and On-Chip XRAM

For C8051F70x/71x devices, 256 B of RAM are included on-chip and mapped into the external data memory space (XRAM). Additionally, an External Memory Interface (EMIF) is available on the C8051F700/1/2/3/8/9 and C8051F710/1 devices, which can be used to access off-chip data memories and memory-mapped devices connected to the GPIO ports. The external memory space may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using the MOVX indirect addressing mode using R0 or R1. If the MOVX instruction is used with an 8-bit address operand (such as @R1), then the high byte of the 16-bit address is provided by the External Memory Interface Control Register (EMI0CN, shown in SFR Definition 18.1).

Note: The MOVX instruction can also be used for writing to the Flash memory. See Section "22. Flash Memory" on page 148 for details. The MOVX instruction accesses XRAM by default.

18.1. Accessing XRAM

The XRAM memory space is accessed using the MOVX instruction. The MOVX instruction has two forms, both of which use an indirect addressing method. The first method uses the Data Pointer, DPTR, a 16-bit register which contains the effective address of the XRAM location to be read from or written to. The second method uses R0 or R1 in combination with the EMI0CN register to generate the effective XRAM address. Examples of both of these methods are given below.

18.1.1. 16-Bit MOVX Example

The 16-bit form of the MOVX instruction accesses the memory location pointed to by the contents of the DPTR register. The following series of instructions reads the value of the byte at address 0x1234 into the accumulator A:

MOVDPTR, #1234h; load DPTR with 16-bit address to read (0x1234)MOVXA, @DPTR; load contents of 0x1234 into accumulator A

The above example uses the 16-bit immediate MOV instruction to set the contents of DPTR. Alternately, the DPTR can be accessed through the SFR registers DPH, which contains the upper 8-bits of DPTR, and DPL, which contains the lower 8-bits of DPTR.

18.1.2. 8-Bit MOVX Example

The 8-bit form of the MOVX instruction uses the contents of the EMI0CN SFR to determine the upper 8-bits of the effective address to be accessed and the contents of R0 or R1 to determine the lower 8-bits of the effective address to be accessed. The following series of instructions read the contents of the byte at address 0x1234 into the accumulator A.

MOV	EMIOCN, #12h	; load high byte of address into EMIOCN
MOV	R0, #34h	; load low byte of address into R0 (or R1)
MOVX	a, @R0	; load contents of 0x1234 into accumulator A

SFR Definition 28.6. P1MAT: Port 1 Match Register

Bit	7	6	5	4	3	2	1	0	
Name	P1MAT[7:0]								
Туре	R/W								
Reset	1								

SFR Address = 0xE1; SFR Page = 0

Bit	Name	Function
7:0	P1MAT[7:0]	Port 1 Match Value.
		Match comparison value used on Port 1 for bits in P1MASK which are set to 1. 0: P1.n pin logic value is compared with logic LOW. 1: P1.n pin logic value is compared with logic HIGH.

28.6. Special Function Registers for Accessing and Configuring Port I/O

All Port I/O are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

Each Port has a corresponding PnSKIP register which allows its individual Port pins to be assigned to digital functions or skipped by the Crossbar. All Port pins used for analog functions, GPIO, or dedicated digital functions such as the EMIF should have their PnSKIP bit set to 1.

The Port input mode of the I/O pins is defined using the Port Input Mode registers (PnMDIN). Each Port cell can be configured for analog or digital I/O. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings.

SFR Definition 28.17. P2: Port 2

Bit	7	6	5	4	3	2	1	0			
Name	P2[7:0]										
Туре	R/W										
Reset	1	1	1	1	1	1	1	1			

SFR Address = 0xA0; SFR Page = All Pages; Bit Addressable

Bit	Name	Description	Write	Read
7:0	P2[7:0]	Port 2 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.		0: P2.n Port pin is logic LOW. 1: P2.n Port pin is logic HIGH.

SFR Definition 28.18. P2MDIN: Port 2 Input Mode

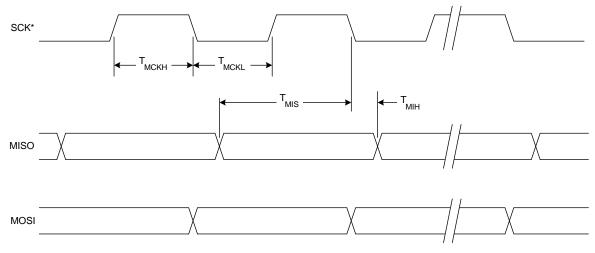
Bit	7	6	5	4	3	2	1	0			
Name	P2MDIN[7:0]										
Туре	R/W										
Reset	1	1	1	1	1	1	1	1			

SFR Address = 0xF3; SFR Page = F

Bit	Name	Function
7:0	P2MDIN[7:0]	Analog Configuration Bits for P2.7–P2.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P2.n pin is configured for analog mode.
		1: Corresponding P2.n pin is not configured for analog mode.

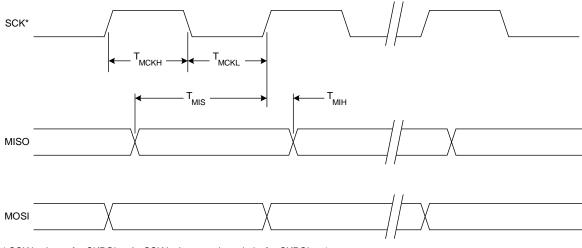
SFR Definition 31.3. SPI0CKR: SPI0 Clock Rate

Bit	7	6	5	4	3	2	1	0				
Name SCR[7:0]												
Туре		R/W										
Reset	0 0 0 0 0 0 0 0											
SFR Ad	ldress = 0xA2	2; SFR Page	e = F		I							
Bit	Name		Function									
7:0	SCR[7:0]	configured sion of the the system register. f _{SCK} = for 0 <= S Example:	s determine d for master e system clo n clock frequ $\frac{SY}{2 \times (SPI00)}$ PI0CKR <=	mode opera ck, and is giv Jency and S SCLK CKR[7:0] + 255 = 2 MHz and	tion. The S(ven in the fo PIOCKR is t $\overline{1}$	CK clock fre Illowing equ he 8-bit valu	en the SPI0 r quency is a d ation, where le held in the	ivided ver- S <i>YSCLK</i> is				


SFR Definition 31.4. SPI0DAT: SPI0 Data

Bit	7	6	5	4	3	2	1	0			
Name	SPI0DAT[7:0]										
Туре	R/W										
Reset	0	0	0	0	0	0	0	0			

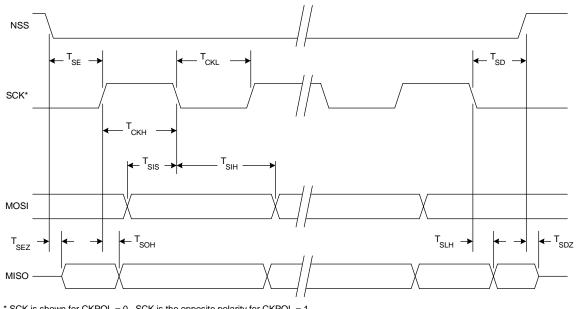
SFR Address = 0xA3; SFR Page = 0


Bit	Name	Function
7:0	SPI0DAT[7:0]	SPI0 Transmit and Receive Data.
		The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0DAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPI0DAT returns the contents of the receive buffer.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.



* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.


Figure 31.9. SPI Master Timing (CKPHA = 1)

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

32.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 32.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

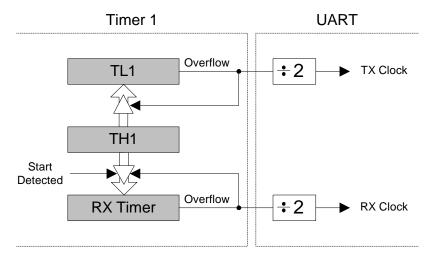


Figure 32.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "33.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 265). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK/4, SYSCLK/12, SYSCLK/48, the external oscillator clock/8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 32.1-A and Equation 32.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 32.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "33. Timers" on page 262. A quick reference for typical baud rates and system clock frequencies is given in Table 32.1 through Table 32.2. The internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

SFR Definition 32.2. SBUF0: Serial (UART0) Port Data Buffer

Bit	7	7 6 5 4 3 2 1 0										
Name	SBUF0[7:0]											
Туре				R/	W							
Reset	0	0	0	0	0	0	0	0				
SFR Add	dress = 0x99	; SFR Page	= All Pages									

Bit	Name	Function
7:0	SBUF0[7:0]	Serial Data Buffer Bits 7–0 (MSB–LSB).
		This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the contents of the receive latch.

SFR Definition 33.6. TH0: Timer 0 High Byte

Bit	7	6	5	4	3	2	1	0				
Nam	e	ТН0[7:0]										
Туре	;	R/W										
Rese	et 0	0 0 0 0 0 0 0										
SFR A	ddress = 0x8	C; SFR Page	e = All Pages	5								
Bit	Name				Function							
7:0	TH0[7:0]	Timer 0 Hig	h Ryta									

SFR Definition 33.7. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0
Nam	Name TH1[7:0]							
Type R/W								
Rese	et 0	0	0	0	0	0	0	0
SFR Address = 0x8D; SFR Page = All Pages								
Bit	Name	Function						
7:0	TH1[7:0]	Timer 1 High Byte.						

	The TH1 register is the high byte of the 16-bit Timer 1.
--	--

SFR Definition 34.5. PCA0L: PCA Counter/Timer Low Byte

Bit	7	6	5	4	3	2	1	0
Name				PCA)[7:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
SFR Address = 0xF9; SFR Page = 0								
Bit	Name	Name Function						

Bit	Name	Function			
7:0	PCA0[7:0]	PCA Counter/Timer Low Byte.			
		The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.			

SFR Definition 34.6. PCA0H: PCA Counter/Timer High Byte

Bit	7	6	5	4	3	2	1	0
Name				PCA0	[15:8]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xFA; SFR Page = 0

Bit	Name	Function
7:0	PCA0[15:8]	PCA Counter/Timer High Byte.
		The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCA0L are read (see Section 34.1).

