E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, WDT
Number of I/O	39
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	32 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f713-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28.2.1 Assigning Port I/O Pins to Analog Functions	182
28.2.2. Assigning Port I/O Pins to Digital Functions	102
28.2.3 Assigning Port I/O Pins to External Event Trigger Eurotions	104
28.3 Priority Crossbar Decoder	185
28.4 Port I/O Initialization	180
28.5. Port Match	109
20.5. FUIL Malch	192
20.0. Special Function Registers for Accessing and Configuring Fort I/O	194 244
29. Cyclic Redundancy Check Onit (CRC0)	210
29.1. TO-Dit CICC Algorithm	212
29.2. 52-bit CRC Algorithm	213
29.3. Flepaling for a CRC Calculation	214
29.4. Periorning a CRC Calculation	214
29.5. Accessing the CRC0 Result	214
29.6. CRCU Bit Reverse Feature	218
30. SMBUS	219
30.1. Supporting Documents	220
30.2. SMBus Configuration	220
30.3. SMBus Operation	220
30.3.1. Transmitter Vs. Receiver	221
30.3.2. Arbitration	221
30.3.3. Clock Low Extension	221
30.3.4. SCL Low Timeout	221
30.3.5. SCL High (SMBus Free) Timeout	222
30.4. Using the SMBus	222
30.4.1. SMBus Configuration Register	222
30.4.2. SMB0CN Control Register	226
30.4.2.1. Software ACK Generation	226
30.4.2.2. Hardware ACK Generation	226
30.4.3. Hardware Slave Address Recognition	228
30.4.4. Data Register	231
30.5. SMBus Transfer Modes	232
30.5.1. Write Sequence (Master)	232
30.5.2. Read Sequence (Master)	233
30.5.3. Write Sequence (Slave)	234
30.5.4. Read Sequence (Slave)	235
30.6. SMBus Status Decoding	235
31. Enhanced Serial Peripheral Interface (SPI0)	241
31.1. Signal Descriptions	242
31.1.1. Master Out, Slave In (MOSI)	242
31.1.2. Master In, Slave Out (MISO)	242
31.1.3. Serial Clock (SCK)	242
31.1.4. Slave Select (NSS)	242
31.2. SPI0 Master Mode Operation	242
31.3. SPI0 Slave Mode Operation	244
31.4. SPI0 Interrupt Sources	245

Figure 5.2. TQFP-48 PCB Land Pattern

Table 5.2.	TQFP-48	PCB Land	d Pattern	Dimensions
------------	---------	----------	-----------	------------

Dimension	Min	Мах
C1	8.30	8.40
C2	8.30 8.40	
E	0.50	BSC
X1	0.20	0.30
Y1	1.40	1.50

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

Card Assembly

- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 9.8. Capacitive Sense Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_{A} = –40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Single Conversion Time ¹	12-bit Mode	20	29	40	μs
	13-bit Mode (default)	21	31	42.5	
	14-bit Mode	23	33	45	
	16-bit Mode	26	38	50	
Number of Channels	64-pin Packages		38		Channels
	48-pin Packages	1	27		
	32-pin Packages	1	26		
	24-pin Packages	l	18		
Capacitance per Code	Default Configuration	<u> </u>	1		fF
External Capacitive Load	CS0CG = 111b (Default)	—		45	pF
	CS0CG = 000b	I —	I <u> </u>	500	pF
External Series Impedance	CS0CG = 111b (Default)	—	—	50	kΩ
Quantization Noise ¹²	RMS	—	3		fF
	Peak-to-Peak	—	20		fF
Power Supply Current	CS module bias current, 25 °C		50	60	μA
	CS module alone, maximum code output, 25 °C	—	90	105	μA
	Wake-on-CS threshold (suspend mode with regulator and CS module on) ³	—	130	145	μA
Notes:					

1. Conversion time is specified with the default configuration.

2. RMS Noise is equivalent to one standard deviation. Peak-to-peak noise encompasses ±3.3 standard deviations. The RMS noise value is specified with the default configuration.

3. Includes only current from regulator, CS module, and MCU in suspend mode.

10.4.1. Window Detector Example

Figure 10.4 shows two example window comparisons for right-justified data. with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 10.5 shows an example using left-justified data with the same comparison values.

Figure 10.4. ADC Window Compare Example: Right-Justified Data

Figure 10.5. ADC Window Compare Example: Left-Justified Data

SFR Definition 10.9. ADC0MX: AMUX0 Channel Select

Bit	7	6	5	4	3	2	1	0
Name				AMX0P[4:0]				
Туре	R	R	R	R/W				
Reset	0	0	0	1	1	1	1	1

SFR Address = 0xBB; SFR Page = 0

Bit	Name	Function					
7:5	Unused	Read = 000b; Write	= Don't Care.				
4:0	AMX0P[4:0]	AMUX0 Positive In	put Selection.				
			64-Pin Devices	48-Pin Devices	32-Pin Devices		
		00000	P0.0	P0.0	_		
		00001	P0.1	P0.1	_		
		00010	P0.2	P0.2	_		
		00011	P0.3	P0.3	P0.3		
		00100	P0.4	P0.4	P0.4		
		00101	P0.5	P0.5	P0.5		
		00110	P0.6	P0.6	_		
		00111	P0.7	P0.7	_		
		01000	P1.0	P1.0	_		
		01001	P1.1	P1.1	_		
		01010	P1.2	P1.2	_		
		01011	P1.3	P1.3	_		
		01100	P1.4	—	_		
		01101	P1.5	—	_		
		01110	P1.6	—	_		
		01111	P1.7	—	_		
		10000	Temp Sensor	Temp Sensor	Temp Sensor		
		10001	VREG Output	VREG Output	VREG Output		
		10010	VDD	VDD	VDD		
		10011	GND	GND	GND		
		10100–11111		no input selected			

17.1. Program Memory

The members of the C8051F70x/71x device family contain 16 kB (C8051F702/3/6/7 and C8051F16/7), 15 kB (C8051F700/1/4/5), or 8 kB (C8051F708/9 and C8051F710/1/2/3/4/5) of re-programmable Flash memory that can be used as non-volatile program or data storage. The last byte of user code space is used as the security lock byte (0x3FFF on 16 kB devices, 0x3BFF on 15 kB devices and 0x1FFF on 8 kB devices).

Figure 17.2. Flash Program Memory Map

17.1.1. MOVX Instruction and Program Memory

The MOVX instruction in an 8051 device is typically used to access external data memory. On the C8051F70x/71x devices, the MOVX instruction is normally used to read and write on-chip XRAM, but can be re-configured to write and erase on-chip Flash memory space. MOVC instructions are always used to read Flash memory, while MOVX write instructions are used to erase and write Flash. This Flash access feature provides a mechanism for the C8051F70x/71x to update program code and use the program memory space for non-volatile data storage. Refer to Section "22. Flash Memory" on page 148 for further details.

17.2. EEPROM Memory

The C8051F700/1/4/5/8/9 and C8051F712/3 contain EEPROM emulation hardware, which uses Flash memory to emulate a 32-byte EEPROM memory space for non-volatile data storage. The EEPROM data is accessed through a RAM buffer for increased speed. More details about the EEPROM can be found in Section "23. EEPROM" on page 155.

17.3. Data Memory

The C8051F70x/71x device family includes 512 bytes of RAM data memory. 256 bytes of this memory is mapped into the internal RAM space of the 8051. 256 bytes of this memory is on-chip "external" memory. The data memory map is shown in Figure 17.1 for reference.

17.3.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight

Table 20.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Page	Description	Page
CS0CN	0x9A	0	CS0 Control	88
CS0DH	0xAA	0	CS0 Data High	90
CS0DL	0xA9	0	CS0 Data Low	90
CS0CF	0x9E	0	CS0 Configuration	89
CS0MD1	0xAD	0	CS0 Mode 1	94
CS0MD2	0xBE	F	CS0 Mode 2	95
CSOMX	0x9C	0	CS0 Mux	97
CS0PM	0x9F	F	CS0 Pin Monitor	93
CS0SE	0x93	F	Auto Scan End Channel	91
CS0SS	0x92	F	Auto Scan Start Channel	91
CS0THH	0x97	0	CS0 Digital Compare Threshold High	92
CS0THL	0x96	0	CS0 Digital Compare Threshold Low	92
DERIVID	0xEC	F	Derivative Identification	128
DPH	0x83	All Pages	Data Pointer High	104
DPL	0x82	All Pages	Data Pointer Low	104
EEADDR	0xB6	All Pages	EEPROM Byte Address	156
EECNTL	0xC5	F	EEPROM Control	158
EEDATA	0xD1	All Pages	EEPROM Byte Data	157
EEKEY	0xC6	F	EEPROM Protect Key	159
EIE1	0xE6	All Pages	Extended Interrupt Enable 1	142
EIE2	0xE7	All Pages	Extended Interrupt Enable 2	143
EIP1	0xCE	F	Extended Interrupt Priority 1	144
EIP2	0xCF	F	Extended Interrupt Priority 2	145
EMIOCF	0xC7	F	EMIF Configuration	114
EMIOCN	0xAA	F	EMIF Control	113
EMIOTC	0xEE	F	EMIF Timing Control	119
FLKEY	0xB7	All Pages	Flash Lock And Key	154
HWID	0xC4	F	Hardware Identification	128
IE	0xA8	All Pages	Interrupt Enable	140
IP	0xB8	All Pages	Interrupt Priority	141
IT01CF	0xE4	F	INT0/INT1 Configuration	147
OSCICL	0xBF	F	Internal Oscillator Calibration	173
OSCICN	0xA9	F	Internal Oscillator Control	174
OSCXCN	0xB5	F	External Oscillator Control	176
P0	0x80	All Pages	Port 0 Latch	195
P0DRV	0xF9	F	Port 0 Drive Strength	197
POMASK	0xF4	0	Port 0 Mask	192
POMAT	0xF3	0	Port 0 Match	193

25.2. Power-Fail Reset / V_{DD} Monitor

When a power-down transition or power irregularity causes V_{DD} to drop below V_{RST} , the power supply monitor will drive the \overline{RST} pin low and hold the CIP-51 in a reset state (see Figure 25.2). When V_{DD} returns to a level above V_{RST} , the CIP-51 will be released from the reset state. Even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads 1, the data may no longer be valid. The V_{DD} monitor is enabled after power-on resets. Its defined state (enabled/disabled) is not altered by any other reset source. For example, if the V_{DD} monitor is disabled by code and a software reset is performed, the V_{DD} monitor will still be disabled after the reset.

Important Note: If the V_{DD} monitor is being turned on from a disabled state, it should be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. In some applications, this reset may be undesirable. If this is not desirable in the application, a delay should be introduced between enabling the monitor and selecting it as a reset source. The procedure for enabling the V_{DD} monitor and configuring it as a reset source from a disabled state is shown below:

- 1. Enable the V_{DD} monitor (VDMEN bit in VDM0CN = 1).
- 2. If necessary, wait for the V_{DD} monitor to stabilize.
- 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = 1).

See Figure 25.2 for V_{DD} monitor timing; note that the power-on-reset delay is not incurred after a V_{DD} monitor reset. See Section "9. Electrical Characteristics" on page 47 for complete electrical characteristics of the V_{DD} monitor.

27.3.3. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 27.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation according to Equation , where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and V_{DD} = the MCU power supply in Volts.

 $f = (KF)/(R \times V_{DD})$

Equation 27.2. C Mode Oscillator Frequency

For example: Assume $V_{DD} = 3.0$ V and f = 150 kHz:

f = KF / (C x VDD) 0.150 MHz = KF / (C x 3.0)

Since the frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 27.4 (OSCXCN) as KF = 22:

0.150 MHz = 22 / (C x 3.0) C x 3.0 = 22 / 0.150 MHz C = 146.6 / 3.0 pF = 48.8 pF

Therefore, the XFCN value to use in this example is 011b and C = 50 pF.

28. Port Input/Output

Digital and analog resources are available through 64 I/O pins. Each of the Port pins P0.0–P2.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources, or assigned to an analog function as shown in Figure 28.4. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. The state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder. The registers XBR0 and XBR1, defined in SFR Definition 28.1 and SFR Definition 28.2, are used to select internal digital functions.

All Port I/Os except P0.3 are tolerant of voltages up to 2 V above the V_{DD} supply (refer to Figure 28.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Section "9. Electrical Characteristics" on page 47.

Figure 28.1. Port I/O Functional Block Diagram

SFR Definition 28.23. P3MDIN: Port 3 Input Mode

Bit	7	6	5	4	3	2	1	0
Name	P3MDIN[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xF4; SFR Page = F

Bit	Name	Function
7:0	P3MDIN[7:0]	Analog Configuration Bits for P3.7–P3.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P3.n pin is configured for analog mode.
		1: Corresponding P3.n pin is not configured for analog mode.

SFR Definition 28.24. P3MDOUT: Port 3 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P3MDOUT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xAF; SFR Page = F

Bit	Name	Function
7:0	P3MDOUT[7:0]	Output Configuration Bits for P3.7–P3.0 (respectively).
		These bits are ignored if the corresponding bit in register P3MDIN is logic 0. 0: Corresponding P3.n Output is open-drain. 1: Corresponding P3.n Output is push-pull.

SFR Definition 28.37. P6DRV: Port 6 Drive Strength

Bit	7	6	5	4	3	2	1	0		
Nam	e				P6DR	V[5:0]				
Туре	e R	R		R/W						
Rese	et O	0	0 0 0 0 0 0							
SFR A	Address = 0xC1	I; SFR Page	e = F							
Bit Name			Function							
7:6	Unused	Read = 0	= 00b; Write = Don't Care							

7:6	Unused	Read = 00b; Write = Don't Care
5:0	P6DRV[5:0]	Drive Strength Configuration Bits for P6.5–P6.0 (respectively).
		Configures digital I/O Port cells to high or low output drive strength.
		0: Corresponding P6.n Output has low output drive strength.
		1: Corresponding P6.n Output has high output drive strength.

SFR Definition 29.2. CRC0IN: CRC Data Input

Bit	7	6	5	4	3	2	1	0
Name	CRC0IN[7:0]							
Туре				R/	W			
Reset	0 0 0 0 0 0 0 0							
			-					

SFR Address = 0x94; SFR Page = F

Bit	Name	Function
7:0	CRC0IN[7:0]	CRC0 Data Input.
		Each write to CRC0IN results in the written data being computed into the existing CRC result according to the CRC algorithm described in Section 29.1

SFR Definition 29.3. CRC0DATA: CRC Data Output

Bit	7	6	5	4	3	2	1	0
Name	CRC0DAT[7:0]							
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD9; SFR Page = F

Bit	Name	Function
7:0	CRC0DAT[7:0]	CRC0 Data Output.
		Each read or write performed on CRC0DAT targets the CRC result bits pointed to by the CRC0 Result Pointer (CRC0PNT bits in CRC0CN).

overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

30.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 μ s, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. A clock source is required for free timeout detection, even in a slave-only implementation.

30.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information
- Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. When a transmitter (i.e., sending address/data, receiving an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data (i.e., receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. If hardware acknowledgement is enabled, these interrupts are always generated after the ACK cycle. See Section 30.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in Section 30.4.2; Table 30.5 provides a quick SMB0CN decoding reference.

30.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).

	Va	alu	es F	Rea	d			Val V	ues Vrit	sto e	tus ected	
Mode	Status	Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp	
							Set ACK for next data byte; Read SMB0DAT.	0	0	1	1000	
			0	0	1	A master data byte was	Set NACK to indicate next data byte as the last data byte; Read SMB0DAT.	0	0	0	1000	
er		000				received, Aon sent.	Initiate repeated START.	1	0	0	1110	
er Receiv	r Receiv						Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100	
aste							Read SMB0DAT; send STOP.	0	1	0		
Ň							a master data byte was	Read SMB0DAT; Send STOP followed by START.		1	0	1110
			0	0	0	received; NACK sent (last	Initiate repeated START.	1	0	0	1110	
						byte).	Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100	
er.			0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001	
smitte	Smitte 0100	00	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100	
e Tran			0	1	Х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001	
Slav	010	01	0	х	х	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х		

Table 30.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1) (Continued)

Parameter	Description	Min	Max	Units
Master Mode	Timing (See Figure 31.8 and Figure 31.9)		L	1
Т _{МСКН}	SCK High Time	1 x T _{SYSCLK}	—	ns
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	—	ns
T _{MIS}	MISO Valid to SCK Shift Edge	1 x T _{SYSCLK} + 20	—	ns
т _{мін}	SCK Shift Edge to MISO Change	0	—	ns
Slave Mode	Fiming (See Figure 31.10 and Figure 31.11)			
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	—	ns
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}		ns
T _{SEZ}	NSS Falling to MISO Valid	_	4 x T _{SYSCLK}	ns
T _{SDZ}	NSS Rising to MISO High-Z	_	4 x T _{SYSCLK}	ns
т _{скн}	SCK High Time	5 x T _{SYSCLK}		ns
T _{CKL}	SCK Low Time	5 x T _{SYSCLK}		ns
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}		ns
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}		ns
т _{ѕон}	SCK Shift Edge to MISO Change	_	4 x T _{SYSCLK}	ns
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6 x T _{SYSCLK}	8 x T _{SYSCLK}	ns
Note: T _{SYSCL}	$_{\rm C}$ is equal to one period of the device system clock (S	YSCLK).		ł

Table 31.1. SPI Slave Timing Parameters

34.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 34.4.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Duty Cycle =
$$\frac{(65536 - PCA0CPn)}{65536}$$

Equation 34.4. 16-Bit PWM Duty Cycle

Using Equation 34.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 34.10. PCA 16-Bit PWM Mode

SFR Definition 34.5. PCA0L: PCA Counter/Timer Low Byte

Bit	7	6	5	4	3	2	1	0
Name				PCA	D[7:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
SFR Ad	dress = 0xF	9; SFR Page	e = 0					
Bit	Name Function							

ΒΙτ	Name	Function
7:0	PCA0[7:0]	PCA Counter/Timer Low Byte.
		The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.

SFR Definition 34.6. PCA0H: PCA Counter/Timer High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xFA; SFR Page = 0

Bit	Name	Function
7:0	PCA0[15:8]	PCA Counter/Timer High Byte.
		The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCA0L are read (see Section 34.1).

C2 Register Definition 35.2. DEVICEID: C2 Device ID

Bit	7	6	5	4	3	2	1	0					
Nam	e	DEVICEID[7:0]											
Туре	9	R/W											
Rese	et 0	0	0	1	1	1	1	0					
C2 Address: 0x00													
Bit	Name		Function										
7:0	DEVICEID[7:0	Device ID.											
		This read-only register returns the 8-bit device ID: 0x1E (C8051F70x/71x).											

C2 Register Definition 35.3. REVID: C2 Revision ID

Bit	7	6	5	4	3	2	1	0				
Nam	9	REVID[7:0]										
Туре	•	R/W										
Rese	t Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies				
C2 Address: 0x01												
Bit	Name	Function										
7:0	REVID[7:0]	Revision ID.										
		This read-only register returns the 8-bit revision ID. For example: 0x00 = Revision A.										

