E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, WDT
Number of I/O	39
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f715-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

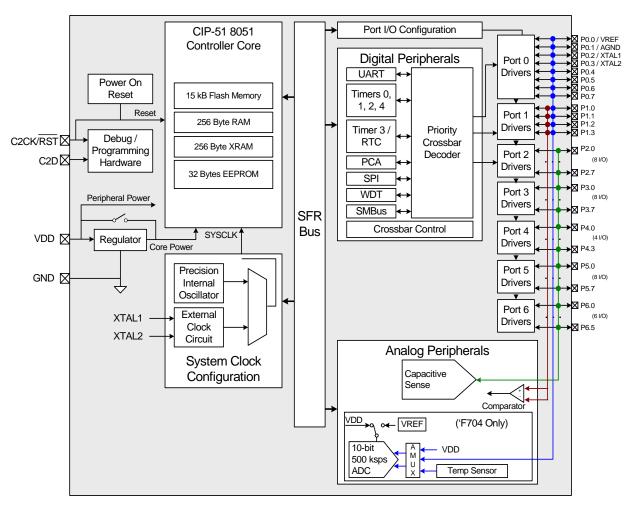


Figure 1.3. C8051F704/5 Block Diagram

11. Temperature Sensor

An on-chip temperature sensor is included on the C8051F700/2/4/6/8 and C8051F710/2/4/6 which can be directly accessed via the ADC multiplexer in single-ended configuration. To use the ADC to measure the temperature sensor, the ADC mux channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 11.1. The output voltage (V_{TEMP}) is the positive ADC input when the ADC multiplexer is set correctly. The TEMPE bit in register REF0CN enables/disables the temperature sensor, as described in SFR Definition 12.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 9.12 for the slope and offset parameters of the temperature sensor.

Figure 11.1. Temperature Sensor Transfer Function

11.1. Calibration

The uncalibrated temperature sensor output is extremely linear and suitable for relative temperature measurements (see Table 5.1 for linearity specifications). For absolute temperature measurements, offset and/or gain calibration is recommended. Typically a 1-point (offset) calibration includes the following steps:

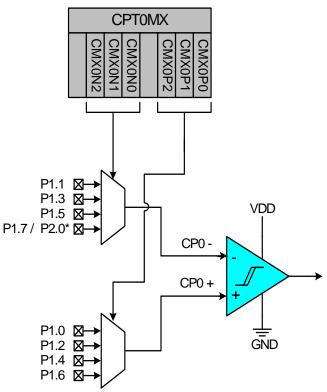
- 1. Control/measure the ambient temperature (this temperature must be known).
- 2. Power the device, and delay for a few seconds to allow for self-heating.
- 3. Perform an ADC conversion with the temperature sensor selected as the ADC's input.
- 4. Calculate the offset characteristics, and store this value in non-volatile memory for use with subsequent temperature sensor measurements.

Figure 5.3 shows the typical temperature sensor error assuming a 1-point calibration at 0 °C.

SFR Definition 12.1. REF0CN: Voltage Reference Control

Bit	7	6	5	4	3	2	1	0
Name			REFGND	REI	FSL	TEMPE	BIASE	
Туре	R	R	R/W	R/W	R/W	R/W	R/W	R
Reset	0	0	0	1	0	0	0	0

SFR Address = 0xD2; SFR Page = F


Bit	Name	Function
7:6	Unused	Read = 00b; Write = Don't Care.
5	REFGND	Analog Ground Reference.
		Selects the ADC0 ground reference.
		0: The ADC0 ground reference is the GND pin.
		1: The ADC0 ground reference is the P0.1/AGND pin.
4:3	REFSL	Voltage Reference Select.
		Selects the ADC0 voltage reference.
		00: The ADC0 voltage reference is the P0.0/VREF pin.
		01: The ADC0 voltage reference is the VDD pin.
		10: The ADC0 voltage reference is the internal 1.8 V digital supply voltage.
		11: The ADC0 voltage reference is the internal 1.6 V high-speed voltage reference.
2	TEMPE	Temperature Sensor Enable.
		Enables/Disables the internal temperature sensor.
		0: Temperature Sensor Disabled.
		1: Temperature Sensor Enabled.
1	BIASE	Internal Analog Bias Generator Enable Bit.
		0: Internal Bias Generator off.
		1: Internal Bias Generator on.
0	Unused	Read = 0b; Write = Don't Care.

14.1. Comparator Multiplexer

C8051F70x/71x devices include an analog input multiplexer to connect Port I/O pins to the comparator inputs. The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 14.3). The CMX0P2–CMX0P0 bits select the Comparator0 positive input; the CMX0N2–CMX0N0 bits select the Comparator0 negative input.

Important Note About Comparator Inputs: The Port pins selected as comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see Section "28.6. Special Function Registers for Accessing and Configuring Port I/O" on page 194).

*P1.7 on 64 and 48-pin devices, P2.0 on 32 and 24-pin devices

15.6. CS0 Conversion Accumulator

CS0 can be configured to accumulate multiple conversions on an input channel. The number of samples to be accumulated is configured using the CS0ACU2:0 bits (CS0CF2:0). The accumulator can accumulate 1, 4, 8, 16, 32, or 64 samples. After the defined number of samples have been accumulated, the result is divided by either 1, 4, 8, 16, 32, or 64 (depending on the CS0ACU[2:0] setting) and copied to the CS0DH:CS0DL SFRs.

Auto-Scan Enabled	Accumulator Enabled	CS0 Conversion Complete Interrupt Behavior	CS0 Greater Than Interrupt Behavior	CS0MX Behavior
N	Ν	CS0INT Interrupt serviced after 1 conversion com- pletes	Interrupt serviced after 1 con- version completes if value in CS0DH:CS0DL is greater than CS0THH:CS0THL	CS0MX unchanged.
N	Y	CS0INT Interrupt serviced after <i>M</i> conversions com- plete	Interrupt serviced after <i>M</i> conversions complete if value in CS0DH:CS0DL (post accumulate and divide) is greater than CS0THH:CS0THL	CS0MX unchanged.
Y	Ν	CS0INT Interrupt serviced after 1 conversion com- pletes	Interrupt serviced after con- version completes if value in CS0DH:CS0DL is greater than CS0THH:CS0THL; Auto-Scan stopped	If greater-than comparator detects conver- sion value is greater than CS0THH:CS0THL, CS0MX is left unchanged; otherwise, CS0MX updates to the next channel (CS0MX + 1) and wraps back to CS0SS after passing CS0SE
Y	Y	CS0INT Interrupt serviced after <i>M</i> conversions com- plete	Interrupt serviced after <i>M</i> conversions complete if value in CS0DH:CS0DL (post accumulate and divide) is greater than CS0THH:CS0THL; Auto-Scan stopped	If greater-than comparator detects conver- sion value is greater than CS0THH:CS0THL, CS0MX is left unchanged; otherwise, CS0MX updates to the next channel (CS0MX + 1) and wraps back to CS0SS after passing CS0SE
		M =	Accumulator setting (1x, 4x, 8	3x, 16x, 32x, 64x)

 Table 15.2. Operation with Auto-scan and Accumulate

SFR Definition 15.5. CS0SS: Capacitive Sense Auto-Scan Start Channel

Bit	7	6	5	4	3	2	1	0			
Name				CS0SS[5:0]							
Туре	R	R			R/	W					
Reset	0	0	0	0 0 0 0 0 0							

SFR Address = 0x92; SFR Page = F

Bit	Name	Description
7:6	Unused	Read = 00b; Write = Don't care
5:0	CS0SS[5:0]	Starting Channel for Auto-Scan.
		Sets the first CS0 channel to be selected by the mux for Capacitive Sense conver- sion when auto-scan is enabled and active. All channels detailed in CS0MX SFR Definition 15.12 are possible choices for this register. When auto-scan is enabled, a write to CS0SS will also update CS0MX.

SFR Definition 15.6. CS0SE: Capacitive Sense Auto-Scan End Channel

Bit	7	6	5	4	3	2	1	0			
Name				CS0SE[5:0]							
Туре	R	R			R/	W					
Reset	0	0	0	0 0 0 0 0 0							

SFR Address = 0x93; SFR Page = F

Bit	Name	Description
7:6	Unused	Read = 000b; Write = Don't care
5:0	CS0SE[5:0]	Ending Channel for Auto-Scan.
		Sets the last CS0 channel to be selected by the mux for Capacitive Sense conversion when auto-scan is enabled and active. All channels detailed in CS0MX SFR Definition 15.12 are possible choices for this register.

SFR Definition 15.12. CS0MX: Capacitive Sense Mux Channel Select

Bit	7	6		5	4		3	2	1		0
Nam	e CSOUC			I		I	CS0MX	[5:0]			
Туре	e R/W	R/W	R/W R/W								
Rese	et 0	0	0 0 0 0 0 0							0	
SFR A	Address = 0x9	DC; SFR Page = 0									
Bit	Name		Description								
7	CS0UC	CS0 Unc									
		Disconne 0: CS0 co 1: CS0 di	onnecte	d to port	pins	•	dless of t	he selec	ted chani	nel.	
6	Reserved	Write = 0	b								
5:0	CS0MX[5:0]	CS0 Mux						Correct			
		Value		•	32-pin		Capacitive Value	64-pin	48-pin	on. 32-pin	24-pin
		000000	P2.0	40-pin P2.0	P2.0	P2.0	010011	P4.3	46-ріп Р4.3	sz-pin	24-pm P4.3
		000000	P2.0	P2.0	P2.0	P2.0	010100	P4.4	F 4.5		P4.3
		000010	P2.2	P2.2	P2.2	P2.2	010100	P4.5			P4.5
		000011	P2.3	P2.3	P2.3	P2.3	010110	P4.6	_		P4.6
		000100	P2.4	P2.4	P2.4	P2.4	010111	P4.7	_	_	P4.7
		000101	P2.5	P2.5	P2.5	P2.5	011000	P5.0	P5.0	P5.0	_
		000110	P2.6	P2.6	P2.6	P2.6	011001	P5.1	P5.1	P5.1	
		000111	P2.7	P2.7	P2.7	P2.7	011010	P5.2	P5.2	P5.2	—
		001000	P3.0	—	P3.0	—	011011	P5.3	P5.3	P5.3	_
		001001	P3.1		P3.1		011100	P5.4	P5.4	P5.4	—
		001010	P3.2		P3.2		011101	P5.5	P5.5	P5.5	—
		001011	P3.3	_	P3.3	_	011110	P5.6	P5.6	P5.6	—
		001100	P3.4	P3.4	P3.4	—	011111	P5.7	P5.7	P5.7	—
		001101	P3.5	P3.5	P3.5		100000	P6.0		—	—
		001110	P3.6	P3.6	P3.6		100001	P6.1		—	—
		001111	P3.7	P3.7	—	—	100010	P6.2	—	—	—
		010000	P4.0	P4.0	—	P4.0	100011	P6.3	P6.3	P6.3	
		010001	P4.1	P4.1	—	P4.1	100100	P6.4	P6.4	P6.4	P6.4
		010010	P4.2	P4.2	—	P4.2	100101	P6.5	P6.5	P6.5	P6.5

SFR Definition 16.3. SP: Stack Pointer

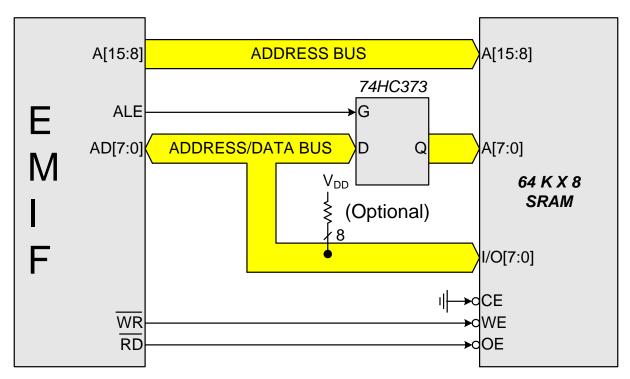
Bit	7	6	5	4	3	2	1	0		
Name	SP[7:0]									
Туре				R/	W					
Reset	0	0 0 0 0 0 1 1 1								
SFR Ad	dress = 0x8	1; SFR Page	= All Pages							
D:4	Marria				F unction					

Bit	Name	Function
7:0	SP[7:0]	Stack Pointer.
		The Stack Pointer holds the location of the top of the stack. The stack pointer is incre- mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 16.4. ACC: Accumulator

Bit	7	7 6 5 4 3 2 1 0									
Nam	Name ACC[7:0]										
Туре	R/W										
Rese	et 0	0	0	0	0	0	0	0			
SFR A	Address = 0xE	E0; SFR Page	e = All Pages	; Bit-Addres	sable						
Bit	Name				Function						
7:0	ACC[7:0]	Accumulator.									
		This register	is the accur	mulator for a	rithmetic ope	erations.					

Rev. 1.0


18.4. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

18.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 18.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the Q outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section "18.6.2. Multiplexed Mode" on page 123 for more information.

Figure 18.1. Multiplexed Configuration Example

Table 20.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Page	Description	Page		
CS0CN	0x9A	0	CS0 Control	88		
CS0DH	0xAA	0	CS0 Data High	90		
CS0DL	0xA9	0	CS0 Data Low	90		
CS0CF	0x9E	0	CS0 Configuration	89		
CS0MD1	0xAD	0	CS0 Mode 1	94		
CS0MD2	0xBE	F	CS0 Mode 2	95		
CSOMX	0x9C	0	CS0 Mux	97		
CS0PM	0x9F	F	CS0 Pin Monitor	93		
CS0SE	0x93	F	Auto Scan End Channel	91		
CS0SS	0x92	F	Auto Scan Start Channel	91		
CS0THH	0x97	0	CS0 Digital Compare Threshold High	92		
CS0THL	0x96	0	CS0 Digital Compare Threshold Low	92		
DERIVID	0xEC	F	Derivative Identification	128		
DPH	0x83	All Pages	Data Pointer High	104		
DPL	0x82	All Pages	Data Pointer Low	104		
EEADDR	0xB6	All Pages	EEPROM Byte Address	156		
EECNTL	0xC5	F	EEPROM Control	158		
EEDATA	0xD1	All Pages	EEPROM Byte Data	157		
EEKEY	0xC6	F	EEPROM Protect Key	159		
EIE1	0xE6	All Pages	Extended Interrupt Enable 1	142		
EIE2	0xE7	All Pages	Extended Interrupt Enable 2	143		
EIP1	0xCE	F	Extended Interrupt Priority 1	144		
EIP2	0xCF	F	Extended Interrupt Priority 2	145		
EMI0CF	0xC7	F	EMIF Configuration	114		
EMIOCN	0xAA	F	EMIF Control	113		
EMIOTC	0xEE	F	EMIF Timing Control	119		
FLKEY	0xB7	All Pages	Flash Lock And Key	154		
HWID	0xC4	F	Hardware Identification	128		
IE	0xA8	All Pages	Interrupt Enable	140		
IP	0xB8	All Pages	Interrupt Priority	141		
IT01CF	0xE4	F	INT0/INT1 Configuration	147		
OSCICL	0xBF	F	Internal Oscillator Calibration	173		
OSCICN	0xA9	F	Internal Oscillator Control	174		
OSCXCN	0xB5	F	External Oscillator Control	176		
P0	0x80	All Pages	Port 0 Latch	195		
P0DRV	0xF9	F	Port 0 Drive Strength	197		
POMASK	0xF4	0	Port 0 Mask	192		
POMAT	0xF3	0	Port 0 Match	193		

SFR Definition 21.6. EIP2: Extended Interrupt Priority 2

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PSCGRT	PSCCPT
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xCF; SFR Page = F

Bit	Name	Function					
7:2	Reserved	Must Write 000000b.					
1	PSCGRT	apacitive Sense Greater Than Comparator Priority Control.					
		This bit sets the priority of the Capacitive Sense Greater Than Comparator interrupt.0: CS0 Greater Than Comparator interrupt set to low priority level.1: CS0 Greater Than Comparator set to high priority level.					
0	PSCCPT	 Capacitive Sense Conversion Complete Priority Control. This bit sets the priority of the Capacitive Sense Conversion Complete interrupt. 0: CS0 Conversion Complete set to low priority level. 1: CS0 Conversion Complete set to high priority level. 					

28. Port Input/Output

Digital and analog resources are available through 64 I/O pins. Each of the Port pins P0.0–P2.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources, or assigned to an analog function as shown in Figure 28.4. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. The state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder. The registers XBR0 and XBR1, defined in SFR Definition 28.1 and SFR Definition 28.2, are used to select internal digital functions.

All Port I/Os except P0.3 are tolerant of voltages up to 2 V above the V_{DD} supply (refer to Figure 28.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Section "9. Electrical Characteristics" on page 47.

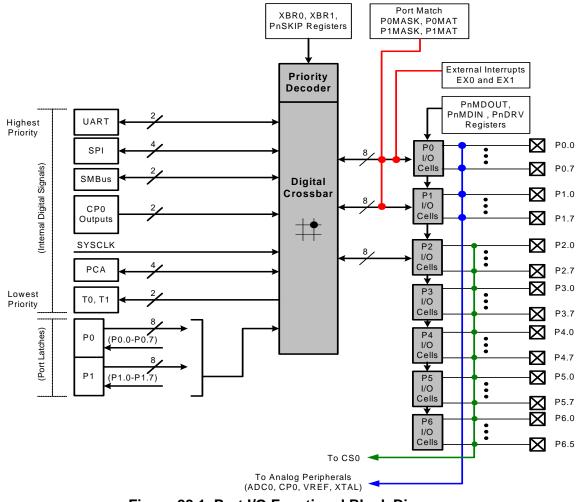


Figure 28.1. Port I/O Functional Block Diagram

overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

30.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 μ s, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. A clock source is required for free timeout detection, even in a slave-only implementation.

30.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information
- Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. When a transmitter (i.e., sending address/data, receiving an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data (i.e., receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. If hardware acknowledgement is enabled, these interrupts are always generated after the ACK cycle. See Section 30.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in Section 30.4.2; Table 30.5 provides a quick SMB0CN decoding reference.

30.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).

SFR Definition 30.2. SMB0CN: SMBus Control

Bit	7	6	5	4	3	2	1	0
Name	MASTER	TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI
Туре	R	R	R/W	R/W	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC0; SFR Page = All Pages; Bit-Addressable

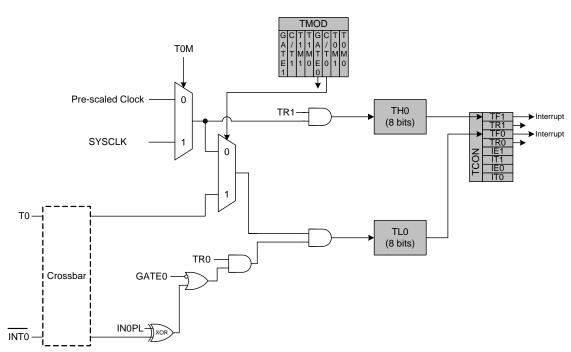

Bit	Name	Description	Read	Write
7	MASTER	SMBus Master/Slave Indicator. This read-only bit indicates when the SMBus is operating as a master.	0: SMBus operating in slave mode. 1: SMBus operating in master mode.	N/A
6	TXMODE	SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.	0: SMBus in Receiver Mode. 1: SMBus in Transmitter Mode.	N/A
5	STA	SMBus Start Flag.	0: No Start or repeated Start detected. 1: Start or repeated Start detected.	0: No Start generated. 1: When Configured as a Master, initiates a START or repeated START.
4	STO	SMBus Stop Flag.	0: No Stop condition detected. 1: Stop condition detected (if in Slave Mode) or pend- ing (if in Master Mode).	0: No STOP condition is transmitted. 1: When configured as a Master, causes a STOP condition to be transmit- ted after the next ACK cycle. Cleared by Hardware.
3	ACKRQ	SMBus Acknowledge Request.	0: No Ack requested 1: ACK requested	N/A
2	ARBLOST	SMBus Arbitration Lost Indicator.	0: No arbitration error. 1: Arbitration Lost	N/A
1	ACK	SMBus Acknowledge.	0: NACK received. 1: ACK received.	0: Send NACK 1: Send ACK
0	SI	SMBus Interrupt Flag. This bit is set by hardware under the conditions listed in Table 15.3. SI must be cleared by software. While SI is set, SCL is held low and the SMBus is stalled.	0: No interrupt pending 1: Interrupt Pending	0: Clear interrupt, and initiate next state machine event.1: Force interrupt.

Table 30.5. SMBus Status Decoding: Hardware ACK Disabled	(EHACK = 0)	(Continued)	
		(• • • • • • • • • • • • • • • • • • •	

	Valu	ies	Rea	d				lues Vrit		tus ected
Mode	Mode Status Vector		ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Status Vector Expected
r		0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
smitte	0100	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100
Slave Transmitter		0	1	х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001
Slav	0101	0	x	x	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х	_
						If Write, Acknowledge received address	0	0	1	0000
		1	0	Х	A slave address + R/W was received; ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	_
	0010					If Write, Acknowledge received address	0	0	1	0000
iver		1	1	х	Lost arbitration as master; slave address + R/W received;	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
tece					ACK requested.	NACK received address.	0	0	0	
Slave Receiver						Reschedule failed transfer; NACK received address.	1	0	0	1110
	0 0 X addressed as		A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	Х	—		
		11XLost arbitration while attempting a STOP.			No action required (transfer complete/aborted).	0	0	0	—	
	0000			A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000	
						NACK received byte.	0	0	0	—

SFR Definition 33.9. TMR2RLL: Timer 2 Reload Register Low Byte

Bit	7	6	5	4	3	2	1	0
Name TMR2RLL[7:0]								
Туре	•	R/W						
Rese	et O	0	0	0	0	0	0	0
SFR Address = 0xCA; SFR Page = 0								
Bit	Name		Function					
7:0	TMR2RLL[7:0	MR2RLL[7:0] Timer 2 Reload Register Low Byte.						

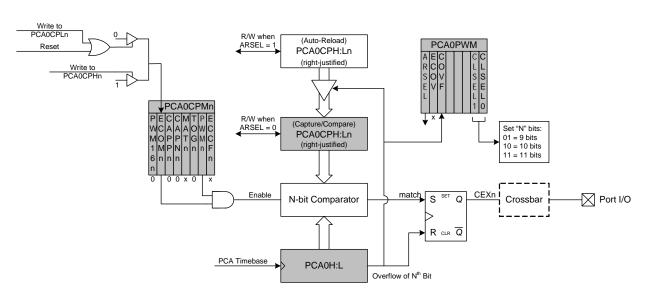
TMR2RLL holds the low byte of the reload value for Timer 2.

SFR Definition 33.10. TMR2RLH: Timer 2 Reload Register High Byte

Bit	7	6	5	4	3	2	1	0
Name	9	TMR2RLH[7:0]						
Туре	•	R/W						
Rese	Reset 0 <td>0</td> <td>0</td> <td>0</td>		0	0	0			
SFR A	SFR Address = 0xCB; SFR Page = 0							
Bit	Name Function							

Dit	Hamo	i unotioni
7:0	TMR2RLH[7:0]	Timer 2 Reload Register High Byte.
		TMR2RLH holds the high byte of the reload value for Timer 2.

34.3.5.2. 9/10/11-bit Pulse Width Modulator Mode


The duty cycle of the PWM output signal in 9/10/11-bit PWM mode should be varied by writing to an "Auto-Reload" Register, which is dual-mapped into the PCA0CPHn and PCA0CPLn register locations. The data written to define the duty cycle should be right-justified in the registers. The auto-reload registers are accessed (read or written) when the bit ARSEL in PCA0PWM is set to 1. The capture/compare registers are accessed when ARSEL is set to 0.

When the least-significant N bits of the PCA0 counter match the value in the associated module's capture/compare register (PCA0CPn), the output on CEXn is asserted high. When the counter overflows from the Nth bit, CEXn is asserted low (see Figure 34.9). Upon an overflow from the Nth bit, the COVF flag is set, and the value stored in the module's auto-reload register is loaded into the capture/compare register. The value of N is determined by the CLSEL bits in register PCA0PWM.

The 9, 10 or 11-bit PWM mode is selected by setting the ECOMn and PWMn bits in the PCA0CPMn register, and setting the CLSEL bits in register PCA0PWM to the desired cycle length (other than 8-bits). If the MATn bit is set to 1, the CCFn flag for the module will be set each time a comparator match (rising edge) occurs. The COVF flag in PCA0PWM can be used to detect the overflow (falling edge), which will occur every 512 (9-bit), 1024 (10-bit) or 2048 (11-bit) PCA clock cycles. The duty cycle for 9/10/11-Bit PWM Mode is given in Equation 34.2, where N is the number of bits in the PWM cycle.

Important Note About PCA0CPHn and PCA0CPLn Registers: When writing a 16-bit value to the PCA0CPn registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Duty Cycle =
$$\frac{(2^N - PCA0CPn)}{2^N}$$

Equation 34.3. 9, 10, and 11-Bit PWM Duty Cycle

A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 34.9. PCA 9, 10 and 11-Bit PWM Mode Diagram

34.4. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 34.1. PCA0CN: PCA Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR				CCF2	CCF1	CCF0
Туре	R/W	R/W	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; SFR Page = All Pages; Bit-Addressable

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer.
		0: PCA Counter/Timer disabled.
		1: PCA Counter/Timer enabled.
5:3	Unused	Read = 000b; Write = Don't care
2:0	CCF[2:0]	PCA Module n Capture/Compare Flag.
		These bits are set by hardware when a match or capture occurs in the associated PCA Module n. When the CCFn interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.

C2 Register Definition 35.2. DEVICEID: C2 Device ID

Bit	7	6	5	4	3	2	1	0				
Nam	DEVICEID[7:0]											
Туре	e	R/W										
Rese	et O	0	0	1	1	1	1	0				
C2 Ad	dress: 0x00					L		L				
Bit	Name		Function									
7:0	DEVICEID[7:0] Device II	Device ID.									
		This read-only register returns the 8-bit device ID: 0x1E (C8051F70x/71x).										

C2 Register Definition 35.3. REVID: C2 Revision ID

Bit	7	6	5	4	3	2	1	0				
Nam	е	REVID[7:0]										
Туре	e	R/W										
Rese	et Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies				
C2 Address: 0x01												
Bit	Name	Function										
7:0	REVID[7:0]	Revision ID										
		This read-only register returns the 8-bit revision ID. For example: 0x00 = Revision A.										

