

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	100
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 42x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk60dn256vmd10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Terminology and guidelines

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

General

Figure 2. Run mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors for 144LQFP and 144MAPBGA

Symbol	Description	Frequency band (MHz)	144LQFP	144MAPBGA	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	23	12	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	27	24	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	28	27	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	14	11	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	К	К	_	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

Symbol	Description	Min.	Max.	Unit
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Table 14. JTAG full voltage range electricals (continued)

Figure 6. Boundary scan (JTAG) timing

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversblk256k}	Erase Block high-voltage time for 256 KB		104	904	ms	1

Table 20. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk256k}	• 256 KB program/data flash	_	_	1.7	ms	
t _{rd1sec2k}	Read 1s Section execution time (flash sector)			60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk256k}	• 256 KB program/data flash	_	122	985	ms	
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
	Program Section execution time					
t _{pgmsec512}	 512 bytes flash 	_	2.4	—	ms	
t _{pgmsec1k}	• 1 KB flash	_	4.7	_	ms	
t _{pgmsec2k}	• 2 KB flash		9.3	_	ms	
t _{rd1all}	Read 1s All Blocks execution time	_	—	1.8	ms	
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	—	μs	
t _{ersall}	Erase All Blocks execution time	—	250	2000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	—	30	μs	1

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Swap Control execution time					
t _{swapx01}	control code 0x01	_	200	—	μs	
t _{swapx02}	control code 0x02	_	70	150	μs	
t _{swapx04}	control code 0x04	_	70	150	μs	
t _{swapx08}	control code 0x08	_	_	30	μs	
	Program Partition for EEPROM execution time					
t _{pgmpart64k}	• 64 KB FlexNVM	_	138	—	ms	
t _{pgmpart256k}	• 256 KB FlexNVM	_	145	—	ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	_	70	_	μs	
t _{setram32k}	32 KB EEPROM backup	_	0.8	1.2	ms	
t _{setram64k}	64 KB EEPROM backup	_	1.3	1.9	ms	
t _{setram256k}	• 256 KB EEPROM backup	_	4.5	5.5	ms	
	Byte-write to FlexRAM	for EEPROM	l operation			
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	_	175	260	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b32k}	32 KB EEPROM backup	_	385	1800	μs	
t _{eewr8b64k}	64 KB EEPROM backup	_	475	2000	μs	
t _{eewr8b128k}	• 128 KB EEPROM backup	_	650	2400	μs	
t _{eewr8b256k}	256 KB EEPROM backup	_	1000	3200	μs	
	Word-write to FlexRAM	for EEPRON	/ operation			
t _{eewr16bers}	Word-write to erased FlexRAM location execution time		175	260	μs	
	Word-write to FlexRAM execution time:					
t _{eewr16b32k}	• 32 KB EEPROM backup	_	385	1800	μs	
t _{eewr16b64k}	• 64 KB EEPROM backup	_	475	2000	μs	
t _{eewr16b128k}	• 128 KB EEPROM backup	_	650	2400	μs	
t _{eewr16b256k}	• 256 KB EEPROM backup	_	1000	3200	μs	
	Longword-write to FlexRA	M for EEPR	OM operation	<u>ו</u>		
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time		360	540	μs	
	Longword-write to FlexRAM execution time:					
t _{eewr32b32k}	32 KB EEPROM backup	_	630	2050	μs	
t _{eewr32b64k}	64 KB EEPROM backup	_	810	2250	μs	
t _{eewr32b128k}	128 KB EEPROM backup	—	1200	2675	μs	
t _{eewr32b256k}	• 256 KB EEPROM backup	_	1900	3500	μs	

Table 21. Flash command timing specifications (continued)

- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash high voltage current behaviors

Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	—	1.5	4.0	mA

6.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes	
Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years		
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years		
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2	
	Data	Flash					
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	_	years		
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	—	years		
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2	
FlexRAM as EEPROM						•	
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	—	years		
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years		
	Write endurance					3	
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	35 K	175 K	_	writes		
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	315 K	1.6 M	_	writes		
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	1.27 M	6.4 M	_	writes		
n _{nvmwree4k}	EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	_	writes		
n _{nvmwree32k}	 EEPROM backup to FlexRAM ratio = 32,768 	80 M	400 M		writes		

- Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.
- Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

rempheral operating requirements and behaviors

Figure 9. EEPROM backup writes to FlexRAM

6.4.2 EzPort switching specifications

Table 24. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	—	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	—	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	—	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5		ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5		ns
EP5	EZP_D input valid to EZP_CK high (setup)	2		ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	—	ns
EP7	EZP_CK low to EZP_Q output valid	—	16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	—	12	ns

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	—	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	13.5	ns	1
FB3	Address, data, and control output hold	0	_	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{FB_TA}$.

Peripheral operating requirements and behaviors

Figure 11. FlexBus read timing diagram

Figure 12. FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

 Table 27.
 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 13. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 28. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3

Table continues on the next page ...

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
EIL	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input

6.8.3 USB DCD electrical specifications Table 40. USB DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC}	USB_DP source voltage (up to 250 µA)	0.5	_	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	—	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μA
I _{DM_SINK}	USB_DM sink current	50	100	150	μA
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

6.8.4 USB VREG electrical specifications

Table 41. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	—	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	120	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	—	1.1	10	μA	
I _{DDoff}	Quiescent current — Shutdown mode • VREGIN = 5.0 V and temperature=25 °C	_	650	_	nA	
	Across operating voltage and temperature		—	4	μΑ	
I _{LOADrun}	Maximum load current — Run mode	—	—	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	—	—	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	v	
	Standby mode	2.1	2.8	3.6	v	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1		3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	—	100	mΩ	
I _{LIM}	Short circuit current	_	290		mA	

1. Typical values assume VREGIN = 5.0 V, Temp = 25 $^\circ\text{C}$ unless otherwise stated.

2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.

Table 51. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S17	I2S_RXD setup before I2S_RX_BCLK	5.8	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 31. I2S/SAI timing — slave modes

6.8.11.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 52.I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0		ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns

Table continues on the next page...

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 54. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	—	8	15	MHz	2, 3
f _{ELEmax}	Electrode oscillator frequency	_	1	1.8	MHz	2, 4
C _{REF}	Internal reference capacitor	_	1	—	pF	
V _{DELTA}	Oscillator delta voltage	_	500	—	mV	2, 5
I _{REF}	Reference oscillator current source base current • 2 μA setting (REFCHRG = 0)	_	2	3	μA	2, 6
	 32 µA setting (REFCHRG = 15) 	_	36	50		
I _{ELE}	Electrode oscillator current source base current • 2 μA setting (EXTCHRG = 0)	_	2	3	μA	2, 7
	 32 µA setting (EXTCHRG = 15) 	—	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	9
Pres100	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	10
MaxSens	Maximum sensitivity	0.008	1.46	—	fF/count	11
Res	Resolution	_	_	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode		55	—	μΑ	
I _{TSI_LP}	Low power mode current adder	_	1.3	2.5	μΑ	13

rmout

8.1 K60 signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

144 LQFP	144 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
-	L5	RTC_ WAKEUP_B	RTC_ WAKEUP_B	RTC_ WAKEUP_B								
—	M5	NC	NC	NC								
—	A10	NC	NC	NC								
—	B10	NC	NC	NC								
—	C10	NC	NC	NC								
1	D3	PTE0	ADC1_SE4a	ADC1_SE4a	PTE0	SPI1_PCS1	UART1_TX	SDHC0_D1		I2C1_SDA	RTC_CLKOUT	
2	D2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX	SDHC0_D0		I2C1_SCL	SPI1_SIN	
3	D1	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_CTS_ b	SDHC0_DCLK				
4	E4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_RTS_ b	SDHC0_CMD			SPI1_SOUT	
5	E5	VDD	VDD	VDD								
6	F6	VSS	VSS	VSS								
7	E3	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_PCS0	UART3_TX	SDHC0_D3				
8	E2	PTE5	DISABLED		PTE5	SPI1_PCS2	UART3_RX	SDHC0_D2				
9	E1	PTE6	DISABLED		PTE6	SPI1_PCS3	UART3_CTS_ b	I2S0_MCLK			USB_SOF_ OUT	
10	F4	PTE7	DISABLED		PTE7		UART3_RTS_ b	I2S0_RXD0				
11	F3	PTE8	DISABLED		PTE8	12S0_RXD1	UART5_TX	I2S0_RX_FS				
12	F2	PTE9	DISABLED		PTE9	12S0_TXD1	UART5_RX	12S0_RX_ BCLK				
13	F1	PTE10	DISABLED		PTE10		UART5_CTS_ b	I2S0_TXD0				
14	G4	PTE11	DISABLED		PTE11		UART5_RTS_ b	I2S0_TX_FS				
15	G3	PTE12	DISABLED		PTE12			I2S0_TX_ BCLK				
16	E6	VDD	VDD	VDD								
17	F7	VSS	VSS	VSS								
18	H3	VSS	VSS	VSS								
19	H1	USB0_DP	USB0_DP	USB0_DP								
20	H2	USB0_DM	USB0_DM	USB0_DM								
21	G1	VOUT33	VOUT33	VOUT33								
22	G2	VREGIN	VREGIN	VREGIN								

	7	
	7	

144 LQFP	144 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
23	J1	ADC0_DP1	ADC0_DP1	ADC0_DP1								
24	J2	ADC0_DM1	ADC0_DM1	ADC0_DM1								
25	K1	ADC1_DP1	ADC1_DP1	ADC1_DP1								
26	K2	ADC1_DM1	ADC1_DM1	ADC1_DM1								
27	L1	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
28	L2	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
29	M1	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
30	M2	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
31	H5	VDDA	VDDA	VDDA								
32	G5	VREFH	VREFH	VREFH								
33	G6	VREFL	VREFL	VREFL								
34	H6	VSSA	VSSA	VSSA								
35	K3	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22								
36	J3	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21								
37	M3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
38	L3	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
39	L4	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23								
40	M7	XTAL32	XTAL32	XTAL32								
41	M6	EXTAL32	EXTAL32	EXTAL32								
42	L6	VBAT	VBAT	VBAT								
43	-	VDD	VDD	VDD								
44	-	VSS	VSS	VSS								
45	M4	PTE24	ADC0_SE17	ADC0_SE17	PTE24	CAN1_TX	UART4_TX			EWM_OUT_b		
46	K5	PTE25	ADC0_SE18	ADC0_SE18	PTE25	CAN1_RX	UART4_RX			EWM_IN		
47	K4	PTE26	DISABLED		PTE26	ENET_1588_ CLKIN	UART4_CTS_ b			RTC_CLKOUT	USB_CLKIN	

144 LQFP	144 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
71	G8	VSS	VSS	VSS								
72	M12	PTA18	EXTALO	EXTALO	PTA18		FTM0_FLT2	FTM_CLKIN0				
73	M11	PTA19	XTALO	XTAL0	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1		
74	L12	RESET_b	RESET_b	RESET_b								
75	K12	PTA24	DISABLED		PTA24			MII0_TXD2		FB_A29		
76	J12	PTA25	DISABLED		PTA25			MII0_TXCLK		FB_A28		
77	J11	PTA26	DISABLED		PTA26			MII0_TXD3		FB_A27		
78	J10	PTA27	DISABLED		PTA27			MII0_CRS		FB_A26		
79	H12	PTA28	DISABLED		PTA28			MII0_TXER		FB_A25		
80	H11	PTA29	DISABLED		PTA29			MII0_COL		FB_A24		
81	H10	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0	RMII0_MDIO/ MII0_MDIO		FTM1_QD_ PHA		
82	H9	PTB1	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2C0_SDA	FTM1_CH1	RMII0_MDC/ MII0_MDC		FTM1_QD_ PHB		
83	G12	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UARTO_RTS_ b	ENET0_1588_ TMR0		FTM0_FLT3		
84	G11	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UART0_CTS_ b/ UART0_COL_ b	ENET0_1588_ TMR1		FTM0_FLT0		
85	G10	PTB4	ADC1_SE10	ADC1_SE10	PTB4			ENET0_1588_ TMR2		FTM1_FLT0		
86	G9	PTB5	ADC1_SE11	ADC1_SE11	PTB5			ENET0_1588_ TMR3		FTM2_FLT0		
87	F12	PTB6	ADC1_SE12	ADC1_SE12	PTB6				FB_AD23			
88	F11	PTB7	ADC1_SE13	ADC1_SE13	PTB7				FB_AD22			
89	F10	PTB8	DISABLED		PTB8		UART3_RTS_ b		FB_AD21			
90	F9	PTB9	DISABLED		PTB9	SPI1_PCS1	UART3_CTS_ b		FB_AD20			
91	E12	PTB10	ADC1_SE14	ADC1_SE14	PTB10	SPI1_PCS0	UART3_RX		FB_AD19	FTM0_FLT1		
92	E11	PTB11	ADC1_SE15	ADC1_SE15	PTB11	SPI1_SCK	UART3_TX		FB_AD18	FTM0_FLT2		
93	H7	VSS	VSS	VSS								
94	F5	VDD	VDD	VDD								
95	E10	PTB16	TSI0_CH9	TSI0_CH9	PTB16	SPI1_SOUT	UART0_RX		FB_AD17	EWM_IN		
96	E9	PTB17	TSI0_CH10	TSI0_CH10	PTB17	SPI1_SIN	UART0_TX		FB_AD16	EWM_OUT_b		
97	D12	PTB18	TSI0_CH11	TSI0_CH11	PTB18	CAN0_TX	FTM2_CH0	I2S0_TX_ BCLK	FB_AD15	FTM2_QD_ PHA		
98	D11	PTB19	TSI0_CH12	TSI0_CH12	PTB19	CAN0_RX	FTM2_CH1	I2S0_TX_FS	FB_OE_b	FTM2_QD_ PHB		
99	D10	PTB20	DISABLED		PTB20	SPI2_PCS0			FB_AD31	CMP0_OUT		
100	D9	PTB21	DISABLED		PTB21	SPI2_SCK			FB_AD30	CMP1_OUT		

K60 Sub-Family Data Sheet, Rev. 3, 6/2013.

NP

Pinout

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LQFP	MAP Bga											
126	B5	PTC19	DISABLED		PTC19		UART3_CTS_ b	ENET0_1588_ TMR3	FB_CS3_b/ FB_BE7_0_b	FB_TA_b		
127	A5	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_RTS_ b		FB_ALE/ FB_CS1_b/ FB_TS_b			
128	D4	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_CTS_ b		FB_CS0_b			
129	C4	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX		FB_AD4			
130	B4	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX		FB_AD3			
131	A4	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UARTO_RTS_ b	FTM0_CH4	FB_AD2	EWM_IN		
132	A3	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_CTS_ b/ UART0_COL_ b	FTM0_CH5	FB_AD1	EWM_OUT_b		
133	A2	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UARTO_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
134	M10	VSS	VSS	VSS								
135	F8	VDD	VDD	VDD								
136	A1	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		
137	C9	PTD8	DISABLED		PTD8	I2C0_SCL	UART5_RX			FB_A16		
138	B9	PTD9	DISABLED		PTD9	I2C0_SDA	UART5_TX			FB_A17		
139	B3	PTD10	DISABLED		PTD10		UART5_RTS_ b			FB_A18		
140	B2	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_CTS_ b	SDHC0_ CLKIN		FB_A19		
141	B1	PTD12	DISABLED		PTD12	SPI2_SCK		SDHC0_D4		FB_A20		
142	C3	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5		FB_A21		
143	C2	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
144	C1	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7		FB_A23		

8.2 K60 pinouts

The figure below shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Pinout

nevision history

Rev. No.	Date	Substantial Changes
2	12/2012	Replaced TBDs throughout.
3	6/2013	 In ESD handling ratings, added a note for ILAT. Updated "Voltage and current operating requirements" Table 1. Updated I_{OL} data for V_{OL} row in "Voltage and current operating behaviors" Table 4. Updated wakeup times and t_{POR} value in "Power mode transition operating behaviors" Table 5. In "EMC radiated emissions operating behaviors" Table 7, added a column for 144MAPBGA. In "16-bit ADC operating conditions" Table 27, updated the max spec of VADIN. In "16-bit ADC electrical characteristics" Table 28, updated the temp sensor slope and voltage specs. Updated Inter-Integrated Circuit Interface (I²C) timing. In SDHC specifications, added operating voltage row.

Table 55. Revision history (continued)