Microchip Technology - <u>AT97SC3205T-G3M4420B Datasheet</u>

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

demands of specialized applications.

Application charific microcontrollars are angineered to

Details	
Product Status	Obsolete
Applications	Trusted Platform Module (TPM)
Core Processor	AVR
Program Memory Type	EEPROM
Controller Series	-
RAM Size	-
Interface	I ² C
Number of I/O	4
Voltage - Supply	3.3V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at97sc3205t-g3m4420b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Trusted Platform Module I²C Interface

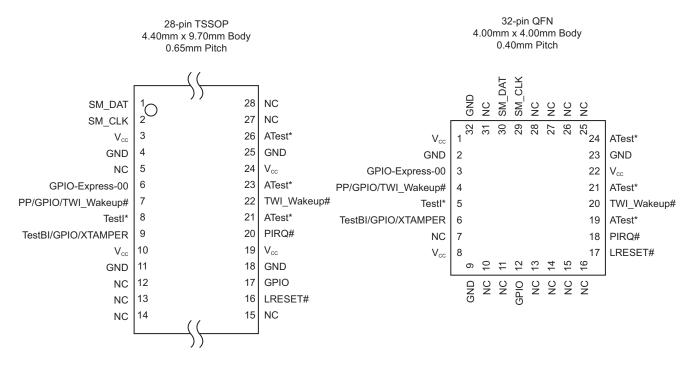
SUMMARY DATASHEET

Features

- Compliant to the Trusted Computing Group (TCG) Trusted Platform Module (TPM) Version 1.2 Specification
- Single-chip Turnkey Solution
- Hardware Asymmetric Crypto Engine
- Atmel AVR[®] RISC Microprocessor
- Internal EEPROM Storage for RSA Keys
- 400kHz Fast Mode/100kHz Standard Mode I²C Operation
- Secure Hardware and Firmware Design and Device Layout
- FIPS-140-2 Module Certified Including the High-quality Random Number Generator (RNG), HMAC, AES, SHA, and RSA Engines
- NV Storage Space for 2066 bytes of User Defined Data
- 3.3V Supply Voltage
- 28-lead Thin TSSOP or 32-pad QFN Packages
- Offered in Commercial (0°C to 70°C) and Industrial (-40 to +85°C)
 Temperature Range

Description

Atmel AT97SC3205T is a fully integrated security module designed to be integrated into embedded systems. It implements version 1.2 of the Trusted Computing Group (TCG) specification for Trusted Platform Modules (TPM).


This is a summary document. The complete document is available under NDA. For more information, please contact your local Atmel sales office.

1. Pin Configuration and Pinouts

Table 1-1. Pin Configurations

Pin Name	Description
V _{CC}	3.3V Supply Voltage
GND	Ground
LRESET#	Reset Input Active Low
SM_DAT	Serial Data Input/Output
SM_CLK	Serial Clock Input
GPIO	General Purpose Input/Output
GPIO-Express-00	GPIO Assigned to TPM_NV_INDEX_GPIO_00
PP/GPIO	Hardware Physical Presence or GPIO Pin
Testl	Test Input (Disabled)
TestBI/GPIO/XTAMPER	Test Input (Disabled) / XTAMPER / GPIO Pin
TWI_Wakeup#	Low-Power Sleep Recovery (Active Low)
PIRQ#	SPI Interrupt Requests
ATest	Atmel Test Pin
NC	No Connect

Figure 1-1. Pinout Diagrams

Note: * Used for Atmel internal testing only. Tie to V_{CC} or GND directly or through a 4.7K Ω resistor.

Table 1-2. Pin Descriptions

Pin	Description
- III	
V _{cc}	Power Supply, 3.3V. Care should be taken to prevent excessive noise. Effective decoupling of the V_{CC} inputs to the Atmel TPM is critical to assure consistently reliable operation over the lifetime of the system. The Atmel recommendation is for a decoupling bypass capacitor within the range of 2200pF to 4700pF to be placed as close as possible <5mm to each of the V_{CC} pins; located between each V_{CC} pin and the immediately adjacent GND pin. A $0.1\mu F$ decoupling bypass capacitor should be placed at the node in which these V_{CC} traces join as close as possible; <10mm to the TPM. In all cases, this bypass capacitor should be closer than the next closest component. All capacitors should be of high quality with dielectric ratings of X5R or X7R. A low-power state is automatically entered when the device is idle. No further action is required by the system to enter low-power mode.
GND	System Ground.
LRESET#	Reset Active-Low. Pulsing this signal low resets the internal state of the TPM and is equivalent to removal/restoration of power to the device. The required minimum reset pulse width is $2\mu s$. On power-up, it is critical that Reset be kept active low until V_{CC} stabilizes.
SM_DAT	I ² C Data Input/Output. This pin serves as the Data Input/Output for the TPM. If one attempts to communicate over the interface at close to the rated speed of 400kHz, the size of the pull-ups on SM_DAT can be critical. A known value that functions properly at 400kHz is 800Ω on the SM_DAT line. One may experiment with different pull-up values and/or reduce the clock rate if desired.
SM_CLK	I ² C Clock Input. This pin serves as the Serial Clock Input to the TPM. If one attempts to communicate over the interface at close to the rated speed of 400kHz, the size of the pull-ups on SM_CLK can be critical. A known value that functions properly at 400kHz is $1.5 \text{K}\Omega$ on the SM_CLK line. One may experiment with different pull-up values and/or reduce the clock rate if desired.
	The TPM communication stability is increased the closer to a 50% duty cycle on the SM_CLK signal that can be provided. Although this becomes more critical at the rated speed of 400kHz, improvements from a 50% duty cycle can result at lower speeds as well.
GPIO	General Purpose Input/Output. If not used, tie high or low.
GPIO-Express-00	General Purpose Input/Output. Internal pull-up resistor. This pin is mapped to NV Index TPM_NV_INDEX_GPIO_00 and serves as the GPIO-Express-00. Default TPM configuration: GPIO Input. GPIO-Express-00 also serves as the XOR chain Output during I/O test mode. Since GPIO-Express-00 has an internal pull-up it should be left floating if unused.
PP/GPIO	General Purpose Input/Output. Internal pull-down resistor. This pin is an indicator for hardware physical presence; active high. Default TPM configuration: GPIO input. Since PP/GPIO has an internal pull-down, it should be left floating if unused.
Testl	Test Input. TestI manufacturing test input disabled after manufacturing. Tie TestI to ground directly or through a $4.7 \text{K}\Omega$ resistor.
TestBI/GPIO/ XTAMPER	Test Input. The Atmel TPM does not support legacy addressing via the optional BADD implementation of this pin. The TestBI pin serves as the XTAMPER pin or an additional GPIO pin, active high. (See the application note, "Atmel Specific TPM Commands Reference Guide," for details on XTAMPER implementation). If unused, this pin should be tied to ground directly or through a $4.7 \text{K}\Omega$ resistor.
TWI_Wakeup#	Low-Power Sleep Recovery. These two pins serve as the mechanism to allow the TPM to recover from its low-power sleep state after receiving the Atmel Specific command TPM_DeepSleep (See Atmel TPM Specific Commands document for further details). These pins must both be pulsed active low in order to recover from the low-power sleep state. If unused, pin 7 can be left floating or tied to GND either directly or through a $4.7 \mathrm{K}\Omega$ resistor. Pin 22 should be tied to GND or V_{CC} either directly or through a $4.7 \mathrm{K}\Omega$ resistor.

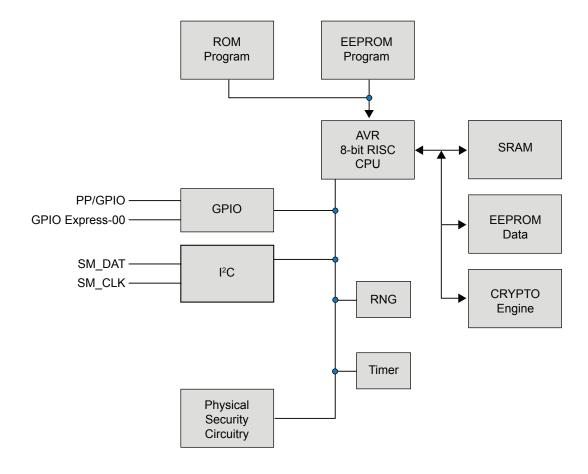


Table 1-2. Pin Descriptions (Continued)

Pin	Description
PIRQ#	SPI Interrupt Requests. If unused, this pin should be tied to ground directly or through a $4.7 \text{K}\Omega$ resistor.
	Atmel Test Pins. Only utilized during manufacturing test.
ATest	To optimize power savings and improve noise immunity, these ATest pins should be biased to V_{CC} or GND as follows:
	TSSOP Pin 21 / QFN Pin 19
	TSSOP Pin 23 / QFN Pin 21
	TSSOP Pin 26 / QFN Pin 24
	No Connect Pins.
	The AT97SC3205T TSSOP package has additional pins which are no connects and can be tied to GND, V_{CC} , or left floating at the customers discretion:
	NC – TSSOP Pin 5
	NC – TSSOP Pin 12
	NC – TSSOP Pin 13
	NC – TSSOP Pin 14
	NC – TSSOP Pin 15
	NC – TSSOP Pin 27
	NC – TSSOP Pin 28
NC	The AT97SC3205T QFN package has additional pins which are no connects and can be tied to GND, V_{CC} , or left floating at the customers discretion:
110	NC – QFN Pin 7
	NC – QFN Pin 10
	NC – QFN Pin 11
	NC – QFN Pin 13
	NC – QFN Pin 14
	NC – QFN Pin 15
	NC – QFN Pin 16
	NC – QFN Pin 25
	NC – QFN Pin 26
	NC – QFN Pin 27
	NC – QFN Pin 28
	NC – QFN Pin 31

Note: 1. The substrate center pad for the 32-pin QFN is directly tied to GND internally; therefore, this pad can either be left floating or tied to GND.

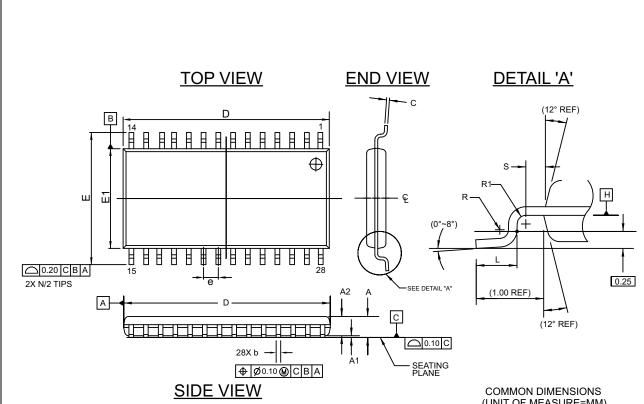
2. Block Diagram

Communication to and from the TPM occurs through a 400kHz Fast mode/100kHz Standard mode. The TPM includes a hardware random number generator, including a FIPS certified Pseudo Random Number Generator which is used for key generation and TCG protocol functions. The RNG is also available to the system to generate random numbers which may be needed during normal operation.

The device uses a dynamic internal memory management scheme to store multiple RSA keys. Other than the standard TCG commands (TPM_FlushSpecific, TPM_Loadkey2), no system intervention is required to manage this internal key cache.

Full documentation for TCG primitives can be found in the TCG TPM Main Specification, Parts 1-3, on the TCG Web site located at www.trustedcomputinggroup.org. This specification includes only mechanical, electrical and I^2C protocol information.

3. Ordering Information


Ordering Code	Package		Operational Range
AT97SC3205T ⁽¹⁾	28X1 (28-pin Thin TSSOP)	Lead-free, RoHS	Commercial (0°C to 70°C)
AT97SC3205T ⁽¹⁾	32M3 (32-pin Very Thin QFN)	Leau-liee, Rolls	Industrial (-40°C to 85°C)

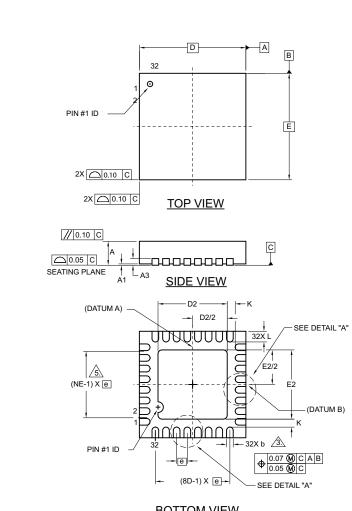
Note: 1. Please see the AT97SC3205T datasheet addendum for the complete catalog number ordering code.

4. Package Drawings

4.1 28X1 — 28-lead Thin TSSOP

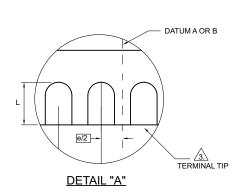
Note:

- 1. Refer to JEDEC drawing MO-153, variation AE
- Dimension D does not include mold flash, protrusions or gate burrs. Mold flash,protrusions or gate burrs shall not exceed 0.15mm per end. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25mm per side.
- 3. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm total in excess of the "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm.


(UNIT OF MEASURE=MM)				
SYMBOL	MIN	NOM	MAX	NOTE
Α	-	-	1.10	
A1	0.05	-	0.15	
A2	0.85	0.90	0.95	
b	0.19	-	0.30	2
С	0.09	-	0.20	
D	9.60	9.70	9.80	1
Е	6.40BSC			
E1	4.30	4.40	4.50	1
е	0.65 BSC			
L	0.45	0.60	0.75	
R	0.09	-	-	
R1	0.09	-	-	
S	0.20	-	-	

7/8/2011

Atmel	TITLE	GPC	DRAWING NO.	REV.
Package Drawing Contact: packagedrawings@atmel.com	28X1, 28-lead, 4.4mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)	TFL	28X1	Α


32M3 — 32-pad QFN 4.2

NOTES:

- 1. DIMENSIONING AND TOLERANCING CONFORME TO ASME Y14.5M 1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, 0 IS IN DEGREES.
- 3\DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION b SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 4. MAX. PACKAGE WARPAGE IS 0.05 mm.
- 5. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- 6. THIS DRAWING CONFORMES TO JEDEC REGISTERED OUTLINE MO-220

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
A3		0.20 REF		
D		4.0 BSC		
D2	2.50	2.60	2.70	
Е	4.0 BSC			
E2	2.50	2.60	2.70	
b	0.15	0.20	0.25	
L	0.35	0.40	0.45	
K	0.20	_	-	
е	0.40 BSC			

05/15/13

Atmel	TITLE 32M3, 32-pad 4.0 x 4.0 x 0.90mm Body, 0.40mm	GPC	DRAWING NO.	REV.
Package Drawing Contact: packagedrawings@atmel.com	Lead Pitch, Very Thin Quad Flat No-Lead Package (VQFN)	ZAK	32M3	А

5. Revision History

Doc. Rev.	Date	Comments
8883AS	02/2014	Initial summary document release.

1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 **Atmel Corporation**

www.atmel.com

© 2014 Atmel Corporation. / Rev.: Atmel-8883AS-TPM-AT97SC3205T-Datasheet-Summary 022014.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUPPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABILE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.