

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CPU32
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	EBI/EMI, SCI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	15
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68332acpv20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Features

- Central Processing Unit (CPU32)
 - 32-Bit Architecture
 - Virtual Memory Implementation
 - Table Lookup and Interpolate Instruction
 - Improved Exception Handling for Controller Applications
 - High-Level Language Support
 - Background Debugging Mode
 - Fully Static Operation
- System Integration Module (SIM)
 - External Bus Support
 - Programmable Chip-Select Outputs
 - System Protection Logic
 - Watchdog Timer, Clock Monitor, and Bus Monitor
 - Two 8-Bit Dual Function Input/Output Ports
 - One 7-Bit Dual Function Output Port
 - Phase-Locked Loop (PLL) Clock System
- Time Processor Unit (TPU)
 - Dedicated Microengine Operating Independently of CPU32
 - 16 Independent, Programmable Channels and Pins
 - Any Channel can Perform any Time Function
 - Two Timer Count Registers with Programmable Prescalers
 - Selectable Channel Priority Levels
- Queued Serial Module (QSM)
 - Enhanced Serial Communication Interface
 - Queued Serial Peripheral Interface
 - One 8-Bit Dual Function Port
- Static RAM Module with TPU Emulation Capability (TPURAM)
 - 2-Kbytes of Static RAM
 - May be Used as Normal RAM or TPU Microcode Emulation RAM

332 144-PIN QFP

1.4 Address Map

The following figure is a map of the MCU internal addresses. The RAM array is positioned by the base address registers in the associated RAM control block. Unimplemented blocks are mapped externally.

Figure 4 MCU Address Map

1.5 Intermodule Bus

The intermodule bus (IMB) is a standardized bus developed to facilitate both design and operation of modular microcontrollers. It contains circuitry to support exception processing, address space partitioning, multiple interrupt levels, and vectored interrupts. The standardized modules in the MCU communicate with one another and with external components through the IMB. The IMB in the MCU uses 24 address and 16 data lines.

Access	Address	15 8	7 0
S	\$YFFA56	CHIP-SELECT OF	PTION 2 (CSOR2)
S	\$YFFA58	CHIP-SELECT B	ASE 3 (CSBAR3)
S	\$YFFA5A	CHIP-SELECT OF	PTION 3 (CSOR3)
S	\$YFFA5C	CHIP-SELECT B	ASE 4 (CSBAR4)
S	\$YFFA5E	CHIP-SELECT OF	PTION 4 (CSOR4)
S	\$YFFA60	CHIP-SELECT B	ASE 5 (CSBAR5)
S	\$YFFA62	CHIP-SELECT OF	PTION 5 (CSOR5)
S	\$YFFA64	CHIP-SELECT B	ASE 6 (CSBAR6)
S	\$YFFA66	CHIP-SELECT OF	PTION 6 (CSOR6)
S	\$YFFA68	CHIP-SELECT B	ASE 7 (CSBAR7)
S	\$YFFA6A	CHIP-SELECT OF	PTION 7 (CSOR7)
S	\$YFFA6C	CHIP-SELECT B	ASE 8 (CSBAR8)
S	\$YFFA6E	CHIP-SELECT OF	PTION 8 (CSOR8)
S	\$YFFA70	CHIP-SELECT B	ASE 9 (CSBAR9)
S	\$YFFA72	CHIP-SELECT OF	PTION 9 (CSOR9)
S	\$YFFA74	CHIP-SELECT BA	SE 10 (CSBAR10)
S	\$YFFA76	CHIP-SELECT OP	TION 10 (CSOR10)
	\$YFFA78	NOT USED	NOT USED
	\$YFFA7A	NOT USED	NOT USED
	\$YFFA7C	NOT USED	NOT USED
	\$YFFA7E	NOT USED	NOT USED
	-	1	

Table 7 SIM Address Map (Continued)

Y = M111, where M is the logic state of the module mapping (MM) bit in the SIMCR.

3.2 System Configuration and Protection

This functional block provides configuration control for the entire MCU. It also performs interrupt arbitration, bus monitoring, and system test functions. MCU system protection includes a bus monitor, a HALT monitor, a spurious interrupt monitor, and a software watchdog timer. These functions have been made integral to the microcontroller to reduce the number of external components in a complete control system.

3.2.2 System Protection Control Register

The system protection control register controls system monitor functions, software watchdog clock prescaling, and bus monitor timing. This register can be written only once following power-on or reset, but can be read at any time.

SYPCR — System Protection Control Register								\$YFF	A21
15	8	7	6	5	4	3	2	1	0
NOT USED		SWE	SWP	SM	/T	HME	BME	BN	ΛT
RESET:									
		1	MODCLK	0	0	0	0	0	0

SWE — Software Watchdog Enable

0 = Software watchdog disabled

1 = Software watchdog enabled

SWP — Software Watchdog Prescale

This bit controls the value of the software watchdog prescaler.

- 0 = Software watchdog clock not prescaled
- 1 = Software watchdog clock prescaled by 512

SWT[1:0] — Software Watchdog Timing

This field selects the divide ratio used to establish software watchdog time-out period. The following table gives the ratio for each combination of SWP and SWT bits.

SWP	SWT	Ratio
0	00	2 ⁹
0	01	2 ¹¹
0	10	2 ¹³
0	11	2 ¹⁵
1	00	2 ¹⁸
1	01	2 ²⁰
1	10	2 ²²
1	11	2 ²⁴

HME — Halt Monitor Enable

0 = Disable halt monitor function

1 = Enable halt monitor function

BME — Bus Monitor External Enable

- 0 = Disable bus monitor function for an internal to external bus cycle.
- 1 = Enable bus monitor function for an internal to external bus cycle.

BMT[1:0] — Bus Monitor Timing

This field selects a bus monitor time-out period as shown in the following table.

BMT	Bus Monitor Time-out Period
00	64 System Clocks
01	32 System Clocks
10	16 System Clocks
11	8 System Clocks

3.5.1 Chip-Select Registers

Pin assignment registers CSPAR0 and CSPAR1 determine functions of chip-select pins. These registers also determine port size (8- or 16-bit) for dynamic bus allocation.

A pin data register (PORTC) latches discrete output data.

Blocks of addresses are assigned to each chip-select function. Block sizes of 2 Kbytes to 1 Mbyte can be selected by writing values to the appropriate base address register (CSBAR). Address blocks for separate chip-select functions can overlap.

Chip-select option registers (CSORBT and CSOR[10:0]) determine timing of and conditions for assertion of chip-select signals. Eight parameters, including operating mode, access size, synchronization, and wait state insertion can be specified.

Initialization code often resides in a peripheral memory device controlled by the chip-select circuits. A set of special chip-select functions and registers (CSORBT, CSBARBT) is provided to support bootstrap operation.

3.5.2 Pin Assignment Registers

The pin assignment registers (CSPAR0 and CSPAR1) contain pairs of bits that determine the function of chip-select pins. The pin assignment encodings used in these registers are shown below.

Bit Field	Description
00	Discrete Output
01	Alternate Function
10	Chip Select (8-Bit Port)
11	Chip Select (16-Bit Port)

Table 12 Pin Assignment Encodings

CSPAR0—Chip Select Pin Assignment Register 0

\$YFFA44

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	CSP	A0[6]	CSP	A0[5]	CSP	A0[4]	CSP	A0[3]	CSP	A0[2]	CSP	A0[1]	CSB	OOT
RESET:															

0 0 DATA2 1 DATA2 1 DATA2 1 DATA1 1 DATA1 1 DATA1 1 1 DATA0

CSPAR0 contains seven 2-bit fields that determine the functions of corresponding chip-select pins. CSPAR0[15:14] are not used. These bits always read zero; writes have no effect. CSPAR0 bit 1 always reads one; writes to CSPAR0 bit 1 have no effect.

Table 13 CSPAR0 Pin Assignments

CSPAR0 Field	Chip Select Signal	Alternate Signal	Discrete Output
CSPA0[6]	CS5	FC2	PC2
CSPA0[5]	CS4	FC1	PC1
CSPA0[4]	CS3	FC0	PC0
CSPA0[3]	CS2	BGACK	—
CSPA0[2]	CS1	BG	—
CSPA0[1]	CS0	BR	—
CSBOOT	CSBOOT	_	—

AVEC — Autovector Enable

0 = External interrupt vector enabled

1 = Autovector enabled

This field selects one of two methods of acquiring the interrupt vector during the interrupt acknowledge cycle. It is not usually used in conjunction with a chip-select pin.

If the chip select is configured to trigger on an interrupt acknowledge cycle (SPACE = 00) and the \overline{AVEC} field is set to one, the chip select automatically generates an \overline{AVEC} in response to the interrupt cycle. Otherwise, the vector must be supplied by the requesting device.

The AVEC bit must not be used in synchronous mode, as autovector response timing can vary because of ECLK synchronization.

3.5.5 Port C Data Register

Bit values in port C determine the state of chip-select pins used for discrete output. When a pin is assigned as a discrete output, the value in this register appears at the output. This is a read/write register. Bit 7 is not used. Writing to this bit has no effect, and it always returns zero when read.

PORTC — Port C Data Register								\$YF	FFA41
15	8	7	6	5	4	3	2	1	0
NOT USED		0	PC6	PC5	PC4	PC3	PC2	PC1	PC0
RESET:									
		0	1	1	1	1	1	1	1

3.6 General-Purpose Input/Output

SIM pins can be configured as two general-purpose I/O ports, E and F. The following paragraphs describe registers that control the ports.

PORTE0, PORTE1 — Port E Data Register						\$	YFFA1	1, \$YF	FFA13
15	8	7	6	5	4	3	2	1	0
NOT USED		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
RESET:									
		U	U	U	U	U	U	U	U

A write to the port E data register is stored in the internal data latch and, if any port E pin is configured as an output, the value stored for that bit is driven on the pin. A read of the port E data register returns the value at the pin only if the pin is configured as a discrete input. Otherwise, the value read is the value stored in the register.

The port E data register is a single register that can be accessed in two locations. When accessed at \$YFFA11, the register is referred to as PORTE0; when accessed at \$YFFA13, the register is referred to as PORTE1. The register can be read or written at any time. It is unaffected by reset.

DDRE — Port E Data Direction Register								\$YI	FA15
15	8	7	6	5	4	3	2	1	0
NOT USED		DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0
RESET:									
		0	0	0	0	0	0	0	0

The bits in this register control the direction of the pin drivers when the pins are configured as I/O. Any bit in this register set to one configures the corresponding pin as an output. Any bit in this register cleared to zero configures the corresponding pin as an input. This register can be read or written at any time.

3.7.3 Reset Timing

The RESET input must be asserted for a specified minimum period in order for reset to occur. External RESET assertion can be delayed internally for a period equal to the longest bus cycle time (or the bus monitor time-out period) in order to protect write cycles from being aborted by reset. While RESET is asserted, SIM pins are either in a disabled high-impedance state or are driven to their inactive states.

When an external device asserts **RESET** for the proper period, reset control logic clocks the signal into an internal latch. The control logic drives the **RESET** pin low for an additional 512 CLKOUT cycles after it detects that the **RESET** signal is no longer being externally driven, to guarantee this length of reset to the entire system.

If an internal source asserts a reset signal, the reset control logic asserts **RESET** for a minimum of 512 cycles. If the reset signal is still asserted at the end of 512 cycles, the control logic continues to assert **RESET** until the internal reset signal is negated.

After 512 cycles have elapsed, the reset input pin goes to an inactive, high-impedance state for ten cycles. At the end of this 10-cycle period, the reset input is tested. When the input is at logic level one, reset exception processing begins. If, however, the reset input is at logic level zero, the reset control logic drives the pin low for another 512 cycles. At the end of this period, the pin again goes to high-impedance state for ten cycles, then it is tested again. The process repeats until **RESET** is released.

3.7.4 Power-On Reset

When the SIM clock synthesizer is used to generate the system clock, power-on reset involves special circumstances related to application of system and clock synthesizer power. Regardless of clock source, voltage must be applied to clock synthesizer power input pin V_{DDSYN} in order for the MCU to operate. The following discussion assumes that V_{DDSYN} is applied before and during reset. This minimizes crystal start-up time. When V_{DDSYN} is applied at power-on, start-up time is affected by specific crystal parameters and by oscillator circuit design. V_{DD} ramp-up time also affects pin state during reset.

During power-on reset, an internal circuit in the SIM drives the internal (IMB) and external reset lines. The circuit releases the internal reset line as V_{DD} ramps up to the minimum specified value, and SIM pins are initialized. When V_{DD} reaches the specified minimum value, the clock synthesizer VCO begins operation. Clock frequency ramps up to the specified limp mode frequency. The external RESET line remains asserted until the clock synthesizer PLL locks and 512 CLKOUT cycles elapse.

The SIM clock synthesizer provides clock signals to the other MCU modules. After the clock is running and the internal reset signal is asserted for four clock cycles, these modules reset. V_{DD} ramp time and VCO frequency ramp time determine how long these four cycles take. Worst case is approximately 15 milliseconds. During this period, module port pins may be in an indeterminate state. While input-only pins can be put in a known state by means of external pull-up resistors, external logic on input/output or output-only pins must condition the lines during this time. Active drivers require high-impedance buffers or isolation resistors to prevent conflict.

3.7.5 Use of Three State Control Pin

Asserting the three-state control (TSC) input causes the MCU to put all output drivers in an inactive, high-impedance state. The signal must remain asserted for ten clock cycles in order for drivers to change state. There are certain constraints on use of TSC during power-on reset:

When the internal clock synthesizer is used (MODCLK held high during reset), synthesizer rampup time affects how long the ten cycles take. Worst case is approximately 20 milliseconds from TSC assertion.

When an external clock signal is applied (MODCLK held low during reset), pins go to high-impedance state as soon after TSC assertion as ten clock pulses have been applied to the EXTAL pin.

mask lower-priority interrupts during exception processing, and it is decoded by modules that have requested interrupt service to determine whether the current interrupt acknowledge cycle pertains to them.

Modules that have requested interrupt service decode the IP value placed on the address bus at the beginning of the interrupt acknowledge cycle, and if their requests are at the specified IP level, respond to the cycle. Arbitration between simultaneous requests of the same priority is performed by means of serial contention between module interrupt arbitration (IARB) field bit values.

Each module that can make an interrupt service request, including the SIM, has an IARB field in its configuration register. An IARB field can be assigned a value from %0001 (lowest priority) to %1111 (highest priority). A value of %0000 in an IARB field causes the CPU to process a spurious interrupt exception when an interrupt from that module is recognized.

Because the EBI manages external interrupt requests, the SIM IARB value is used for arbitration between internal and external interrupt requests. The reset value of IARB for the SIM is %1111, and the reset IARB value for all other modules is %0000. Initialization software must assign different IARB values in order to implement an arbitration scheme.

Each module must have a unique IARB value. When two or more IARB fields have the same nonzero value, the CPU interprets multiple vector numbers simultaneously, with unpredictable consequences.

Arbitration must always take place, even when a single source requests service. This point is important for two reasons: the CPU interrupt acknowledge cycle is not driven on the external bus unless the SIM wins contention, and failure to contend causes an interrupt acknowledge bus cycle to be terminated by a bus error, which causes a spurious interrupt exception to be taken.

When arbitration is complete, the dominant module must place an interrupt vector number on the data bus and terminate the bus cycle. In the case of an external interrupt request, because the interrupt acknowledge cycle is transferred to the external bus, an external device must decode the mask value and respond with a vector number, then generate bus cycle termination signals. If the device does not respond in time, a spurious interrupt exception is taken.

The periodic interrupt timer (PIT) in the SIM can generate internal interrupt requests of specific priority at predetermined intervals. By hardware convention, PIT interrupts are serviced before external interrupt service requests of the same priority. Refer to 3.2.7 Periodic Interrupt Timer for more information.

3.8.2 Interrupt Processing Summary

A summary of the interrupt processing sequence follows. When the sequence begins, a valid interrupt service request has been detected and is pending.

- A. The CPU finishes higher priority exception processing or reaches an instruction boundary.
- B. Processor state is stacked. The contents of the status register and program counter are saved.
- C. The interrupt acknowledge cycle begins:
 - 1. FC[2:0] are driven to %111 (CPU space) encoding.
 - 2. The address bus is driven as follows. ADDR[23:20] = %1111; ADDR[19:16] = %1111, which indicates that the cycle is an interrupt acknowledge CPU space cycle; ADDR[15:4] = %111111111111; ADDR[3:1] = the level of the interrupt request being acknowledged; and ADDR0 = %1.
 - 3. Request priority level is latched into the IP field in the status register from the address bus.
- D. Modules or external peripherals that have requested interrupt service decode the request level in ADDR[3:1]. If the request level of at least one interrupting module or device is the same as the value in ADDR[3:1], interrupt arbitration contention takes place. When there is no contention, the spurious interrupt monitor asserts BERR, and a spurious interrupt exception is processed.
- E. After arbitration, the interrupt acknowledge cycle can be completed in one of three ways:

Freescale Semiconductor, Inc.

	0.1	0	
Instruction	Syntax	Operand Size	Operation
DBcc	Dn, label	16	If condition false, then $Dn - 1 \Rightarrow PC$; if $Dn \neq (-1)$, then $PC + d \Rightarrow PC$
DIVS/DIVU	<ea>, Dn</ea>	32/16 ⇒ 16 : 16	Destination / Source ⇒ Destination (signed or unsigned)
DIVSL/DIVUL	<ea>, Dr : Dq <ea>, Dq <ea>, Dr : Dq</ea></ea></ea>	$\begin{array}{c} 64/32 \Rightarrow 32:32\\ 32/32 \Rightarrow 32\\ 32/32 \Rightarrow 32:32 \end{array}$	Destination / Source \Rightarrow Destination (signed or unsigned)
EOR	Dn, <ea></ea>	8, 16, 32	Source \oplus Destination \Rightarrow Destination
EORI	# <data>, <ea></ea></data>	8, 16, 32	Data \oplus Destination \Rightarrow Destination
EORI to CCR	# <data>, CCR</data>	8	Source \oplus CCR \Rightarrow CCR
EORI to SR ¹	# <data>, SR</data>	16	Source \oplus SR \Rightarrow SR
EXG	Rn, Rn	32	$Rn \Rightarrow Rn$
EXT	Dn Dn	$ \begin{array}{c} 8 \Rightarrow 16 \\ 16 \Rightarrow 32 \end{array} $	Sign extended Destination \Rightarrow Destination
EXTB	Dn	8 ⇒ 32	Sign extended Destination \Rightarrow Destination
ILLEGAL	none	none	$\begin{array}{l} \text{SSP} - 2 \Rightarrow \text{SSP}; \text{ vector offset} \Rightarrow (\text{SSP});\\ \text{SSP} - 4 \Rightarrow \text{SSP}; \text{PC} \Rightarrow (\text{SSP});\\ \text{SSP} - 2 \Rightarrow \text{SSP}; \text{SR} \Rightarrow (\text{SSP});\\ \text{Illegal instruction vector address} \Rightarrow \text{PC} \end{array}$
JMP	Í	none	$Destination \Rightarrow PC$
JSR	Í	none	$SP - 4 \Rightarrow SP; PC \Rightarrow (SP); destination \Rightarrow PC$
LEA	<ea>, An</ea>	32	$\langle ea \rangle \Rightarrow An$
LINK	An, # d	16, 32	$SP - 4 \Rightarrow SP, An \Rightarrow (SP); SP \Rightarrow An, SP + d \Rightarrow SP$
LPSTOP ¹	# <data></data>	16	Data \Rightarrow SR; interrupt mask \Rightarrow EBI; STOP
LSL	Dn, Dn # <data>, Dn Í</data>	8, 16, 32 8, 16, 32 16	X/C - 0
LSR	Dn, Dn #⊲data>, Dn Í	8, 16, 32 8, 16, 32 16	0 → X/C
MOVE	<ea>, <ea></ea></ea>	8, 16, 32	Source \Rightarrow Destination
MOVEA	<ea>, An</ea>	16, 32 ⇒ 32	Source \Rightarrow Destination
MOVEA ¹	USP, An An, USP	32 32	$\begin{array}{l} USP \Rightarrow An \\ An \Rightarrow USP \end{array}$
MOVE from CCR	CCR, <ea></ea>	16	$CCR \Rightarrow Destination$
MOVE to CCR	<ea>, CCR</ea>	16	Source \Rightarrow CCR
MOVE from SR ¹	SR, <ea></ea>	16	$SR \Rightarrow Destination$
MOVE to SR ¹	<ea>, SR</ea>	16	Source \Rightarrow SR
MOVE USP ¹	USP, An An, USP	32 32	$\begin{array}{l} \text{USP} \Rightarrow \text{An} \\ \text{An} \Rightarrow \text{USP} \end{array}$
MOVEC ¹	Rc, Rn Rn, Rc	32 32	$ \begin{array}{l} Rc \Rightarrow Rn \\ Rn \Rightarrow Rc \end{array} $
MOVEM	list, <ea> <ea>, list</ea></ea>	16, 32 16, 32 ⇒ 32	Listed registers \Rightarrow Destination Source \Rightarrow Listed registers
MOVEP	Dn, (d16, An)	16, 32	$ \begin{array}{l} Dn \ [31:24] \Rightarrow (An+d); \ Dn \ [23:16] \Rightarrow (An+d+2); \\ Dn \ [15:8] \Rightarrow (An+d+4); \ Dn \ [7:0] \Rightarrow (An+d+6) \end{array} $
	(d16, An), Dn		$\begin{array}{l} (An+d) \Rightarrow Dn \ [31:24]; \ (An+d+2) \Rightarrow Dn \ [23:16]; \\ (An+d+4) \Rightarrow Dn \ [15:8]; \ (An+d+6) \Rightarrow Dn \ [7:0] \end{array}$
MOVEQ	# <data>, Dn</data>	$8 \Rightarrow 32$	Immediate data \Rightarrow Destination

Table 20 Instruction Set Summary(Continued)

Instruction	Syntax	Operand Size	Operation
SWAP	Dn	16	MSW LSW
TAS	Í	8	Destination Tested Condition Codes bit 7 of Destination
TBLS/TBLU	<ea>, Dn Dym : Dyn, Dn</ea>	8, 16, 32	$Dyn - Dym \Rightarrow Temp$ (Temp * Dn [7 : 0]) \Rightarrow Temp (Dym * 256) + Temp \Rightarrow Dn
TBLSN/TBLUN	<ea>, Dn Dym : Dyn, Dn</ea>	8, 16, 32	$Dyn - Dym \Rightarrow Temp$ (Temp * Dn [7 : 0]) / 256 \Rightarrow Temp Dym + Temp \Rightarrow Dn
TRAP	# <data></data>	none	$\begin{array}{l} \text{SSP} - 2 \Rightarrow \text{SSP}; \text{ format/vector offset} \Rightarrow (\text{SSP});\\ \text{SSP} - 4 \Rightarrow \text{SSP}; \text{PC} \Rightarrow (\text{SSP}); \text{SR} \Rightarrow (\text{SSP});\\ \text{vector address} \Rightarrow \text{PC} \end{array}$
TRAPcc	none # <data></data>	none 16, 32	If cc true, then TRAP exception
TRAPV	none	none	If V set, then overflow TRAP exception
TST	Í	8, 16, 32	Source – 0, to set condition codes
UNLK	An	32	$An \Rightarrow SP; (SP) \Rightarrow An, SP + 4 \Rightarrow SP$

Table 20 Instruction Set Summary(Continued)

1. Privileged instruction.

5.1.2 Input Capture/Input Transition Counter (ITC)

Any channel of the TPU can capture the value of a specified TCR upon the occurrence of each transition or specified number of transitions, and then generate an interrupt request to notify the CPU. A channel can perform input captures continually, or a channel can detect a single transition or specified number of transitions, then cease channel activity until reinitialization. After each transition or specified number of transitions, the channel can generate a link to a sequential block of up to eight channels. The user specifies a starting channel of the block and the number of channels within the block. The generation of links depends on the mode of operation. In addition, after each transition or specified number of transitions, one byte of the parameter RAM (at an address specified by channel parameter) can be incremented and used as a flag to notify another channel of a transition.

5.1.3 Output Compare (OC)

The output compare function generates a rising edge, falling edge, or a toggle of the previous edge in one of three ways:

- 1. Immediately upon CPU initiation, thereby generating a pulse with a length equal to a programmable delay time.
- 2. At a programmable delay time from a user-specified time.
- 3. Continuously. Upon receiving a link from a channel, OC references, without CPU interaction, a specifiable period and calculates an offset:

Offset = Period * Ratio

where Ratio is a parameter supplied by the user.

This algorithm generates a 50% duty-cycle continuous square wave with each high/low time equal to the calculated OFFSET. Due to offset calculation, there is an initial link time before continuous pulse generation begins.

5.1.4 Pulse-Width Modulation (PWM)

The TPU can generate a pulse-width modulation waveform with any duty cycle from zero to 100% (within the resolution and latency capability of the TPU). To define the PWM, the CPU provides one parameter that indicates the period and another parameter that indicates the high time. Updates to one or both of these parameters can direct the waveform change to take effect immediately, or coherently beginning at the next low-to-high transition of the pin.

5.1.5 Synchronized Pulse-Width Modulation (SPWM)

The TPU generates a PWM waveform in which the CPU can change the period and/or high time at any time. When synchronized to a time function on a second channel, the synchronized PWM low-to-high transitions have a time relationship to transitions on the second channel.

5.1.6 Period Measurement with Additional Transition Detect (PMA)

This function and the following function are used primarily in toothed-wheel speed-sensing applications, such as monitoring rotational speed of an engine. The period measurement with additional transition detect function allows for a special-purpose 23-bit period measurement. It can detect the occurrence of an additional transition (caused by an extra tooth on the sensed wheel) indicated by a period measurement that is less than a programmable ratio of the previous period measurement.

Once detected, this condition can be counted and compared to a programmable number of additional transitions detected before TCR2 is reset to \$FFFF. Alternatively, a byte at an address specified by a channel parameter can be read and used as a flag. A nonzero value of the flag indicates that TCR2 is to be reset to \$FFFF once the next additional transition is detected.

5.2.3 Queued Output Match (QOM)

QOM can generate single or multiple output match events from a table of offsets in parameter RAM. Loop modes allow complex pulse trains to be generated once, a specified number of times, or continuously. The function can be triggered by a link from another TPU channel. In addition, the reference time for the sequence of matches can be obtained from another channel. QOM can generate pulse-width modulated waveforms, including waveforms with high times of 0% or 100%. QOM also allows a TPU channel to be used as a discrete output pin.

5.2.4 Programmable Time Accumulator (PTA)

PTA accumulates a 32-bit sum of the total high time, low time, or period of an input signal over a programmable number of periods or pulses. The accumulation can start on a rising or falling edge. After the specified number of periods or pulses, the PTA generates an interrupt request and optionally generates links to other channels.

From 1 to 255 period measurements can be made and summed with the previous measurement(s) before the TPU interrupts the CPU, providing instantaneous or average frequency measurement capability, and the latest complete accumulation (over the programmed number of periods).

5.2.5 Multichannel Pulse Width Modulation (MCPWM)

MCPWM generates pulse-width modulated outputs with full 0% to 100% duty cycle range independent of other TPU activity. This capability requires two TPU channels plus an external gate for one PWM channel. (A simple one-channel PWM capability is supported by the QOM function.)

Multiple PWMs generated by MCPWM have two types of high time alignment: edge aligned and center aligned. Edge aligned mode uses n + 1 TPU channels for n PWMs; center aligned mode uses 2n + 1 channels. Center aligned mode allows a user defined 'dead time' to be specified so that two PWMs can be used to drive an H-bridge without destructive current spikes. This feature is important for motor control applications.

5.2.6 Fast Quadrature Decode (FQD)

FQD is a position feedback function for motor control. It decodes the two signals from a slotted encoder to provide the CPU with a 16-bit free running position counter. FQD incorporates a "speed switch" which disables one of the channels at high speed, allowing faster signals to be decoded. A time stamp is provided on every counter update to allow position interpolation and better velocity determination at low speed or when low resolution encoders are used. The third index channel provided by some encoders is handled by the ICTC function.

5.2.7 Universal Asynchronous Receiver/Transmitter (UART)

The UART function uses one or two TPU channels to provide asynchronous communications. Data word length is programmable from 1 to 14 bits. The function supports detection or generation of even, odd, and no parity. Baud rate is freely programmable and can be higher than 100 Kbaud. Eight bidirectional UART channels running in excess of 9600 baud could be implemented on the TPU.

5.2.8 Brushless Motor Commutation (COMM)

This function generates the phase commutation signals for a variety of brushless motors, including three-phase brushless direct current. It derives the commutation state directly from the position decoded in FQD, thus eliminating the need for hall effect sensors.

The state sequence is implemented as a user-configurable state machine, thus providing a flexible approach with other general applications. A CPU offset parameter is provided to allow all the switching angles to be advanced or retarded on the fly by the CPU. This feature is useful for torque maintenance at high speeds.

6.2 Address Map

The "Access" column in the QSM address map below indicates which registers are accessible only at the supervisor privilege level and which can be assigned to either the supervisor or user privilege level, according to the value of the SUPV bit in the QSMCR.

Access	Address	15 8	7 0				
S	\$YFFC00	QSM MODULE CONF	GURATION (QSMCR)				
S	\$YFFC02	QSM TES	T (QTEST)				
S	\$YFFC04	QSM INTERRUPT LEVEL (QILR) QSM INTERRUPT VECTO					
S/U	\$YFFC06	NOT	JSED				
S/U	\$YFFC08	SCI CONTRO	DL 0 (SCCR0)				
S/U	\$YFFC0A	SCI CONTRO	DL 1 (SCCR1)				
S/U	\$YFFC0C	SCI STATI	JS (SCSR)				
S/U	\$YFFC0E	SCI DAT/	A (SCDR)				
S/U	\$YFFC10	NOT	USED				
S/U	\$YFFC12	NOT USED					
S/U	\$YFFC14	NOT USED	PQS DATA (PORTQS)				
S/U	\$YFFC16	PQS PIN ASSIGNMENT (PQSPAR)	PQS DATA DIRECTION (DDRQS)				
S/U	\$YFFC18	SPI CONTROL 0 (SPCR0)					
S/U	\$YFFC1A	SPI CONTROL 1 (SPCR1)					
S/U	\$YFFC1C	SPI CONTRO	DL 2 (SPCR2)				
S/U	\$YFFC1E	SPI CONTROL 3 (SPCR3)	SPI STATUS (SPSR)				
S/U	\$YFFC20- \$YFFCFF	NOT USED					
S/U	\$YFFD00– \$YFFD1F	RECEIVE RAM (RR[0:F])					
S/U	\$YFFD20– \$YFFD3F	TRANSMIT R	:AM (TR[0:F])				
S/U	\$YFFD40– \$YFFD4F	COMMAND R	:AM (CR[0:F])				

Table 24 QSM Address Map

Y = M111, where M is the logic state of the MM bit in the SIMCR.

QIVR — QSM Interrupt Vector Register									\$YFFC05				
15		8	7							0			
	QILR					IN	TV						
RESET:													
			0	0	0	0	1	1	1	1			

At reset, QIVR is initialized to \$0F, which corresponds to the uninitialized interrupt vector in the exception table. This vector is selected until QIVR is written. A user-defined vector (\$40–\$FF) should be written to QIVR during QSM initialization.

After initialization, QIVR determines which two vectors in the exception vector table are to be used for QSM interrupts. The QSPI and SCI submodules have separate interrupt vectors adjacent to each other. Both submodules use the same interrupt vector with the least significant bit (LSB) determined by the submodule causing the interrupt.

The value of INTV0 used during an interrupt-acknowledge cycle is supplied by the QSM. During an interrupt-acknowledge cycle, INTV[7:1] are driven on DATA[7:1] IMB lines. DATA0 is negated for an SCI interrupt and asserted for a QSPI interrupt. Writes to INTV0 have no meaning or effect. Reads of INTV0 return a value of one.

6.4.2 Pin Control Registers

The QSM uses nine pins, eight of which form a parallel port (PORTQS) on the MCU. Although these pins are used by the serial subsystems, any pin can alternately be assigned as general-purpose I/O on a pin-by-pin basis.

Pins used for general-purpose I/O must not be assigned to the QSPI by register PQSPAR. To avoid driving incorrect data, the first byte to be output must be written before DDRQS is configured. DDRQS must then be written to determine the direction of data flow and to output the value contained in register PORTQS. Subsequent data for output is written to PORTQS.

PORTQS — Port QS Data Register								\$YF	FC14
15	8	7	6	5	4	3	2	1	0
NOT USED		PQS7	PQS6	PQS5	PQS4	PQS3	PQS2	PQS1	PQS0
RESET:									
		0	0	0	0	0	0	0	0

PORTQS latches I/O data. Writes drive pins defined as outputs. Reads return data present on the pins. To avoid driving undefined data, first write a byte to PORTQS, then configure DDRQS.

PQSPAR — PORT QS Pin Assignment Register\$YFFCDDRQS — PORT QS Data Direction Register\$YFFC														FC16 FC17	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	PQSPA6	PQSPA5	PQSPA4	PQSPA3	0	PQSPA1	PQSPA0	DDQS7	DDQS6	DDQS5	DDQS4	DDQS3	DDQS2	DDQS1	DDQS0
RESET:															. <u> </u>
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Clearing a bit in the PQSPAR assigns the corresponding pin to general-purpose I/O; setting a bit assigns the pin to the QSPI. The PQSPAR does not affect operation of the SCI.

Command RAM is used by the QSPI when in master mode. The CPU writes one byte of control information to this segment for each QSPI command to be executed. The QSPI cannot modify information in command RAM.

Command RAM consists of 16 bytes. Each byte is divided into two fields. The peripheral chip-select field enables peripherals for transfer. The command control field provides transfer options.

A maximum of 16 commands can be in the queue. Queue execution by the QSPI proceeds from the address in NEWQP through the address in ENDQP. (Both of these fields are in SPCR2.)

CONT — Continue

- 0 = Control of chip selects returned to PORTQS after transfer is complete.
- 1 = Peripheral chip selects remain asserted after transfer is complete.
- BITSE Bits per Transfer Enable
 - 0 = 8 bits
 - 1 = Number of bits set in BITS field of SPCR0
- DT Delay after Transfer

The QSPI provides a variable delay at the end of serial transfer to facilitate the interface with peripherals that have a latency requirement. The delay between transfers is determined by the SPCR1 DTL field.

DSCK — PCS to SCK Delay

- 0 = PCS valid to SCK transition is one-half SCK.
- 1 = SPCR1 DSCKL field specifies delay from PCS valid to SCK.

PCS[3:0] — Peripheral Chip Select

Use peripheral chip-select bits to select an external device for serial data transfer. More than one peripheral chip select can be activated at a time, and more than one peripheral chip can be connected to each PCS pin, provided that proper fanout is observed.

SS — Slave Mode Select

Initiates slave mode serial transfer. If \overline{SS} is taken low when the QSPI is in master mode, a mode fault will be generated.

6.5.4 Operating Modes

The QSPI operates in either master or slave mode. Master mode is used when the MCU originates data transfers. Slave mode is used when an external device initiates serial transfers to the MCU through the QSPI. Switching between the modes is controlled by MSTR in SPCR0. Before entering either mode, appropriate QSM and QSPI registers must be properly initialized.

In master mode, the QSPI executes a queue of commands defined by control bits in each command RAM queue entry. Chip-select pins are activated, data is transmitted from transmit RAM and received into receive RAM.

In slave mode, operation proceeds in response to SS pin activation by an external bus master. Operation is similar to master mode, but no peripheral chip selects are generated, and the number of bits transferred is controlled in a different manner. When the QSPI is selected, it automatically executes the next queue transfer to exchange data with the external device correctly.

Although the QSPI inherently supports multimaster operation, no special arbitration mechanism is provided. A mode fault flag (MODF) indicates a request for SPI master arbitration. System software must provide arbitration. Note that unlike previous SPI systems, MSTR is not cleared by a mode fault being set, nor are the QSPI pin output drivers disabled. The QSPI and associated output drivers must be disabled by clearing SPE in SPCR1.

7 Standby RAM with TPU Emulation RAM

The TPURAM module contains a 2-Kbyte array of fast (two bus cycle) static RAM, which is especially useful for system stacks and variable storage. Alternately, it can be used by the TPU as emulation RAM for new timer algorithms.

7.1 Overview

The TPURAM can be mapped to any 4-Kbyte boundary in the address map, but must not overlap the module control registers. (Overlap makes the registers inaccessible.) Data can be read or written in bytes, word, or long words. TPURAM responds to both program and data space accesses. Data can be read or written in bytes, words, or long words. The TPURAM is powered by V_{DD} in normal operation. During power-down, the TPURAM contents are maintained by power on standby voltage pin V_{STBY} . Power switching between sources is automatic.

Access to the TPURAM array is controlled by the RASP field in TRAMMCR. This field can be encoded so that TPURAM responds to both program and data space accesses. This allows code to be executed from TPURAM, and permits the use of program counter relative addressing mode for operand fetches from the array.

An address map of the TPURAM control registers follows. All TPURAM control registers are located in supervisor data space.

Access	Address	15	8	7	0					
S	\$YFFB00		TPURAM MODULE CONFIGURATION REGISTER (TRAMMCF							
S	\$YFFB02		TPURAM TEST REGISTER (TRAMTST)							
S	\$YFFB04		TPURAM BASE ADDRESS REGISTER (TRAMBAR)							
	\$YFFB06- NOT USED \$YFFB3F									

Table 28 TPURAM Control Register Address Map

Y = M111, where M is the logic state of the MM bit in the SIMCR.

7.2 TPURAM Register Block

There are three TPURAM control registers: the RAM module configuration register (TRAMMCR), the RAM test register (TRAMTST), and the RAM array base address registers (TRAMBAR).

There is an 8-byte minimum register block size for the module. Unimplemented register addresses are read as zeros, and writes have no effect.

7.3 TPURAM Registers

TRAMMCR — TPURAM Module Configuration Register \$Y													
	15	14	13	12	11	10	9	8	7		0		
	STOP	0	0	0	0	0	0	RASP		NOT USED			
	RESET:					•							
	٥	٥	0	0	0	0	0	1					

TSTOP —Stop Control

0 = RAM array operates normally.

1 = RAM array enters low-power stop mode.

This bit controls whether the RAM array is in stop mode or normal operation. Reset state is zero, for normal operation. In stop mode, the array retains its contents, but cannot be read or written by the CPU.

Home Page: www.freescale.com email: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH **Technical Information Center** Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. **Technical Information Center** 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

