

TUTUTI

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CPU32
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	EBI/EMI, SCI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	15
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68332acpv25

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package Type	ТРU Туре	Temperature	Frequency (MHz)	Package Order Quantity	Order Number		
132-Pin PQFP	Motion Control	-40 to +85 °C	16 MHz	2 pc tray	SPAKMC332GCFC16		
				36 pc tray	MC68332GCFC16		
	20 MHz		2 pc tray	SPAKMC332GCFC20			
				36 pc tray	MC68332GCFC20		
		–40 to +105 °C	16 MHz	2 pc tray	SPAKMC332GVFC16		
				36 pc tray	MC68332GVFC16		
			20 MHz	2 pc tray	SPAKMC332GVFC20		
				36 pc tray	MC68332GVFC20		
		–40 to +125 °C	16 MHz	2 pc tray	SPAKMC332GMFC16		
				36 pc tray	MC68332GMFC16		
				20 MHz	2 pc tray	SPAKMC332GMFC20	
				36 pc tray	MC68332GMFC20		
	Standard	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC332CFC16		
				36 pc tray	MC68332CFC16		
			20 MHz	2 pc tray	SPAKMC332CFC20		
				36 pc tray	MC68332CFC20		
		–40 to +105 °C	16 MHz	2 pc tray	SPAKMC332VFC16		
				36 pc tray	MC68332VFC16		
			20 MHz	2 pc tray	SPAKMC332VFC20		
				36 pc tray	MC68332VFC20		
		–40 to +125 °C	16 MHz	2 pc tray	SPAKMC332MFC16		
				36 pc tray	MC68332MFC16		
			20 MHz	2 pc tray	SPAKMC332MFC20		
				36 pc tray	MC68332MFC20		
	Std w/enhanced	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC332ACFC16		
	PPWA			36 pc tray	MC68332ACFC16		
					20 MHz	2 pc tray	SPAKMC332ACFC20
				36 pc tray	MC68332ACFC20		
		–40 to +105 °C	16 MHz	2 pc tray	SPAKMC332AVFC16		
				36 pc tray	MC68332AVFC16		
			20 MHz	2 pc tray	SPAKMC332AVFC20		
				36 pc tray	MC68332AVFC20		
		–40 to +125 °C	16 MHz	2 pc tray	SPAKMC332AMFC16		
				36 pc tray	MC68332AMFC16		
			20 MHz	2 pc tray	SPAKMC332AMFC20		
				36 pc tray	MC68332AMFC20		

Table 1 Ordering Information

Package Type	TPU Type	Temperature	Frequency (MHz)	Package Order Quantity	Order Number	
144-Pin QFP	Motion Control	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC332GCFV16	
				44 pc tray	MC68332GCFVV16	
			20 MHz	2 pc tray	SPAKMC332GCFV20	
				44 pc tray	MC68332GCFV20	
		-40 to +105 °C	16 MHz	2 pc tray	SPAKMC332GVFV16	
				44 pc tray	MC68332GVFV16	
			20 MHz	2 pc tray	SPAKMC332GVFV20	
				44 pc tray	MC68332GVFV20	
		-40 to +125 °C	16 MHz	2 pc tray	SPAKMC332GMFV16	
				44 pc tray	MC68332GMFV16	
			20 MHz	2 pc tray	SPAKMC332GMFV20	
				44 pc tray	MC68332GMFVV20	
	Standard	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC332CFV16	
				44 pc tray	MC68332CFV16	
			20 MHz	2 pc tray	SPAKMC332CFVV20	
				44 pc tray	MC68332CFV20	
		-40 to +105 °C	16 MHz	2 pc tray	SPAKMC332VFV16	
				44 pc tray	MC68332VFV16	
			20 MHz	2 pc tray	SPAKMC332VFV20	
				44 pc tray	MC68332VFV20	
		-40 to +125 °C	-40 to +125 °C	16 MHz	2 pc tray	SPAKMC332MFV16
				44 pc tray	MC68332MFV16	
		20 MHz	2 pc tray	SPAKMC332MFV20		
				44 pc tray	MC68332MFV20	
	Std w/enhanced	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC332ACFV16	
	PPWA			44 pc tray	MC68332ACFV16	
			20 MHz	2 pc tray	SPAKMC332ACFV20	
				44 pc tray	MC68332ACFV20	
		–40 to +105 °C	16 MHz	2 pc tray	SPAKMC332AVFV16	
				44 pc tray	MC68332AVFV16	
			20 MHz	2 pc tray	SPAKMC332AVFC20	
				44 pc tray	MC68332AVFV20	
		–40 to +125 °C	16 MHz	2 pc tray	SPAKMC332AMFV16	
				44 pc tray	MC68332AMFV16	
			20 MHz	2 pc tray	SPAKMC332AMFV20	
ŀ				44 pc tray	MC68332AMFV20	

Table 1 Ordering Information (Continued)

1.2 Block Diagram

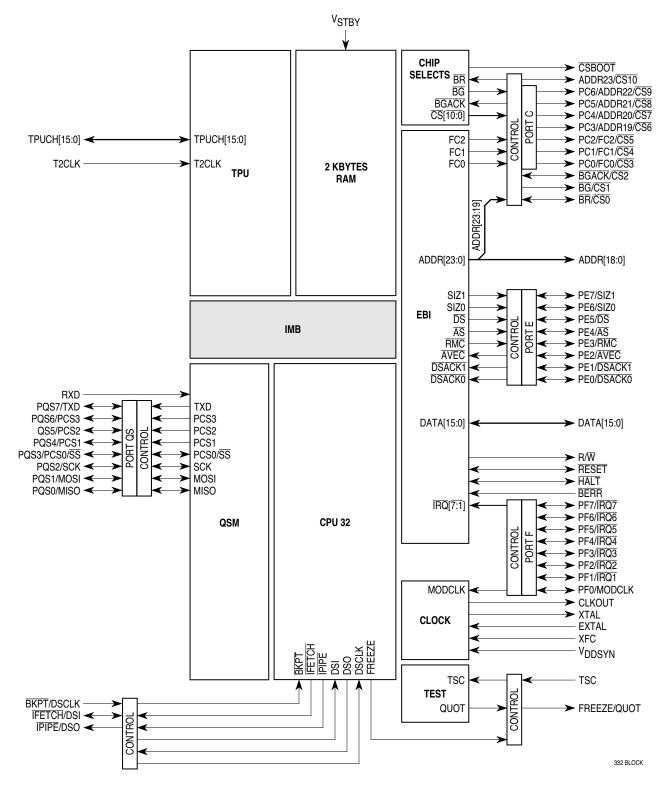


Figure 1 MCU Block Diagram

1.4 Address Map

The following figure is a map of the MCU internal addresses. The RAM array is positioned by the base address registers in the associated RAM control block. Unimplemented blocks are mapped externally.

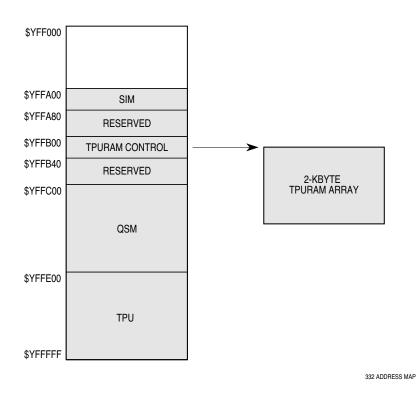


Figure 4 MCU Address Map

1.5 Intermodule Bus

The intermodule bus (IMB) is a standardized bus developed to facilitate both design and operation of modular microcontrollers. It contains circuitry to support exception processing, address space partitioning, multiple interrupt levels, and vectored interrupts. The standardized modules in the MCU communicate with one another and with external components through the IMB. The IMB in the MCU uses 24 address and 16 data lines.

2 Signal Descriptions

2.1 Pin Characteristics

The following table shows MCU pins and their characteristics. All inputs detect CMOS logic levels. All inputs can be put in a high-impedance state, but the method of doing this differs depending upon pin function. Refer to the table, MCU Driver Types, for a description of output drivers. An entry in the discrete I/O column of the MCU Pin Characteristics table indicates that a pin has an alternate I/O function. The port designation is given when it applies. Refer to the MCU Block Diagram for information about port organization.

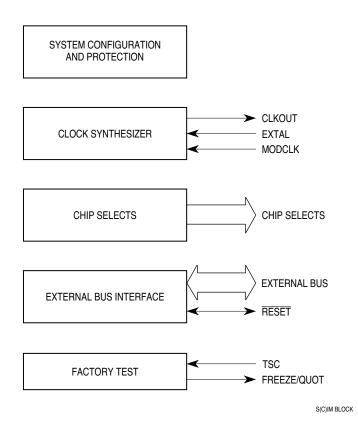

Pin Mnemonic	Output Driver	Input Synchronized	Input Hysteresis	Discrete I/O	Port Designation
ADDR23/CS10/ECLK	A	Y	N	0	—
ADDR[22:19]/CS[9:6]	A	Y	N	0	PC[6:3]
ADDR[18:0]	A	Y	N	—	—
ĀS	В	Y	N	I/O	PE5
AVEC	В	Y	N	I/O	PE2
BERR	В	Y	N	_	
BG/CS1	В	_	—	_	
BGACK/CS2	В	Y	N	_	
BKPT/DSCLK		Y	Y	_	
BR/CS0	В	Y	N	—	
CLKOUT	A	_	—	_	
CSBOOT	В		_	—	
DATA[15:0] ¹	Aw	Y	N	—	
DS	В	Y	N	I/O	PE4
DSACK1	В	Y	N	I/O	PE1
DSACK0	В	Y	N	I/O	PE0
DSI/IFETCH	A	Y	Y	—	
DSO/IPIPE	A		—	—	_
EXTAL ²	—		Special	—	
FC[2:0]/CS[5:3]	A	Y	N	0	PC[2:0]
FREEZE/QUOT	A		_	—	
HALT	Bo	Y	N	—	
IRQ[7:1]	В	Y	Y	I/O	PF[7:1]
MISO	Bo	Y	Y	I/O	PQS0
MODCLK ¹	В	Y	N	I/O	PF0
MOSI	Во	Y	Y	I/O	PQS1
PCS0/SS	Во	Y	Y	I/O	PQS3
PCS[3:1]	Во	Y	Y	I/O	PQS[6:4]
R/W	A	Y	N	_	
RESET	Во	Y	Y	—	—
RMC	В	Y	N	I/O	PE3
RXD	—	Ν	N	—	—
SCK	Bo	Y	Y	I/O	PQS2
SIZ[1:0]	В	Y	N	I/O	PE[7:6]

Table 2 MCU Pin Characteristic

3 System Integration Module

The MCU system integration module (SIM) consists of five functional blocks that control system startup, initialization, configuration, and external bus.

3.1 Overview

The system configuration and protection block controls MCU configuration and operating mode. The block also provides bus and software watchdog monitors.

The system clock generates clock signals used by the SIM, other IMB modules, and external devices. In addition, a periodic interrupt generator supports execution of time-critical control routines.

The external bus interface handles the transfer of information between IMB modules and external address space.

The chip-select block provides eleven general-purpose chip-select signals and a boot ROM chip select signal. Both general-purpose and boot ROM chip-select signals have associated base address registers and option registers.

The system test block incorporates hardware necessary for testing the MCU. It is used to perform factory tests, and its use in normal applications is not supported.

The SIM control register address map occupies 128 bytes. Unused registers within the 128-byte address space return zeros when read. The "Access" column in the SIM address map below indicates which registers are accessible only at the supervisor privilege level and which can be assigned to either the supervisor or user privilege level, according to the value of the SUPV bit in the SIMCR.

- EXOFF External Clock Off
 - 0 = The CLKOUT pin is driven from an internal clock source.
 - 1 = The CLKOUT pin is placed in a high-impedance state.

FRZSW — Freeze Software Enable

- 0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer counters continue to run.
- 1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer counters are disabled, preventing interrupts during software debug.
- FRZBM Freeze Bus Monitor Enable
 - 0 = When FREEZE is asserted, the bus monitor continues to operate.
 - 1 = When FREEZE is asserted, the bus monitor is disabled.

SLVEN — Factory Test Mode Enabled

This bit is a read-only status bit that reflects the state of DATA11 during reset.

- 0 = IMB is not available to an external master.
- 1 = An external bus master has direct access to the IMB.

SHEN[1:0] — Show Cycle Enable

This field determines what the EBI does with the external bus during internal transfer operations. A show cycle allows internal transfers to be externally monitored. The table below shows whether show cycle data is driven externally, and whether external bus arbitration can occur. To prevent bus conflict, external peripherals must not be enabled during show cycles.

SHEN	Action
00	Show cycles disabled, external arbitration enabled
01	Show cycles enabled, external arbitration disabled
10	Show cycles enabled, external arbitration enabled
11	Show cycles enabled, external arbitration enabled, internal activity is halted by a bus grant

SUPV — Supervisor/Unrestricted Data Space

The SUPV bit places the SIM global registers in either supervisor or user data space.

- 0 = Registers with access controlled by the SUPV bit are accessible from either the user or supervisor privilege level.
- 1 = Registers with access controlled by the SUPV bit are restricted to supervisor access only.

MM — Module Mapping

- 0 = Internal modules are addressed from \$7FF000 -\$7FFFFF.
- 1 = Internal modules are addressed from \$FFF000 \$FFFFFF.

IARB[3:0] — Interrupt Arbitration Field

Each module that can generate interrupt requests has an interrupt arbitration (IARB) field. Arbitration between interrupt requests of the same priority is performed by serial contention between IARB field bit values. Contention must take place whenever an interrupt request is acknowledged, even when there is only a single pending request. An IARB field must have a non-zero value for contention to take place. If an interrupt request from a module with an IARB field value of %0000 is recognized, the CPU processes a spurious interrupt exception. Because the SIM routes external interrupt requests to the CPU, the SIM IARB field value is used for arbitration between internal and external interrupts of the same priority. The reset value of IARB for the SIM is %1111, and the reset IARB value for all other modules is %0000, which prevents SIM interrupts from being discarded during initialization.

AVEC — Autovector Enable

0 = External interrupt vector enabled

1 = Autovector enabled

This field selects one of two methods of acquiring the interrupt vector during the interrupt acknowledge cycle. It is not usually used in conjunction with a chip-select pin.

If the chip select is configured to trigger on an interrupt acknowledge cycle (SPACE = 00) and the \overline{AVEC} field is set to one, the chip select automatically generates an \overline{AVEC} in response to the interrupt cycle. Otherwise, the vector must be supplied by the requesting device.

The AVEC bit must not be used in synchronous mode, as autovector response timing can vary because of ECLK synchronization.

3.5.5 Port C Data Register

Bit values in port C determine the state of chip-select pins used for discrete output. When a pin is assigned as a discrete output, the value in this register appears at the output. This is a read/write register. Bit 7 is not used. Writing to this bit has no effect, and it always returns zero when read.

PORTC — Port C Data Register								\$YF	FFA41
15	8	7	6	5	4	3	2	1	0
NOT USED		0	PC6	PC5	PC4	PC3	PC2	PC1	PC0
RESET:									
		0	1	1	1	1	1	1	1

3.6 General-Purpose Input/Output

SIM pins can be configured as two general-purpose I/O ports, E and F. The following paragraphs describe registers that control the ports.

PORTE0, PORTE1 — Port E Data Register						\$	YFFA1	1, \$YF	FA13
15	8	7	6	5	4	3	2	1	0
NOT USED		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
RESET:									
		U	U	U	U	U	U	U	U

A write to the port E data register is stored in the internal data latch and, if any port E pin is configured as an output, the value stored for that bit is driven on the pin. A read of the port E data register returns the value at the pin only if the pin is configured as a discrete input. Otherwise, the value read is the value stored in the register.

The port E data register is a single register that can be accessed in two locations. When accessed at \$YFFA11, the register is referred to as PORTE0; when accessed at \$YFFA13, the register is referred to as PORTE1. The register can be read or written at any time. It is unaffected by reset.

DDRE — Port E Data Direction Register								\$YF	FFA15
15	8	7	6	5	4	3	2	1	0
NOT USED		DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0
RESET:									
		0	0	0	0	0	0	0	0

The bits in this register control the direction of the pin drivers when the pins are configured as I/O. Any bit in this register set to one configures the corresponding pin as an output. Any bit in this register cleared to zero configures the corresponding pin as an input. This register can be read or written at any time.

PFPAR — Port F Pin Assignment Register								\$YF	FA1F
15	8	7	6	5	4	3	2	1	0
NOT USED		PFPA7	PFPA6	PFPA5	PFPA4	PFPA3	PFPA2	PFPA1	PFPA0
DEOET			•						

RESET:

DATA9 DATA9 DATA9 DATA9 DATA9 DATA9 DATA9 DATA9

The bits in this register control the function of each port F pin. Any bit cleared to zero defines the corresponding pin to be an I/O pin. Any bit set to one defines the corresponding pin to be an interrupt request signal or MODCLK. The MODCLK signal has no function after reset.

Table 17 Port F Pin Assignments

PFPAR Field	Port F Signal	Alternate Signal
PFPA7	PF7	IRQ7
PFPA6	PF6	IRQ6
PFPA5	PF5	IRQ5
PFPA4	PF4	IRQ4
PFPA3	PF3	IRQ3
PFPA2	PF2	IRQ2
PFPA1	PF1	IRQ1
PFPA0	PF0	MODCLK

Data bus pin 9 controls the state of this register following reset. If DATA9 is set to one during reset, the register is set to \$FF, which defines all port F pins as interrupt request inputs. If DATA9 is cleared to zero during reset, this register is set to \$00, defining all port F pins as I/O pins.

3.7 Resets

Reset procedures handle system initialization and recovery from catastrophic failure. The MCU performs resets with a combination of hardware and software. The system integration module determines whether a reset is valid, asserts control signals, performs basic system configuration based on hardware mode-select inputs, then passes control to the CPU.

Reset occurs when an active low logic level on the RESET pin is clocked into the SIM. Resets are gated by the CLKOUT signal. Asynchronous resets are assumed to be catastrophic. An asynchronous reset can occur on any clock edge. Synchronous resets are timed to occur at the end of bus cycles. If there is no clock when RESET is asserted, reset does not occur until the clock starts. Resets are clocked in order to allow completion of write cycles in progress at the time RESET is asserted.

Reset is the highest-priority CPU32 exception. Any processing in progress is aborted by the reset exception, and cannot be restarted. Only essential tasks are performed during reset exception processing. Other initialization tasks must be accomplished by the exception handler routine.

3.7.1 SIM Reset Mode Selection

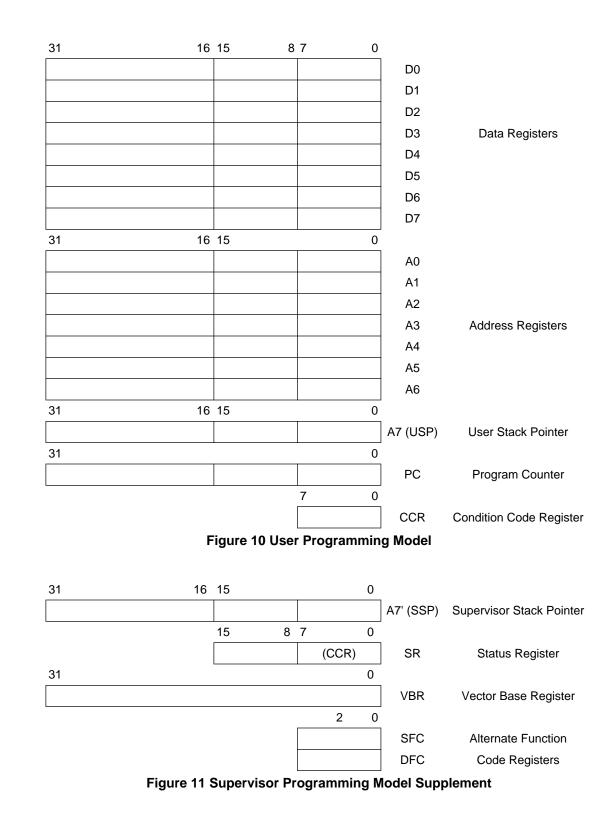
The logic states of certain data bus pins during reset determine SIM operating configuration. In addition, the state of the MODCLK pin determines system clock source and the state of the BKPT pin determines what happens during subsequent breakpoint assertions. The following table is a summary of reset mode selection options.

Table 18 Reset Mode Selection

Mode Select Pin	Default Function	Alternate Function
	(Pin Left High)	(Pin Pulled Low)
	(· ··· =•·····g··)	(

DATA0	CSBOOT 16-Bit	CSBOOT 8-Bit
DATA1	CS0 CS1 CS2	BR BG BGACK
DATA2	CS3 CS4 CS5	FC0 FC1 FC2
DATA3 DATA4 DATA5 DATA6 DATA7	CS6 CS[7:6] CS[8:6] CS[9:6] CS[10:6]	ADDR19 ADDR[20:19] ADDR[21:19] ADDR[22:19] ADDR[23:19]
DATA8	DSACKO, DSACK1, AVEC, DS, AS, SIZ[1:0]	PORTE
DATA9	IRQ[7:1] MODCLK	PORTF
DATA11	Test Mode Disabled	Test Mode Enabled
MODCLK	VCO = System Clock	EXTAL = System Clock
BKPT	Background Mode Disabled	Background Mode Enabled

Table 18 Reset Mode Selection


3.7.2 Functions of Pins for Other Modules During Reset

Generally, pins associated with modules other than the SIM default to port functions, and input/output ports are set to input state. This is accomplished by disabling pin functions in the appropriate control registers, and by clearing the appropriate port data direction registers. Refer to individual module sections in this manual for more information. The following table is a summary of module pin function out of reset.

Module	Pin Mnemonic	Function
CPU32	DSI/IFETCH	DSI/IFETCH
	DSO/IPIPE	DSO/IPIPE
	BKPT/DSCLK	BKPT/DSCLK
GPT	PGP7/IC4/OC5	Discrete Input
	PGP[6:3]/OC[4:1]	Discrete Input
	PGP[2:0]/IC[3:1]	Discrete Input
	PAI	Discrete Input
	PCLK	Discrete Input
	PWMA, PWMB	Discrete Output
QSM	PQS7/TXD	Discrete Input
	PQS[6:4]/PCS[3:1]	Discrete Input
	PQS3/PCS0/SS	Discrete Input
	PQS2/SCK	Discrete Input
	PQS1/MOSI	Discrete Input
	PQS0/MISO	Discrete Input
	RXD	RXD

Table 19 Module Pin Functions

Freescale Semiconductor, Inc.

4.6 Instruction Set Summary

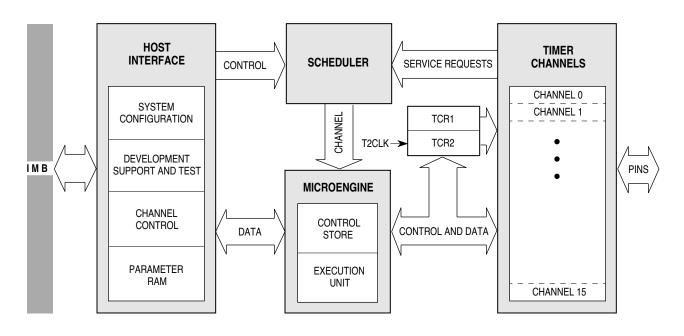

		bie 20 instruction	
Instruction	Syntax	Operand Size	Operation
ABCD	Dn, Dn – (An), – (An)	8 8	Source ₁₀ + Destination ₁₀ + X \Rightarrow Destination
ADD	Dn, <ea> <ea>, Dn</ea></ea>	8, 16, 32 8, 16, 32	Source + Destination \Rightarrow Destination
ADDA	<ea>, An</ea>	16, 32	Source + Destination \Rightarrow Destination
ADDI	# <data>, <ea></ea></data>	8, 16, 32	Immediate data + Destination \Rightarrow Destination
ADDQ	# <data>, <ea></ea></data>	8, 16, 32	Immediate data + Destination \Rightarrow Destination
ADDX	Dn, Dn – (An), – (An)	8, 16, 32 8, 16, 32	Source + Destination + $X \Rightarrow$ Destination
AND	<ea>, Dn Dn, <ea></ea></ea>	8, 16, 32 8, 16, 32	Source • Destination \Rightarrow Destination
ANDI	# <data>, <ea></ea></data>	8, 16, 32	Data • Destination \Rightarrow Destination
ANDI to CCR	# <data>, CCR</data>	8	Source • CCR \Rightarrow CCR
ANDI to SR1 ¹	# <data>, SR</data>	16	Source • SR \Rightarrow SR
ASL	Dn, Dn # <data>, Dn Í</data>	8, 16, 32 8, 16, 32 16	X/C - 0
ASR	Dn, Dn # <data>, Dn Í</data>	8, 16, 32 8, 16, 32 16	
Bcc	label	8, 16, 32	If condition true, then $PC + d \Rightarrow PC$
BCHG	Dn, <ea> # <data>, <ea></ea></data></ea>	8, 32 8, 32	$\overline{\text{bit number}}$ of destination) \Rightarrow Z \Rightarrow bit of destination
BCLR	Dn, <ea> # <data>, <ea></ea></data></ea>	8, 32 8, 32	$\overline{(\langle \text{bit number} \rangle \text{ of destination})}$ 0 $\Rightarrow \overline{\text{bit of destination}}$
BGND	none	none	If background mode enabled, then enter background mode, else format/vector \Rightarrow – (SSP); PC \Rightarrow – (SSP); SR \Rightarrow – (SSP); (vector) \Rightarrow PC
BKPT	# <data></data>	none	If breakpoint cycle acknowledged, then execute returned operation word, else trap as illegal instruction
BRA	label	8, 16, 32	$PC + d \Rightarrow PC$
BSET	Dn, <ea> # <data>, <ea></ea></data></ea>	8, 32 8, 32	$\overline{(\langle \text{bit number} \rangle \text{ of destination})} \Rightarrow Z;$ 1 \Rightarrow bit of destination
BSR	label	8, 16, 32	$SP - 4 \Rightarrow SP; PC \Rightarrow (SP); PC + d \Rightarrow PC$
BTST	Dn, <ea> # <data>, <ea></ea></data></ea>	8, 32 8, 32	$\overline{(\langle \text{bit number} \rangle \text{of destination})} \Rightarrow Z$
СНК	<ea>, Dn</ea>	16, 32	If Dn < 0 or Dn > (ea), then CHK exception
CHK2	<ea>, Rn</ea>	8, 16, 32	If Rn < lower bound or Rn > upper bound, then CHK exception
CLR	Í	8, 16, 32	$0 \Rightarrow \text{Destination}$
CMP	<ea>, Dn</ea>	8, 16, 32	(Destination – Source), CCR shows results
CMPA	<ea>, An</ea>	16, 32	(Destination – Source), CCR shows results
CMPI	# <data>, <ea></ea></data>	8, 16, 32	(Destination – Data), CCR shows results
CMPM	(An) +, (An) +	8, 16, 32	(Destination – Source), CCR shows results
CMP2	<ea>, Rn</ea>	8, 16, 32	Lower bound \leq Rn \leq Upper bound, CCR shows result

Table 20 Instruction Set Summary

5 Time Processor Unit

The time processor unit (TPU) provides optimum performance in controlling time-related activity. The TPU contains a dedicated execution unit, a tri-level prioritized scheduler, data storage RAM, dual-time bases, and microcode ROM. The TPU controls 16 independent, orthogonal channels, each with an associated I/O pin, and is capable of performing any microcoded time function. Each channel contains dedicated hardware that allows input or output events to occur simultaneously on all channels.

TPU BLOCK

Figure 12 TPU Block Diagram

5.1 MC68332 and MC68332A Time Functions

The following paragraphs describe factory-programmed time functions implemented in standard and enhanced standard TPU microcode ROM. A complete description of the functions is beyond the scope of this summary. Refer to *Using the TPU Function Library and TPU Emulation Mode* (TPUPN00/D) as well as other TPU programming notes for more information about specific functions.

5.1.1 Discrete Input/Output (DIO)

When a pin is used as a discrete input, a parameter indicates the current input level and the previous 15 levels of a pin. Bit 15, the most significant bit of the parameter, indicates the most recent state. Bit 14 indicates the next most recent state, and so on. The programmer can choose one of the three following conditions to update the parameter: 1) when a transition occurs, 2) when the CPU makes a request, or 3) when a rate specified in another parameter is matched. When a pin is used as a discrete output, it is set high or low only upon request by the CPU.

For More Information On This Product, Go to: www.freescale.com

5.1.2 Input Capture/Input Transition Counter (ITC)

Any channel of the TPU can capture the value of a specified TCR upon the occurrence of each transition or specified number of transitions, and then generate an interrupt request to notify the CPU. A channel can perform input captures continually, or a channel can detect a single transition or specified number of transitions, then cease channel activity until reinitialization. After each transition or specified number of transitions, the channel can generate a link to a sequential block of up to eight channels. The user specifies a starting channel of the block and the number of channels within the block. The generation of links depends on the mode of operation. In addition, after each transition or specified number of transitions, one byte of the parameter RAM (at an address specified by channel parameter) can be incremented and used as a flag to notify another channel of a transition.

5.1.3 Output Compare (OC)

The output compare function generates a rising edge, falling edge, or a toggle of the previous edge in one of three ways:

- 1. Immediately upon CPU initiation, thereby generating a pulse with a length equal to a programmable delay time.
- 2. At a programmable delay time from a user-specified time.
- 3. Continuously. Upon receiving a link from a channel, OC references, without CPU interaction, a specifiable period and calculates an offset:

Offset = Period * Ratio

where Ratio is a parameter supplied by the user.

This algorithm generates a 50% duty-cycle continuous square wave with each high/low time equal to the calculated OFFSET. Due to offset calculation, there is an initial link time before continuous pulse generation begins.

5.1.4 Pulse-Width Modulation (PWM)

The TPU can generate a pulse-width modulation waveform with any duty cycle from zero to 100% (within the resolution and latency capability of the TPU). To define the PWM, the CPU provides one parameter that indicates the period and another parameter that indicates the high time. Updates to one or both of these parameters can direct the waveform change to take effect immediately, or coherently beginning at the next low-to-high transition of the pin.

5.1.5 Synchronized Pulse-Width Modulation (SPWM)

The TPU generates a PWM waveform in which the CPU can change the period and/or high time at any time. When synchronized to a time function on a second channel, the synchronized PWM low-to-high transitions have a time relationship to transitions on the second channel.

5.1.6 Period Measurement with Additional Transition Detect (PMA)

This function and the following function are used primarily in toothed-wheel speed-sensing applications, such as monitoring rotational speed of an engine. The period measurement with additional transition detect function allows for a special-purpose 23-bit period measurement. It can detect the occurrence of an additional transition (caused by an extra tooth on the sensed wheel) indicated by a period measurement that is less than a programmable ratio of the previous period measurement.

Once detected, this condition can be counted and compared to a programmable number of additional transitions detected before TCR2 is reset to \$FFFF. Alternatively, a byte at an address specified by a channel parameter can be read and used as a flag. A nonzero value of the flag indicates that TCR2 is to be reset to \$FFFF once the next additional transition is detected.

5.1.7 Period Measurement with Missing Transition Detect (PMM)

Period measurement with missing transition detect allows a special-purpose 23-bit period measurement. It detects the occurrence of a missing transition (caused by a missing tooth on the sensed wheel), indicated by a period measurement that is greater than a programmable ratio of the previous period measurement. Once detected, this condition can be counted and compared to a programmable number of additional transitions detected before TCR2 is reset to \$FFFF. In addition, one byte at an address specified by a channel parameter can be read and used as a flag. A nonzero value of the flag indicates that TCR2 is to be reset to \$FFFF once the next missing transition is detected.

5.1.8 Position-Synchronized Pulse Generator (PSP)

Any channel of the TPU can generate an output transition or pulse, which is a projection in time based on a reference period previously calculated on another channel. Both TCRs are used in this algorithm: TCR1 is internally clocked, and TCR2 is clocked by a position indicator in the user's device. An example of a TCR2 clock source is a sensor that detects special teeth on the flywheel of an automobile using PMA or PMM. The teeth are placed at known degrees of engine rotation; hence, TCR2 is a coarse representation of engine degrees, i.e., each count represents some number of degrees.

Up to 15 position-synchronized pulse generator function channels can operate with a single input reference channel executing a PMA or PMM input function. The input channel measures and stores the time period between the flywheel teeth and resets TCR2 when the engine reaches a reference position. The output channel uses the period calculated by the input channel to project output transitions at specific engine degrees. Because the flywheel teeth might be 30 or more degrees apart, a fractional multiplication operation resolves down to the desired degrees. Two modes of operation allow pulse length to be determined either by angular position or by time.

5.1.9 Stepper Motor (SM)

The stepper motor control algorithm provides for linear acceleration and deceleration control of a stepper motor with a programmable number of step rates of up to 14. Any group of channels, up to eight, can be programmed to generate the control logic necessary to drive a stepper motor.

The time period between steps (P) is defined as:

$$P(r) = K1 - K2 * r$$

where r is the current step rate (1-14), and K1 and K2 are supplied as parameters.

After providing the desired step position in a 16-bit parameter, the CPU issues a step request. Next, the TPU steps the motor to the desired position through an acceleration/deceleration profile defined by parameters. The parameter indicating the desired position can be changed by the CPU while the TPU is stepping the motor. This algorithm changes the control state every time a new step command is received.

A 16-bit parameter initialized by the CPU for each channel defines the output state of the associated pin. The bit pattern written by the CPU defines the method of stepping, such as full stepping or half stepping. With each transition, the 16-bit parameter rotates one bit. The period of each transition is defined by the programmed step rate.

5.1.10 Period/Pulse-Width Accumulator (PPWA)

The period/pulse-width accumulator algorithm accumulates a 16-bit or 24-bit sum of either the period or the pulse width of an input signal over a programmable number of periods or pulses (from 1 to 255). After an accumulation period, the algorithm can generate a link to a sequential block of up to eight channels. The user specifies a starting channel of the block and number of channels within the block. Generation of links depends on the mode of operation. Any channel can be used to measure an accumulated number of periods of an input signal. A maximum of 24 bits can be used for the accumu-

HSQR0	— Ho	st Sequ	Jence	Regist	er 0									\$YI	FFE14
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH 15		CH 14		CH 13		CH 12		CH 11		CH 10		CH 9		CH 8	
RESET:															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HSQR1	— Ho	st Sequ	uence	Regist	er 1									\$YI	FFE16
HSQR1 15	— Ho 14	st Sequ 13	uence 12	Registe	er 1 10	9	8	7	6	5	4	3	2	\$YI 1	F FE16 0
	14	13		11		-	8 H 4		6 H 3	-	4 12	-	2 H 1	1	
15	14	13	12	11	10	-	-		-	-		-		1	0

CH[15:0] — Encoded Host Sequence

The host sequence field selects the mode of operation for the time function selected on a given channel. The meaning of the host sequence bits depends on the time function specified.

HOKKU	— H08	st Serv	ice Re	quest	Registe	eru		
15	14	13	12	11	10	9	8	7

CH 15 CH 14 CH 12 CH 11 CH 10 CH 9 CH 8 CH 13 RESET: **\$YFFE1A** HSRR1 — Host Service Request Register 1 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0 RESET:

CH[15:0] — Encoded Type of Host Service

. . .

• •

The host service request field selects the type of host service request for the time function selected on a given channel. The meaning of the host service request bits depends on the time function specified. A host service request field cleared to %00 signals the host that service is completed by the microengine on that channel. The host can request service on a channel by writing the corresponding host service request field to one of three nonzero states. The CPU should monitor the host service request register until the TPU clears the service request to %00 before the CPU changes any parameters or issues a new service request to the channel.

C	CPR0 —	- Char	nnel Pri	ority R	egiste	r 0									\$YF	FE1C
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH 15		CH 14		CH13		СН	CH 12		CH 11		CH 10		CH 9		18	
RESET:																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C	CPR1 —	- Char	nnel Pri	ority R	egiste	r 1									\$YF	FE1E
C	PR1 —	- Char 14	nnel Pri 13	ority R	egiste	r 1 10	9	8	7	6	5	4	3	2	\$YF 1	• FE1E 0
		14		12	-	10		8		6 H 3	-	4	-	2 H 1	1	
	15	14	13	12	11	10					-		-		1	0
	15 CH 7	14	13	12	11	10					-		-		1	0

CH[15:0] — Encoded One of Three Channel Priority Levels

\$YFFE18

CHX[1:0]	Service	Guaranteed Time Slots
00	Disabled	
01	Low	4 out of 7
10	Middle	2 out of 7
11	High	1 out of 7

5.5.3 Development Support and Test Registers

These registers are used for custom microcode development or for factory test. Describing the use of the registers is beyond the scope of this technical summary. Register names and addresses are given for reference only. Please refer to the *TPU Reference Manual* (TPURM/AD) for more information.

DSCR — Development Support Control Register	\$YFFE04
DSSR — Development Support Status Register	\$YFFE06
LR — Link Register	\$YFFE22
SGLR — Service Grant Latch Register	\$YFFE24
DCNR — Decoded Channel Number Register	\$YFFE26
TCR — Test Configuration Register The TCR is used for factory test of the MCU.	\$YFFE02

6.3 Pin Function

The following table is a summary of the functions of the QSM pins when they are not configured for general-purpose I/O. The QSM data direction register (DDRQS) designates each pin except RXD as an input or output.

	Pin	Mode	Pin Function
	MISO	Master	Serial Data Input to QSPI
QSPI Pins		Slave	Serial Data Output from QSPI
	MOSI	Master	Serial Data Output from QSPI
		Slave	Serial Data Input to QSPI
	SCK	Master	Clock Output from QSPI
		Slave	Clock Input to QSPI
	PCS0/SS	Master	Input: Assertion Causes Mode Fault Output: Selects Peripherals
		Slave	Input: Selects the QSPI
	PCS[3:1]	Master	Output: Selects Peripherals
		Slave	None
SCI Pins	TXD	Transmit	Serial Data Output from SCI
	RXD	Receive	Serial Data Input to SCI

6.4 QSM Registers

QSM registers are divided into four categories: QSM global registers, QSM pin control registers, QSPI submodule registers, and SCI submodule registers. The QSPI and SCI registers are defined in separate sections below. Writes to unimplemented register bits have no meaning or effect, and reads from unimplemented bits always return a logic zero value.

The module mapping bit of the SIM configuration register (SIMCR) defines the most significant bit (ADDR23) of the address, shown in each register figure as Y (Y = 7 or F). This bit, concatenated with the rest of the address given, forms the absolute address of each register. Refer to the SIM section of this technical summary for more information about how the state of MM affects the system.

6.4.1 Global Registers

The QSM global registers contain system parameters used by both the QSPI and the SCI submodules. These registers contain the bits and fields used to configure the QSM.

(QSMCR — QSM Configuration Register												\$YF	FC00		
	15	14	13	12	11	10	9	8	7	6	5	4	3			0
	STOP	FRZ1	FRZ0	0	0	0	0	0	SUPV	0	0	0		IAF	RB	
	RESET:															
	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

The QSMCR contains parameters for the QSM/CPU/intermodule bus (IMB) interface.

STOP — Stop Enable

0 = Normal QSM clock operation

1 = QSM clock operation stopped

STOP places the QSM in a low-power state by disabling the system clock in most parts of the module. The QSMCR is the only register guaranteed to be readable while STOP is asserted. The QSPI RAM is not readable. However, writes to RAM or any register are guaranteed to be valid while STOP is asserted. STOP can be negated by the CPU and by reset.

Pin Names	Mnemonics	Mode	Function
Master In Slave Out	MISO	Master Slave	Serial Data Input to QSPI Serial Data Output from QSPI
Master Out Slave In	MOSI	Master Slave	Serial Data Output from QSPI Serial Data Input to QSPI
Serial Clock	SCK	Master Slave	Clock Output from QSPI Clock Input to QSPI
Peripheral Chip Selects	PCS[3:1]	Master	Select Peripherals
Peripheral Chip Select Slave Select	PCS0 SS	Master Master Slave	Selects Peripheral Causes Mode Fault Initiates Serial Transfer

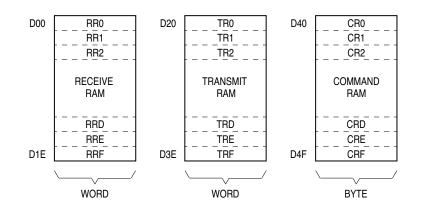
6.5.2 QSPI Registers

The programmer's model for the QSPI submodule consists of the QSM global and pin control registers, four QSPI control registers, one status register, and the 80-byte QSPI RAM.

The CPU can read and write to registers and RAM. The four control registers must be initialized before the QSPI is enabled to ensure defined operation. SPCR1 should be written last because it contains QSPI enable bit SPE. Asserting this bit starts the QSPI. The QSPI control registers are reset to a defined state and can then be changed by the CPU. Reset values are shown below each register.

Refer to the following memory map of the QSPI.

Address	Name	Usage
\$YFFC18	SPCR0	QSPI Control Register 0
\$YFFC1A	SPCR1	QSPI Control Register 1
\$YFFC1C	SPCR2	QSPI Control Register 2
\$YFFC1E	SPCR3	QSPI Control Register 3
\$YFFC1F	SPSR	QSPI Status Register
\$YFFD00	RAM	QSPI Receive Data (16 Words)
\$YFFD20	RAM	QSPI Transmit Data (16 Words)
\$YFFD40	RAM	QSPI Command Control (8 Words)


Writing a different value into any control register except SPCR2 while the QSPI is enabled disrupts operation. SPCR2 is buffered to prevent disruption of the current serial transfer. After completion of the current serial transfer, the new SPCR2 values become effective.

Writing the same value into any control register except SPCR2 while the QSPI is enabled has no effect on QSPI operation. Rewriting NEWQP in SPCR2 causes execution to restart at the designated location.

SPCR0	— QSF	PI Con	trol Re	egister	0									\$YF	FC18	
15	14	13			10	9	8	7							0	
MSTR	WOMQ		Bľ	TS		CPOL	CPHA				SP	BR				
RESET:																
0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	

SPCR0 contains parameters for configuring the QSPI before it is enabled. The CPU can read and write this register. The QSM has read-only access.

QSPI RAM MAP

Figure 15 QSPI RAM

Once the CPU has set up the queue of QSPI commands and enabled the QSPI, the QSPI can operate independently of the CPU. The QSPI executes all of the commands in its queue, sets a flag indicating that it is finished, and then either interrupts the CPU or waits for CPU intervention. It is possible to execute a queue of commands repeatedly without CPU intervention.

RR[0:F] — Receive Data RAM

Data received by the QSPI is stored in this segment. The CPU reads this segment to retrieve data from the QSPI. Data stored in receive RAM is right-justified. Unused bits in a receive queue entry are set to zero by the QSPI upon completion of the individual queue entry. The CPU can access the data using byte, word, or long-word addressing.

The CPTQP value in SPSR shows which queue entries have been executed. The CPU uses this information to determine which locations in receive RAM contain valid data before reading them.

TR[0:F] — Transmit Data RAM

Data that is to be transmitted by the QSPI is stored in this segment. The CPU usually writes one word of data into this segment for each queue command to be executed.

Information to be transmitted must be written to transmit data RAM in a right-justified format. The QSPI cannot modify information in the transmit data RAM. The QSPI copies the information to its data serializer for transmission. Information remains in transmit RAM until overwritten.

CR[0:F] — Command RAM 7 6 5 4 3 2 1 0 CONT DT PCS3 PCS2 PCS1 BITSE DSCK PCS0* CONT BITSE DT DSCK PCS3 PCS2 PCS1 PCS0*

COMMAND CONTROL

PERIPHERAL CHIP SELECT

*The PCS0 bit represents the dual-function PCS0/SS.

\$YFFD00

\$YFFD20

\$YFFD40