

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	CPU32
Core Size	32-Bit Single-Core
Speed	16MHz
Connectivity	EBI/EMI, SCI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	15
Program Memory Size	
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	132-BQFP Bumpered
Supplier Device Package	132-PQFP (24.13x24.13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68332gceh16

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package Type	ТРU Туре	Temperature	Frequency (MHz)	Package Order Quantity	Order Number
132-Pin PQFP	Motion Control	-40 to +85 °C	16 MHz	2 pc tray	SPAKMC332GCFC16
				36 pc tray	MC68332GCFC16
			20 MHz	2 pc tray	SPAKMC332GCFC20
				36 pc tray	MC68332GCFC20
		–40 to +105 °C	16 MHz	2 pc tray	SPAKMC332GVFC16
				36 pc tray	MC68332GVFC16
			20 MHz	2 pc tray	SPAKMC332GVFC20
				36 pc tray	MC68332GVFC20
		–40 to +125 °C	16 MHz	2 pc tray	SPAKMC332GMFC16
				36 pc tray	MC68332GMFC16
			20 MHz	2 pc tray	SPAKMC332GMFC20
				36 pc tray	MC68332GMFC20
	Standard	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC332CFC16
				36 pc tray	MC68332CFC16
			20 MHz	2 pc tray	SPAKMC332CFC20
				36 pc tray	MC68332CFC20
		–40 to +105 °C	16 MHz	2 pc tray	SPAKMC332VFC16
				36 pc tray	MC68332VFC16
			20 MHz	2 pc tray	SPAKMC332VFC20
				36 pc tray	MC68332VFC20
		–40 to +125 °C	16 MHz	2 pc tray	SPAKMC332MFC16
				36 pc tray	MC68332MFC16
			20 MHz	2 pc tray	SPAKMC332MFC20
				36 pc tray	MC68332MFC20
	Std w/enhanced	–40 to +85 °C	16 MHz	2 pc tray	SPAKMC332ACFC16
	PPWA			36 pc tray	MC68332ACFC16
			20 MHz	2 pc tray	SPAKMC332ACFC20
				36 pc tray	MC68332ACFC20
		–40 to +105 °C	16 MHz	2 pc tray	SPAKMC332AVFC16
				36 pc tray	MC68332AVFC16
			20 MHz	2 pc tray	SPAKMC332AVFC20
				36 pc tray	MC68332AVFC20
		–40 to +125 °C	16 MHz	2 pc tray	SPAKMC332AMFC16
				36 pc tray	MC68332AMFC16
			20 MHz	2 pc tray	SPAKMC332AMFC20
				36 pc tray	MC68332AMFC20

Table 1 Ordering Information

Freescale Semiconductor, Inc. TABLE OF CONTENTS

S	ection		Page
1		Introduction	1
	1.1	Features	5
	1.2	Block Diagram	
	1.3	Pin Assignments	
	1.4 1.5	Address Map Intermodule Bus	
2	1.5		
2	2.1	Signal Descriptions Pin Characteristics	
	2.1	MCU Power Connections	
	2.3	MCU Driver Types	
	2.4	Signal Characteristics	
	2.5	Signal Function	13
3		System Integration Module	15
	3.1	Overview	15
	3.2	System Configuration and Protection	
	3.3	System Clock	
	3.4 3.5	External Bus Interface Chip Selects	
	3.5 3.6	General-Purpose Input/Output	
	3.7	Resets	
	3.8	Interrupts	
	3.9	Factory Test Block	43
4		Central Processor Unit	44
	4.1	Overview	
	4.2	Programming Model	
	4.3	Status Register	
	4.4 4.5	Data Types Addressing Modes	
	4.6	Instruction Set Summary	
	4.7	Background Debugging Mode	
5		Time Processor Unit	52
-	5.1	MC68332 and MC68332A Time Functions	
	5.2	MC68332G Time Functions	
	5.3	Programmer's Model	
	5.4	Parameter RAM	
~	5.5	TPU Registers	
6	.	Queued Serial Module	64
	6.1	Overview	
	6.2 6.3	Address Map Pin Function	
	6.4	QSM Registers	
	6.5	QSPI Submodule	
	6.6	SCI Submodule	
7		Standby RAM with TPU Emulation RAM	84
	7.1	Overview	
	7.2	TPURAM Register Block	
	7.3	TPURAM Registers	
~	7.4	TPURAM Operation	
8		Summary of Changes	86

1.1 Features

- Central Processing Unit (CPU32)
 - 32-Bit Architecture
 - Virtual Memory Implementation
 - Table Lookup and Interpolate Instruction
 - Improved Exception Handling for Controller Applications
 - High-Level Language Support
 - Background Debugging Mode
 - Fully Static Operation
- System Integration Module (SIM)
 - External Bus Support
 - Programmable Chip-Select Outputs
 - System Protection Logic
 - Watchdog Timer, Clock Monitor, and Bus Monitor
 - Two 8-Bit Dual Function Input/Output Ports
 - One 7-Bit Dual Function Output Port
 - Phase-Locked Loop (PLL) Clock System
- Time Processor Unit (TPU)
 - Dedicated Microengine Operating Independently of CPU32
 - 16 Independent, Programmable Channels and Pins
 - Any Channel can Perform any Time Function
 - Two Timer Count Registers with Programmable Prescalers
 - Selectable Channel Priority Levels
- Queued Serial Module (QSM)
 - Enhanced Serial Communication Interface
 - Queued Serial Peripheral Interface
 - One 8-Bit Dual Function Port
- Static RAM Module with TPU Emulation Capability (TPURAM)
 - 2-Kbytes of Static RAM
 - May be Used as Normal RAM or TPU Microcode Emulation RAM

2 Signal Descriptions

2.1 Pin Characteristics

The following table shows MCU pins and their characteristics. All inputs detect CMOS logic levels. All inputs can be put in a high-impedance state, but the method of doing this differs depending upon pin function. Refer to the table, MCU Driver Types, for a description of output drivers. An entry in the discrete I/O column of the MCU Pin Characteristics table indicates that a pin has an alternate I/O function. The port designation is given when it applies. Refer to the MCU Block Diagram for information about port organization.

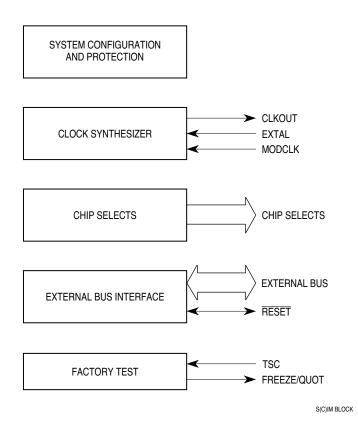

Pin Mnemonic	Output Driver	Input Synchronized	Input Hysteresis	Discrete I/O	Port Designation
ADDR23/CS10/ECLK	A	Y	N	0	—
ADDR[22:19]/CS[9:6]	A	Y	N	0	PC[6:3]
ADDR[18:0]	A	Y	N	—	—
ĀS	В	Y	N	I/O	PE5
AVEC	В	Y	N	I/O	PE2
BERR	В	Y	N	_	
BG/CS1	В	_	—	_	
BGACK/CS2	В	Y	N	_	
BKPT/DSCLK		Y	Y	_	
BR/CS0	В	Y	N	—	
CLKOUT	A	_	—	_	
CSBOOT	В		_	—	
DATA[15:0] ¹	Aw	Y	N	—	
DS	В	Y	N	I/O	PE4
DSACK1	В	Y	N	I/O	PE1
DSACK0	В	Y	N	I/O	PE0
DSI/IFETCH	A	Y	Y	—	
DSO/IPIPE	A		—	—	_
EXTAL ²	—		Special	—	
FC[2:0]/CS[5:3]	A	Y	N	0	PC[2:0]
FREEZE/QUOT	A		_	—	
HALT	Bo	Y	N	—	
IRQ[7:1]	В	Y	Y	I/O	PF[7:1]
MISO	Bo	Y	Y	I/O	PQS0
MODCLK ¹	В	Y	N	I/O	PF0
MOSI	Bo	Y	Y	I/O	PQS1
PCS0/SS	Во	Y	Y	I/O	PQS3
PCS[3:1]	Во	Y	Y	I/O	PQS[6:4]
R/W	A	Y	N	_	
RESET	Во	Y	Y	-	—
RMC	В	Y	N	I/O	PE3
RXD	—	Ν	N	—	—
SCK	Bo	Y	Y	I/O	PQS2
SIZ[1:0]	В	Y	N	I/O	PE[7:6]

Table 2 MCU Pin Characteristic

3 System Integration Module

The MCU system integration module (SIM) consists of five functional blocks that control system startup, initialization, configuration, and external bus.

3.1 Overview

The system configuration and protection block controls MCU configuration and operating mode. The block also provides bus and software watchdog monitors.

The system clock generates clock signals used by the SIM, other IMB modules, and external devices. In addition, a periodic interrupt generator supports execution of time-critical control routines.

The external bus interface handles the transfer of information between IMB modules and external address space.

The chip-select block provides eleven general-purpose chip-select signals and a boot ROM chip select signal. Both general-purpose and boot ROM chip-select signals have associated base address registers and option registers.

The system test block incorporates hardware necessary for testing the MCU. It is used to perform factory tests, and its use in normal applications is not supported.

The SIM control register address map occupies 128 bytes. Unused registers within the 128-byte address space return zeros when read. The "Access" column in the SIM address map below indicates which registers are accessible only at the supervisor privilege level and which can be assigned to either the supervisor or user privilege level, according to the value of the SUPV bit in the SIMCR.

Table 7 SIM Address Map

Access	Address	15 8	7					
S	\$YFFA00	SIM CONFIGURATION (SIMCR)						
S	\$YFFA02	FACTORY T	EST (SIMTR)					
S	\$YFFA04	CLOCK SYNTHESIZE	R CONTROL (SYNCR)					
S	\$YFFA06	NOT USED RESET STATUS REGIST						
S	\$YFFA08	MODULE TES	T E (SIMTRE)					
S	\$YFFA0A	NOT USED	NOT USED					
S	\$YFFA0C	NOT USED	NOT USED					
S	\$YFFA0E	NOT USED	NOT USED					
S/U	\$YFFA10	NOT USED	PORT E DATA (PORTE0)					
S/U	\$YFFA12	NOT USED	PORT E DATA (PORTE1)					
S/U	\$YFFA14	NOT USED	PORT E DATA DIRECTION (DDRE					
S	\$YFFA16	NOT USED	PORT E PIN ASSIGNMENT (PEPAF					
S/U	\$YFFA18	NOT USED	PORT F DATA (PORTF0)					
S/U	\$YFFA1A	NOT USED	PORT F DATA (PORTF1)					
S/U	\$YFFA1C	NOT USED	PORT F DATA DIRECTION (DDRF					
S	\$YFFA1E	NOT USED	PORT F PIN ASSIGNMENT (PFPAF					
S	\$YFFA20	NOT USED	SYSTEM PROTECTION CONTROL (SYPCR)					
S	\$YFFA22	PERIODIC INTERRU	PERIODIC INTERRUPT CONTROL (PICR)					
S	\$YFFA24	PERIODIC INTERRUPT TIMING (PITR)						
S	\$YFFA26	NOT USED	SOFTWARE SERVICE (SWSR)					
S	\$YFFA28	NOT USED	NOT USED					
S	\$YFFA2A	NOT USED	NOT USED					
S	\$YFFA2C	NOT USED	NOT USED					
S	\$YFFA2E	NOT USED	NOT USED					
S	\$YFFA30	TEST MODULE MASTE	R SHIFT A (TSTMSRA)					
S	\$YFFA32	TEST MODULE MASTE	ER SHIFT B (TSTMSRB)					
S	\$YFFA34	TEST MODULE SHI	FT COUNT (TSTSC)					
S	\$YFFA36	TEST MODULE REPETI	TION COUNTER (TSTRC)					
S	\$YFFA38	TEST MODULE C	CONTROL (CREG)					
S/U	\$YFFA3A		UTED REGISTER (DREG)					
	\$YFFA3C	NOT USED	NOT USED					
	\$YFFA3E	NOT USED	NOT USED					
S/U	\$YFFA40	NOT USED	PORT C DATA (PORTC)					
	\$YFFA42	NOT USED	NOT USED					
S	\$YFFA44	CHIP-SELECT PIN AS	SIGNMENT (CSPAR0)					
S	\$YFFA46		SIGNMENT (CSPAR1)					
S	\$YFFA48		E BOOT (CSBARBT)					
S	\$YFFA4A		ON BOOT (CSORBT)					
S	\$YFFA4C		ASE 0 (CSBAR0)					
S	\$YFFA4E		PTION 0 (CSOR0)					
S	\$YFFA50		ASE 1 (CSBAR1)					
S	\$YFFA52		CHIP-SELECT DASE 1 (CSDART) CHIP-SELECT OPTION 1 (CSOR1)					
S	\$YFFA54		CHIP-SELECT DASE 2 (CSBAR2)					

Access	Address	15 8	7 0					
S	\$YFFA56	CHIP-SELECT OPTION 2 (CSOR2)						
S	\$YFFA58	CHIP-SELECT B	ASE 3 (CSBAR3)					
S	\$YFFA5A	CHIP-SELECT OF	PTION 3 (CSOR3)					
S	\$YFFA5C	CHIP-SELECT B	ASE 4 (CSBAR4)					
S	\$YFFA5E	CHIP-SELECT OF	PTION 4 (CSOR4)					
S	\$YFFA60	CHIP-SELECT B	ASE 5 (CSBAR5)					
S	\$YFFA62	CHIP-SELECT OF	PTION 5 (CSOR5)					
S	\$YFFA64	CHIP-SELECT B	ASE 6 (CSBAR6)					
S	\$YFFA66	CHIP-SELECT OF	PTION 6 (CSOR6)					
S	\$YFFA68	CHIP-SELECT B	ASE 7 (CSBAR7)					
S	\$YFFA6A	CHIP-SELECT OF	PTION 7 (CSOR7)					
S	\$YFFA6C	CHIP-SELECT B	ASE 8 (CSBAR8)					
S	\$YFFA6E	CHIP-SELECT OF	PTION 8 (CSOR8)					
S	\$YFFA70	CHIP-SELECT B	ASE 9 (CSBAR9)					
S	\$YFFA72	CHIP-SELECT OF	PTION 9 (CSOR9)					
S	\$YFFA74	CHIP-SELECT BA	SE 10 (CSBAR10)					
S	\$YFFA76	CHIP-SELECT OP	TION 10 (CSOR10)					
	\$YFFA78	NOT USED	NOT USED					
	\$YFFA7A	NOT USED	NOT USED					
	\$YFFA7C	NOT USED	NOT USED					
	\$YFFA7E	NOT USED	NOT USED					

Table 7 SIM Address Map (Continued)

Y = M111, where M is the logic state of the module mapping (MM) bit in the SIMCR.

3.2 System Configuration and Protection

This functional block provides configuration control for the entire MCU. It also performs interrupt arbitration, bus monitoring, and system test functions. MCU system protection includes a bus monitor, a HALT monitor, a spurious interrupt monitor, and a software watchdog timer. These functions have been made integral to the microcontroller to reduce the number of external components in a complete control system.

3.3.3 Clock Control

The clock control circuits determine system clock frequency and clock operation under special circumstances, such as following loss of synthesizer reference or during low-power operation. Clock source is determined by the logic state of the MODCLK pin during reset.

SYNCR — Clock Synthesizer Control Register														\$YF	FFA04	
	15	14	13					8	7	6	5	4	3	2	1	0
	W	Х			,	Y			EDIV	0	0	SLIMP	SLOCK	RSTEN	STSIM	STEXT
	RESET:															
	0	0	1	1	1	1	1	1	0	0	0	U	U	0	0	0

When the on-chip clock synthesizer is used, system clock frequency is controlled by the bits in the upper byte of SYNCR. Bits in the lower byte show status of or control operation of internal and external clocks. The SYNCR can be read or written only when the CPU is operating at the supervisor privilege level.

W — Frequency Control (VCO)

This bit controls a prescaler tap in the synthesizer feedback loop. Setting the bit increases the VCO speed by a factor of four. VCO relock delay is required.

X — Frequency Control Bit (Prescale)

This bit controls a divide by two prescaler that is not in the synthesizer feedback loop. Setting the bit doubles clock speed without changing the VCO speed. There is no VCO relock delay.

Y[5:0] — Frequency Control (Counter)

The Y field controls the modulus down counter in the synthesizer feedback loop, causing it to divide by a value of Y + 1. Values range from 0 to 63. VCO relock delay is required.

EDIV — E Clock Divide Rate

0 = ECLK frequency is system clock divided by 8.

1 = ECLK frequency is system clock divided by 16.

ECLK is an external M6800 bus clock available on pin ADDR23. Refer to **3.5 Chip Selects** for more information.

SLIMP — Limp Mode Flag

0 = External crystal is VCO reference.

1 = Loss of crystal reference.

When the on-chip synthesizer is used, loss of reference frequency causes SLIMP to be set. The VCO continues to run using the base control voltage. Maximum limp frequency is maximum specified system clock frequency. X-bit state affects limp frequency.

SLOCK — Synthesizer Lock Flag

0 = VCO is enabled, but has not locked.

1 = VCO has locked on the desired frequency (or system clock is external).

The MCU maintains reset state until the synthesizer locks, but SLOCK does not indicate synthesizer lock status until after the user writes to SYNCR.

RSTEN — Reset Enable

- 0 = Loss of crystal causes the MCU to operate in limp mode.
- 1 = Loss of crystal causes system reset.

STSIM — Stop Mode SIM Clock

- 0 = When LPSTOP is executed, the SIM clock is driven from the crystal oscillator and the VCO is turned off to conserve power.
- 1 = When LPSTOP is executed, the SIM clock is driven from the VCO.

STEXT — Stop Mode External Clock

- 0 = When LPSTOP is executed, the CLKOUT signal is held negated to conserve power.
- 1 = When LPSTOP is executed, the CLKOUT signal is driven from the SIM clock, as determined by the state of the STSIM bit.

FC2	FC1	FC0	Address Space		
0	0	0	Reserved		
0	0	1	User Data Space		
0	1	0	User Program Space		
0	1	1	Reserved		
1	0	0	Reserved		
1	0	1	Supervisor Data Space		
1	1	0	Supervisor Program Space		
1	1	1 CPU Space			

Table 9 CPU32 Address Space Encoding

3.4.3 Address Bus

Address bus signals ADDR[23:0] define the address of the most significant byte to be transferred during a bus cycle. The MCU places the address on the bus at the beginning of a bus cycle. The address is valid while $\overline{\text{AS}}$ is asserted.

3.4.4 Address Strobe

AS is a timing signal that indicates the validity of an address on the address bus and the validity of many control signals. It is asserted one-half clock after the beginning of a bus cycle.

3.4.5 Data Bus

Data bus signals DATA[15:0] make up a bidirectional, non-multiplexed parallel bus that transfers data to or from the MCU. A read or write operation can transfer 8 or 16 bits of data in one bus cycle. During a read cycle, the data is latched by the MCU on the last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data bus are driven, regardless of the port width or operand size. The MCU places the data on the data bus one-half clock cycle after AS is asserted in a write cycle.

3.4.6 Data Strobe

Data strobe (\overline{DS}) is a timing signal. For a read cycle, the MCU asserts \overline{DS} to signal an external device to place data on the bus. \overline{DS} is asserted at the same time as \overline{AS} during a read cycle. For a write cycle, \overline{DS} signals an external device that data on the bus is valid. The MCU asserts \overline{DS} one full clock cycle after the assertion of \overline{AS} during a write cycle.

3.4.7 Bus Cycle Termination Signals

During bus cycles, external devices assert the data transfer and size acknowledge signals ($\overline{DSACK1}$ and $\overline{DSACK0}$). During a read cycle, the signals tell the MCU to terminate the bus cycle and to latch data. During a write cycle, the signals indicate that an external device has successfully stored data and that the cycle can end. These signals also indicate to the MCU the size of the port for the bus cycle just completed. (Refer to 3.4.9 Dynamic Bus Sizing.)

The bus error (BERR) signal is also a bus cycle termination indicator and can be used in the absence of DSACK1 and DSACK0 to indicate a bus error condition. It can also be asserted in conjunction with these signals, provided it meets the appropriate timing requirements. The internal bus monitor can be used to generate the BERR signal for internal and internal-to-external transfers. When BERR and HALT are asserted simultaneously, the CPU takes a bus error exception.

Autovector signal (AVEC) can terminate external IRQ pin interrupt acknowledge cycles. AVEC indicates that the MCU will internally generate a vector number to locate an interrupt handler routine. If it is continuously asserted, autovectors will be generated for all external interrupt requests. AVEC is ignored during all other bus cycles.

(CSPAR1 — Chip Select Pin Assignment Register 1 \$YFFA							FA46								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	0	0	0	0	0	0	CSPA	1[4]	CSPA	1[3]	CSPA	1[2]	CSPA	.1[1]	CSPA	1[0]
	RESET:										•				•	
	0	0	0	0	0	0	DATA7	1	DATA [7:6]	1	DATA [7:5]	1	DATA [7:4]	1	DATA [7:3]	1

CSPAR1 contains five 2-bit fields that determine the functions of corresponding chip-select pins. CSPAR1[15:10] are not used. These bits always read zero; writes have no effect.

CSPAR0 Field	Chip Select Signal	Alternate Signal	Discrete Output		
CSPA1[4]	CS10	ADDR23	ECLK		
CSPA1[3]	CS9	ADDR22	PC6		
CSPA1[2]	CS8	ADDR21	PC5		
CSPA1[1]	CS7	ADDR20	PC4		
CSPA1[0]	CS6	ADDR19	PC3		

Table 14 CSPAR1 Pin Assignments

At reset, either the alternate function (01) or chip-select function (11) can be encoded. DATA pins are driven to logic level one by a weak interval pull-up during reset. Encoding is for chip-select function unless a data line is held low during reset. Note that bus loading can overcome the weak pull-up and hold pins low during reset. The following table shows the hierarchical selection method that determines the reset functions of pins controlled by CSPAR1.

	Data B	us Pins at	Reset		Chip-Select/Address Bus Pin Function					
DATA7	DATA6	DATA5	DATA4	DATA3	CS10/ ADDR23	CS9/ ADDR22	CS8/ ADDR21	CS7/ ADDR20	CS6/ ADDR19	
1	1	1	1	1	CS10	CS9	CS8	CS7	CS6	
1	1	1	1	0	CS10	CS9	CS8	CS7	ADDR19	
1	1	1	0	Х	CS10	CS9	CS8	ADDR20	ADDR19	
1	1	0	Х	Х	CS10	CS9	ADDR21	ADDR20	ADDR19	
1	0	Х	Х	Х	CS10	ADDR22	ADDR21	ADDR20	ADDR19	
0	Х	Х	Х	Х	ADDR23	ADDR22	ADDR21	ADDR20	ADDR19	

Table 15 Reset Pin Function of CS[10:6]

A pin programmed as a discrete output drives an external signal to the value specified in the port C pin data register (PORTC), with the following exceptions:

- 1. No discrete output function is available on pins BR, BG, or BGACK.
- 2. ADDR23 provides E-clock output rather than a discrete output signal.

When a pin is programmed for discrete output or alternate function, internal chip-select logic still functions and can be used to generate DSACK or AVEC internally on an address match.

Port size is determined when a pin is assigned as a chip select. When a pin is assigned to an 8-bit port, the chip select is asserted at all addresses within the block range. If a pin is assigned to a 16-bit port, the upper/lower byte field of the option register selects the byte with which the chip select is associated.

DSACK — Data and Size Acknowledge

This field specifies the source of $\overline{\text{DSACK}}$ in asynchronous mode. It also allows the user to adjust bus timing with internal $\overline{\text{DSACK}}$ generation by controlling the number of wait states that are inserted to optimize bus speed in a particular application. The following table shows the $\overline{\text{DSACK}}$ field encoding. The fast termination encoding (1110) is used for two-cycle access to external memory.

DSACK	Description
0000	No Wait States
0001	1 Wait State
0010	2 Wait States
0011	3 Wait States
0100	4 Wait States
0101	5 Wait States
0110	6 Wait States
0111	7 Wait States
1000	8 Wait States
1001	9 Wait States
1010	10 Wait States
1011	11 Wait States
1100	12 Wait States
1101	13 Wait States
1110	Fast Termination
1111	External DSACK

SPACE — Address Space

Use this option field to select an address space for the chip-select logic. The CPU32 normally operates in supervisor or user space, but interrupt acknowledge cycles must take place in CPU space.

Space Field	Address Space
00	CPU Space
01	User Space
10	Supervisor Space
11	Supervisor/User Space

IPL — Interrupt Priority Level

If the space field is set for CPU space (00), chip-select logic can be used for interrupt acknowledge. During an interrupt acknowledge cycle, the priority level on address lines ADDR[3:1] is compared to the value in the IPL field. If the values are the same, a chip select is asserted, provided that other option register conditions are met. The following table shows IPL field encoding.

IPL	Description
000	Any Level
001	IPL1
010	IPL2
011	IPL3
100	IPL4
101	IPL5
110	IPL6
111	IPL7

This field only affects the response of chip selects and does not affect interrupt recognition by the CPU. Any level means that chip select is asserted regardless of the level of the interrupt acknowledge cycle.

Instruction	Syntax	Operand Size	Operation
MOVES ¹	Rn, <ea> <ea>, Rn</ea></ea>	8, 16, 32	$Rn \Rightarrow Destination using DFC$ Source using SFC $\Rightarrow Rn$
MULS/MULU	<ea>, Dn <ea>, Dl <ea>, Dh : Dl</ea></ea></ea>	$16 * 16 \Rightarrow 32$ $32 * 32 \Rightarrow 32$ $32 * 32 \Rightarrow 64$	Source $*$ Destination \Rightarrow Destination (signed or unsigned)
NBCD	Í	8 8	$0 - \text{Destination}_{10} - X \Rightarrow \text{Destination}$
NEG	Í	8, 16, 32	$0 - Destination \Rightarrow Destination$
NEGX	Í	8, 16, 32	$0 - Destination - X \Rightarrow Destination$
NOP	none	none	$PC + 2 \Rightarrow PC$
NOT	Í	8, 16, 32	$\overline{\text{Destination}} \Rightarrow \text{Destination}$
OR	<ea>, Dn Dn, <ea></ea></ea>	8, 16, 32 8, 16, 32	Source + Destination \Rightarrow Destination
ORI	# <data>, <ea></ea></data>	8, 16, 32	Data + Destination \Rightarrow Destination
ORI to CCR	# <data>, CCR</data>	16	Source + CCR \Rightarrow SR
ORI to SR ¹	# <data>, SR</data>	16	Source ; SR \Rightarrow SR
PEA	Í	32	$SP - 4 \Rightarrow SP; \langle ea \rangle \Rightarrow SP$
RESET ¹	none	none	Assert RESET line
ROL	Dn, Dn # <data>, Dn Í</data>	8, 16, 32 8, 16, 32 16	
ROR	Dn, Dn # <data>, Dn Í</data>	8, 16, 32 8, 16, 32 16	
ROXL	Dn, Dn #⊲data>, Dn Í	8, 16, 32 8, 16, 32 16	
ROXR	Dn, Dn # <data>, Dn Í</data>	8, 16, 32 8, 16, 32 16	
RTD	#d	16	$(SP) \Rightarrow PC; SP + 4 + d \Rightarrow SP$
RTE ¹	none	none	$(SP) \Rightarrow SR; SP + 2 \Rightarrow SP; (SP) \Rightarrow PC;$ SP + 4 \Rightarrow SP; Restore stack according to format
RTR	none	none	$(SP) \Rightarrow CCR; SP + 2 \Rightarrow SP; (SP) \Rightarrow PC;$ SP + 4 \Rightarrow SP
RTS	none	none	$(SP) \Rightarrow PC; SP + 4 \Rightarrow SP$
SBCD	Dn, Dn – (An), – (An)	8 8	Destination10 – Source10 – $X \Rightarrow$ Destination
Scc	Í	8	If condition true, then destination bits are set to 1; else, destination bits are cleared to 0
STOP ¹	# <data></data>	16	Data \Rightarrow SR; STOP
SUB	<ea>, Dn Dn, <ea></ea></ea>	8, 16, 32	Destination – Source \Rightarrow Destination
SUBA	<ea>, An</ea>	16, 32	Destination – Source \Rightarrow Destination
SUBI	# <data>, <ea></ea></data>	8, 16, 32	Destination – Data \Rightarrow Destination
SUBQ	# <data>, <ea></ea></data>	8, 16, 32	Destination – Data \Rightarrow Destination
SUBX	Dn, Dn – (An), – (An)	8, 16, 32 8, 16, 32	Destination – Source – $X \Rightarrow$ Destination

Table 20 Instruction Set Summary(Continued)

Instruction	Syntax	Operand Size	Operation
SWAP	Dn	16	MSW LSW
TAS	Í	8	Destination Tested Condition Codes bit 7 of Destination
TBLS/TBLU	<ea>, Dn Dym : Dyn, Dn</ea>	8, 16, 32	$Dyn - Dym \Rightarrow Temp$ (Temp * Dn [7 : 0]) \Rightarrow Temp (Dym * 256) + Temp \Rightarrow Dn
TBLSN/TBLUN	<ea>, Dn Dym : Dyn, Dn</ea>	8, 16, 32	$Dyn - Dym \Rightarrow Temp$ (Temp * Dn [7 : 0]) / 256 \Rightarrow Temp Dym + Temp \Rightarrow Dn
TRAP	# <data></data>	none	$\begin{array}{l} SSP-2 \Rightarrow SSP; \ format/vector \ offset \Rightarrow (SSP);\\ SSP-4 \Rightarrow SSP; \ PC \Rightarrow (SSP); \ SR \Rightarrow (SSP);\\ vector \ address \Rightarrow PC \end{array}$
TRAPcc	none # <data></data>	none 16, 32	If cc true, then TRAP exception
TRAPV	none	none	If V set, then overflow TRAP exception
TST	Í	8, 16, 32	Source – 0, to set condition codes
UNLK	An	32	$An \Rightarrow SP; (SP) \Rightarrow An, SP + 4 \Rightarrow SP$

Table 20 Instruction Set Summary(Continued)

1. Privileged instruction.

5.1.2 Input Capture/Input Transition Counter (ITC)

Any channel of the TPU can capture the value of a specified TCR upon the occurrence of each transition or specified number of transitions, and then generate an interrupt request to notify the CPU. A channel can perform input captures continually, or a channel can detect a single transition or specified number of transitions, then cease channel activity until reinitialization. After each transition or specified number of transitions, the channel can generate a link to a sequential block of up to eight channels. The user specifies a starting channel of the block and the number of channels within the block. The generation of links depends on the mode of operation. In addition, after each transition or specified number of transitions, one byte of the parameter RAM (at an address specified by channel parameter) can be incremented and used as a flag to notify another channel of a transition.

5.1.3 Output Compare (OC)

The output compare function generates a rising edge, falling edge, or a toggle of the previous edge in one of three ways:

- 1. Immediately upon CPU initiation, thereby generating a pulse with a length equal to a programmable delay time.
- 2. At a programmable delay time from a user-specified time.
- 3. Continuously. Upon receiving a link from a channel, OC references, without CPU interaction, a specifiable period and calculates an offset:

Offset = Period * Ratio

where Ratio is a parameter supplied by the user.

This algorithm generates a 50% duty-cycle continuous square wave with each high/low time equal to the calculated OFFSET. Due to offset calculation, there is an initial link time before continuous pulse generation begins.

5.1.4 Pulse-Width Modulation (PWM)

The TPU can generate a pulse-width modulation waveform with any duty cycle from zero to 100% (within the resolution and latency capability of the TPU). To define the PWM, the CPU provides one parameter that indicates the period and another parameter that indicates the high time. Updates to one or both of these parameters can direct the waveform change to take effect immediately, or coherently beginning at the next low-to-high transition of the pin.

5.1.5 Synchronized Pulse-Width Modulation (SPWM)

The TPU generates a PWM waveform in which the CPU can change the period and/or high time at any time. When synchronized to a time function on a second channel, the synchronized PWM low-to-high transitions have a time relationship to transitions on the second channel.

5.1.6 Period Measurement with Additional Transition Detect (PMA)

This function and the following function are used primarily in toothed-wheel speed-sensing applications, such as monitoring rotational speed of an engine. The period measurement with additional transition detect function allows for a special-purpose 23-bit period measurement. It can detect the occurrence of an additional transition (caused by an extra tooth on the sensed wheel) indicated by a period measurement that is less than a programmable ratio of the previous period measurement.

Once detected, this condition can be counted and compared to a programmable number of additional transitions detected before TCR2 is reset to \$FFFF. Alternatively, a byte at an address specified by a channel parameter can be read and used as a flag. A nonzero value of the flag indicates that TCR2 is to be reset to \$FFFF once the next additional transition is detected.

HSQR0	— Ho	st Sequ	Jence	Regist	er 0									\$YF	FFE14
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH 15		CH	14	CH	13	CH	12	C⊢	111	CH	10	CH	19	CH 8	
RESET:															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HSQR1	— Ho	st Sequ	uence	Regist	er 1									\$YI	FFE16
HSQR1 15	— Ho 14	st Sequ 13	uence 12	Registe	er 1 10	9	8	7	6	5	4	3	2	\$YI 1	F FE16 0
	14	13		11		-	8 H 4	-	6 H 3	-	4 12	3 Ci		1	
15	14	13	12	11	10	-	-	-	-	-		-		1	0

CH[15:0] — Encoded Host Sequence

The host sequence field selects the mode of operation for the time function selected on a given channel. The meaning of the host sequence bits depends on the time function specified.

HOKKU	— H08	st Serv	ice Re	quest	Registe	eru		
15	14	13	12	11	10	9	8	7

CH 15 CH 14 CH 12 CH 11 CH 10 CH 9 CH 8 CH 13 RESET: **\$YFFE1A** HSRR1 — Host Service Request Register 1 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0 RESET:

CH[15:0] — Encoded Type of Host Service

. . .

• •

The host service request field selects the type of host service request for the time function selected on a given channel. The meaning of the host service request bits depends on the time function specified. A host service request field cleared to %00 signals the host that service is completed by the microengine on that channel. The host can request service on a channel by writing the corresponding host service request field to one of three nonzero states. The CPU should monitor the host service request register until the TPU clears the service request to %00 before the CPU changes any parameters or issues a new service request to the channel.

С	CPR0 — Channel Priority Register 0 \$YFFE1C															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CH 18	5	CH 14 CH13 CH 12		12	CH	11	CH	10	CH	19	CH 8				
	RESET:		-													
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CPR1 — Channel Priority Register 1 \$YFFE1E															
С	PR1 —	Char	nnel Pri	ority R	egiste	r 1									\$YF	FE1E
С	PR1 — 15	Char	nnel Pri 13	ority R 12	egiste	r 1 10	9	8	7	6	5	4	3	2	\$YF 1	FE1E 0
C		14		12	-	10	9 Cł			6 H 3	-	4	-	2 H 1	1	
	15	14	13	12	11	10					-		-		1	0
	15 CH 7	14	13	12	11	10					-		-		1	0

CH[15:0] - Encoded One of Three Channel Priority Levels

\$YFFE18

QSM Pin	Mode	DDRQS Bit	Bit State	Pin Function
MISO	Master	DDQ0	0	Serial Data Input to QSPI
			1	Disables Data Input
	Slave		0	Disables Data Output
			1	Serial Data Output from QSPI
MOSI	Master	DDQ1	0	Disables Data Output
			1	Serial Data Output from QSPI
	Slave		0	Serial Data Input to QSPI
			1	Disables Data Input
SCK ¹	Master	DDQ2	0	Disables Clock Output
			1	Clock Output from QSPI
	Slave	1	0	Clock Input to QSPI
			1	Disables Clock Input
PCS0/SS	Master	DDQ3	0	Assertion Causes Mode Fault
			1	Chip-Select Output
	Slave		0	QSPI Slave Select Input
			1	Disables Select Input
PCS[3:1]	Master	DDQ[4:6]	0	Disables Chip-Select Output
			1	Chip-Select Output
	Slave]	0	Inactive
			1	Inactive
TXD ²	Transmit	DDQ7	Х	Serial Data Output from SCI
RXD	Receive	None	NA	Serial Data Input to SCI

Table 26 Effect of DDRQS on QSM Pin Function

NOTES:

- 1. PQS2 is a digital I/O pin unless the SPI is enabled (SPE in SPCR1 set), in which case it becomes SPI serial clock SCK.
- 2. PQS7 is a digital I/O pin unless the SCI transmitter is enabled (TE in SCCR1 = 1), in which case it becomes SCI serial output TXD.

DDRQS determines the direction of the TXD pin only when the SCI transmitter is disabled. When the SCI transmitter is enabled, the TXD pin is an output.

HALT — Halt

0 = Halt not enabled

1 = Halt enabled

When HALT is asserted, the QSPI stops on a queue boundary. It is in a defined state from which it can later be restarted.

SPSR — QSPI Status Register								\$YF	FC1F
15	8	7	6	5	4	3			0
SPCR3		SPIF	MODF	HALTA	0		CPT	ΓQP	
	RESET:								
		0	0	0	0	0	0	0	0

SPSR contains QSPI status information. Only the QSPI can assert the bits in this register. The CPU reads this register to obtain status information and writes it to clear status flags.

SPIF — QSPI Finished Flag

- 0 = QSPI not finished
- 1 = QSPI finished

SPIF is set after execution of the command at the address in ENDQP.

MODF — Mode Fault Flag

- 0 = Normal operation
- 1 = Another SPI node requested to become the network SPI master while the QSPI was enabled in master mode (SS input taken low).

The QSPI asserts MODF when the QSPI is the serial master (MSTR = 1) and the \overline{SS} input pin is negated by an external driver.

HALTA — Halt Acknowledge Flag

0 = QSPI not halted

1 = QSPI halted

HALTA is asserted when the QSPI halts in response to CPU assertion of HALT.

Bit 4 — Not Implemented

CPTQP — Completed Queue Pointer

CPTQP points to the last command executed. It is updated when the current command is complete. When the first command in a queue is executing, CPTQP contains either the reset value (\$0) or a pointer to the last command completed in the previous queue.

6.5.3 QSPI RAM

The QSPI contains an 80-byte block of dual-access static RAM that is used by both the QSPI and the CPU. The RAM is divided into three segments: receive data, transmit data, and command control data. Receive data is information received from a serial device external to the MCU. Transmit data is information stored by the CPU for transmission to an external peripheral. Command control data is used to perform the transfer.

Refer to the following illustration of the organization of the RAM.

Command RAM is used by the QSPI when in master mode. The CPU writes one byte of control information to this segment for each QSPI command to be executed. The QSPI cannot modify information in command RAM.

Command RAM consists of 16 bytes. Each byte is divided into two fields. The peripheral chip-select field enables peripherals for transfer. The command control field provides transfer options.

A maximum of 16 commands can be in the queue. Queue execution by the QSPI proceeds from the address in NEWQP through the address in ENDQP. (Both of these fields are in SPCR2.)

CONT — Continue

- 0 = Control of chip selects returned to PORTQS after transfer is complete.
- 1 = Peripheral chip selects remain asserted after transfer is complete.
- BITSE Bits per Transfer Enable
 - 0 = 8 bits
 - 1 = Number of bits set in BITS field of SPCR0
- DT Delay after Transfer

The QSPI provides a variable delay at the end of serial transfer to facilitate the interface with peripherals that have a latency requirement. The delay between transfers is determined by the SPCR1 DTL field.

DSCK — PCS to SCK Delay

- 0 = PCS valid to SCK transition is one-half SCK.
- 1 = SPCR1 DSCKL field specifies delay from PCS valid to SCK.

PCS[3:0] — Peripheral Chip Select

Use peripheral chip-select bits to select an external device for serial data transfer. More than one peripheral chip select can be activated at a time, and more than one peripheral chip can be connected to each PCS pin, provided that proper fanout is observed.

SS — Slave Mode Select

Initiates slave mode serial transfer. If \overline{SS} is taken low when the QSPI is in master mode, a mode fault will be generated.

6.5.4 Operating Modes

The QSPI operates in either master or slave mode. Master mode is used when the MCU originates data transfers. Slave mode is used when an external device initiates serial transfers to the MCU through the QSPI. Switching between the modes is controlled by MSTR in SPCR0. Before entering either mode, appropriate QSM and QSPI registers must be properly initialized.

In master mode, the QSPI executes a queue of commands defined by control bits in each command RAM queue entry. Chip-select pins are activated, data is transmitted from transmit RAM and received into receive RAM.

In slave mode, operation proceeds in response to SS pin activation by an external bus master. Operation is similar to master mode, but no peripheral chip selects are generated, and the number of bits transferred is controlled in a different manner. When the QSPI is selected, it automatically executes the next queue transfer to exchange data with the external device correctly.

Although the QSPI inherently supports multimaster operation, no special arbitration mechanism is provided. A mode fault flag (MODF) indicates a request for SPI master arbitration. System software must provide arbitration. Note that unlike previous SPI systems, MSTR is not cleared by a mode fault being set, nor are the QSPI pin output drivers disabled. The QSPI and associated output drivers must be disabled by clearing SPE in SPCR1.

6.6 SCI Submodule

The SCI submodule is used to communicate with external devices through an asynchronous serial bus. The SCI is fully compatible with the SCI systems found on other Motorola MCUs, such as the M68HC11 and M68HC05 Families.

6.6.1 SCI Pins

There are two unidirectional pins associated with the SCI. The SCI controls the transmit data (TXD) pin when enabled, whereas the receive data (RXD) pin remains a dedicated input pin to the SCI. TXD is available as a general-purpose I/O pin when the SCI transmitter is disabled. When used for I/O, TXD can be configured either as input or output, as determined by QSM register DDRQS.

The following table shows SCI pins and their functions.

Pin Names	Mnemonics	Mode	Function
Receive Data	RXD	Receiver Disabled Receiver Enabled	Not Used Serial Data Input to SCI
Transmit Data	TXD	Transmitter Disabled Transmitter Enabled	General-Purpose I/O Serial Data Output from SCI

6.6.2 SCI Registers

The SCI programming model includes QSM global and pin control registers, and four SCI registers. There are two SCI control registers, one status register, and one data register. All registers can be read or written at any time by the CPU.

Changing the value of SCI control bits during a transfer operation may disrupt operation. Before changing register values, allow the transmitter to complete the current transfer, then disable the receiver and transmitter. Status flags in the SCSR may be cleared at any time.

SCCR0 — SCI Control Register 0 \$														\$YF	FC08
15	14	13	12												0
0	0 0 SCBR														
RESET:	RESET:														
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

SCCR0 contains a baud rate selection parameter. Baud rate must be set before the SCI is enabled. The CPU can read and write this register at any time.

Bits [15:13] - Not Implemented

SCBR — Baud Rate

SCI baud rate is programmed by writing a 13-bit value to BR. The baud rate is derived from the MCU system clock by a modulus counter.

The SCI receiver operates asynchronously. An internal clock is necessary to synchronize with an incoming data stream. The SCI baud rate generator produces a receiver sampling clock with a frequency 16 times that of the expected baud rate of the incoming data. The SCI determines the position of bit boundaries from transitions within the received waveform, and adjusts sampling points to the proper positions within the bit period. Receiver sampling rate is always 16 times the frequency of the SCI baud rate, which is calculated as follows:

SCI Baud Rate = System Clock/(32SCBR)

or

SCBR = System Clock(32SCK)(Baud Rate desired)

where SCBR is in the range {1, 2, 3, ..., 8191}

For More Information On This Product, Go to: www.freescale.com

Home Page: www.freescale.com email: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH **Technical Information Center** Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. **Technical Information Center** 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

