

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Last Time Buy
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, I ² C, SCI, SSI, SSU, USB
Peripherals	DMA, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	240-BFQFP
Supplier Device Package	240-QFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5s72030w200fp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function 1		Function 2		Function 3		
No.	Symbol	I/O	Symbol	I/O	Symbol	I/O	
237	PVcc						
238	PC13	I/O	RD/WR	0	—	_	
239	PC12	I/O	CKE	0	—	_	
240	PC11	I/O	CASU	0	BREQ	1	

Pin	Function	ו 4	Functi	on 5	Functi	on 6	Weak	Simplified
No.	Symbol	I/O	Symbol	I/O	Symbol	I/O	Keeper Pull-up	Circuit Diagram
237								
238	_	_	—	_	—	_	Yes	Figure 1.3 (9)
239	_	_	_	_	—	—	Yes	Figure 1.3 (9)
240	AUDATA1	0		_	_	_	Yes	Figure 1.3 (9)

- [Legend]
- (s): Schmitt
- (a): Analog
- (o): Open drain

Figure 1.3 (1) Simplified Circuit Diagram (Schmitt Input Buffer)

Figure 1.3 (2) Simplified Circuit Diagram (Schmitt AND Input Buffer with Pull-Up)

2.4 Instruction Set

2.4.1 Instruction Set by Classification

Table 2.10 lists the instructions according to their classification.

Table 2.10 Classification of Instructions

Classification	Types	Operation Code	Function	No. of Instructions
Data transfer 13		MOV	Data transfer	62
			Immediate data transfer	
			Peripheral module data transfer	
			Structure data transfer	
			Reverse stack transfer	
		MOVA	Effective address transfer	-
		MOVI20	20-bit immediate data transfer	
		MOVI20S	20-bit immediate data transfer	-
			8-bit left-shit	
		MOVML	R0-Rn register save/restore	-
		MOVMU	Rn-R14 and PR register save/restore	-
		MOVRT	T bit inversion and transfer to Rn	-
		MOVT	T bit transfer	-
		MOVU	Unsigned data transfer	-
		NOTT	T bit inversion	-
		PREF	Prefetch to operand cache	-
		SWAP	Swap of upper and lower bytes	-
		XTRCT	Extraction of the middle of registers connected	-

2.4.5 Shift Instructions

Table 2.14 Shift Instructions

			Execu-		Co	ompati	bility	
				tion		SH2,		
Instructio	on	Instruction Code	Operation	Cycles	T Bit	SH2E	SH4	SH-2A
ROTL	Rn	0100nnnn00000100	$T \gets Rn \gets MSB$	1	MSB	Yes	Yes	Yes
ROTR	Rn	0100nnnn00000101	$\text{LSB} \rightarrow \text{Rn} \rightarrow \text{T}$	1	LSB	Yes	Yes	Yes
ROTCL	Rn	0100nnnn00100100	$T \gets Rn \gets T$	1	MSB	Yes	Yes	Yes
ROTCR	Rn	0100nnnn00100101	$T \to Rn \to T$	1	LSB	Yes	Yes	Yes
SHAD	Rm,Rn	0100nnnnmmm1100	When $Rm \ge 0$, $Rn << Rm \rightarrow Rn$ When $Rm < 0$, $Rn >> Rm \rightarrow$ [MSB \rightarrow Rn]	1			Yes	Yes
SHAL	Rn	0100nnnn00100000	$T \leftarrow Rn \leftarrow 0$	1	MSB	Yes	Yes	Yes
SHAR	Rn	0100nnnn00100001	$MSB \to Rn \to T$	1	LSB	Yes	Yes	Yes
SHLD	Rm,Rn	010000000000000000000000000000000000000	When $Rm \ge 0$, $Rn << Rm \rightarrow Rn$ When $Rm < 0$, $Rn >> Rm \rightarrow$ $[0 \rightarrow Rn]$	1	—		Yes	Yes
SHLL	Rn	0100nnnn00000000	$T \leftarrow Rn \leftarrow 0$	1	MSB	Yes	Yes	Yes
SHLR	Rn	0100nnnn00000001	$0 \to Rn \to T$	1	LSB	Yes	Yes	Yes
SHLL2	Rn	0100nnnn00001000	$Rn \ll 2 \rightarrow Rn$	1	_	Yes	Yes	Yes
SHLR2	Rn	0100nnnn00001001	$Rn >> 2 \rightarrow Rn$	1	_	Yes	Yes	Yes
SHLL8	Rn	0100nnnn00011000	$Rn \ll 8 \rightarrow Rn$	1	_	Yes	Yes	Yes
SHLR8	Rn	0100nnnn00011001	$Rn >> 8 \rightarrow Rn$	1	_	Yes	Yes	Yes
SHLL16	Rn	0100nnnn00101000	$Rn \ll 16 \rightarrow Rn$	1	_	Yes	Yes	Yes
SHLR16	Rn	0100nnnn00101001	$Rn >> 16 \rightarrow Rn$	1	_	Yes	Yes	Yes

6.3.6 PINT Interrupt Enable Register (PINTER)

PINTER is a 16-bit register that enables interrupt request inputs to external interrupt input pins PINT7 to PINT0.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	-	PINT7E	PINT6E	PINT5E	PINT4E	PINT3E	PINT2E	PINT1E	PINT0E
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R/W							

Dit Name Value H/W Description 15 to 8 — All 0 R Reserved These bits are always read as 0. The write value should always be 0. 7 PINT7E 0 R/W PINT Enable 6 PINT6E 0 R/W These bits select whether to enable interrupt request inputs to external interrupt input pins PINT7 to PINT0. 5 PINT5E 0 R/W 0: PINTn input interrupt request is disabled 4 PINT4E 0 R/W 1: PINTn input interrupt request is enabled	Rit	Rit Namo	Initial Value	D/W	Description
15 to 8 — All 0 R Reserved These bits are always read as 0. The write value should always be 0. 7 PINT7E 0 R/W 6 PINT6E 0 R/W 5 PINT5E 0 R/W 4 PINT4E 0 R/W 0: PINT input interrupt request is disabled 1: PINT input interrupt request is enabled	Dit	Dit Name	value	N/ W	Description
These bits are always read as 0. The write value should always be 0. 7 PINT7E 0 R/W PINT Enable 6 PINT6E 0 R/W These bits select whether to enable interrupt request inputs to external interrupt input pins PINT7 to PINT0. 5 PINT4E 0 R/W 0: PINTn input interrupt request is disabled 4 PINT4E 0 R/W 1: PINTn input interrupt request is enabled	15 to 8	—	All 0	R	Reserved
7 PINT7E 0 R/W PINT Enable 6 PINT6E 0 R/W These bits select whether to enable interrupt request inputs to external interrupt input pins PINT7 to PINT0. 5 PINT4E 0 R/W 0: PINTn input interrupt request is disabled 4 PINT4E 0 R/W 1: PINTn input interrupt request is enabled					These bits are always read as 0. The write value should always be 0.
6 PINT6E 0 R/W These bits select whether to enable interrupt request inputs to external interrupt input pins PINT7 to PINT0. 5 PINT5E 0 R/W 0: PINTn input interrupt request is disabled 4 PINT4E 0 R/W 1: PINTn input interrupt request is enabled	7	PINT7E	0	R/W	PINT Enable
5 PINT5E 0 R/W inputs to external interrupt input pins PINT7 to PINT0. 4 PINT4E 0 R/W 0: PINTn input interrupt request is disabled - - - - - - - - - -	6	PINT6E	0	R/W	These bits select whether to enable interrupt request
4 PINT4E 0 R/W 0: PINTn input interrupt request is disabled	5	PINT5E	0	R/W	inputs to external interrupt input pins PINT7 to PINT0.
1: PINTn input interrupt request is enabled	4	PINT4E	0	R/W	O: PINTn input interrupt request is disabled
3 PINT3E 0 R/W	3	PINT3E	0	R/W	1: PINTn input interrupt request is enabled
2 PINT2E 0 R/W	2	PINT2E	0	R/W	_
1 PINT1E 0 R/W	1	PINT1E	0	R/W	_
0 PINTOE 0 R/W	0	PINT0E	0	R/W	-

[Legend]

n = 7 to 0

7.3 **Register Descriptions**

The UBC has the following registers. Five control registers for each channel and one common control register for channel 0 and channel 1 are available. A register for each channel is described as BAR_0 for the BAR register in channel 0.

Channel	Register Name	Abbrevia- tion	R/W	Initial Value	Address	Access Size
0	Break address register_0	BAR_0	R/W	H'00000000	H'FFFC0400	32
	Break address mask register_0	BAMR_0	R/W	H'00000000	H'FFFC0404	32
	Break bus cycle register_0	BBR_0	R/W	H'0000	H'FFFC04A0	16
	Break data register_0	BDR_0	R/W	H'00000000	H'FFFC0408	32
	Break data mask register_0	BDMR_0	R/W	H'00000000	H'FFFC040C	32
1	Break address register_1	BAR_1	R/W	H'00000000	H'FFFC0410	32
	Break address mask register_1	BAMR_1	R/W	H'00000000	H'FFFC0414	32
	Break bus cycle register_1	BBR_1	R/W	H'0000	H'FFFC04B0	16
	Break data register_1	BDR_1	R/W	H'00000000	H'FFFC0418	32
	Break data mask register_1	BDMR_1	R/W	H'00000000	H'FFFC041C	32
Common	Break control register	BRCR	R/W	H'00000000	H'FFFC04C0	32

Table 7.2 Register Configuration

- 6. PCMCIA direct interface
 - Supports the IC memory card and I/O card interface defined in JEIDA specifications Ver. 4.2 (PCMCIA2.1 Rev. 2.1).
 - Wait-cycle insertion controllable by program.
- 7. SRAM interface with byte selection
 - Can connect directly to a SRAM with byte selection.
- 8. Burst MPX-I/O interface
 - Can connect directly to a peripheral LSI that needs an address/data multiplexing.
 - Supports burst transfer.
- 9. Burst ROM interface (clocked synchronous)
 - Can connect directly to a ROM of the clocked synchronous type.
- 10. Bus arbitration
 - Shares all of the resources with other CPU and outputs the bus enable after receiving the bus request from external devices.
- 11. Refresh function
 - Supports the auto-refresh and self-refresh functions.
 - Specifies the refresh interval using the refresh counter and clock selection.
 - Can execute concentrated refresh by specifying the refresh counts (1, 2, 4, 6, or 8).
- 12. Usage as interval timer for refresh counter
 - Generates an interrupt request at compare match.

(k) Complementary PWM Mode 0% and 100% Duty Output

In complementary PWM mode, 0% and 100% duty cycles can be output as required. Figures 11.49 to 11.53 show output examples.

100% duty output is performed when the data register value is set to H'0000. The waveform in this case has a positive phase with a 100% on-state. 0% duty output is performed when the data register value is set to the same value as TGRA_3. The waveform in this case has a positive phase with a 100% off-state.

On and off compare-matches occur simultaneously, but if a turn-on compare-match and turn-off compare-match for the same phase occur simultaneously, both compare-matches are ignored and the waveform does not change.

(l) Toggle Output Synchronized with PWM Cycle

In complementary PWM mode, toggle output can be performed in synchronization with the PWM carrier cycle by setting the PSYE bit to 1 in the timer output control register (TOCR). An example of a toggle output waveform is shown in figure 11.54.

This output is toggled by a compare-match between TCNT_3 and TGRA_3 and a compare-match between TCNT4 and H'0000.

The output pin for this toggle output is the TIOC3A pin. The initial output is 1.

Section 13 Watchdog Timer (WDT)

This LSI includes the watchdog timer (WDT), which externally outputs an overflow signal (\overline{WDTOVF}) on overflow of the counter when the value of the counter has not been updated because of a system malfunction. The WDT can simultaneously generate an internal reset signal for the entire LSL

The WDT is a single channel timer that counts up the clock oscillation settling period when the system leaves software standby mode or the temporary standby periods that occur when the clock frequency is changed. It can also be used as a general watchdog timer or interval timer.

13.1 Features

- Can be used to ensure the clock oscillation settling time • The WDT is used in leaving software standby mode or the temporary standby periods that occur when the clock frequency is changed.
- Can switch between watchdog timer mode and interval timer mode.
- Outputs WDTOVF signal in watchdog timer mode

When the counter overflows in watchdog timer mode, the WDTOVF signal is output externally. It is possible to select whether to reset the LSI internally when this happens. Either the power-on reset or manual reset signal can be selected as the internal reset type.

- Interrupt generation in interval timer mode An interval timer interrupt is generated when the counter overflows.
- Choice of eight counter input clocks

Eight clocks ($P\phi \times 1$ to $P\phi \times 1/16384$) that are obtained by dividing the peripheral clock can be selected.

Figure 17.15 Receive Mode Operation Timing

Figure 17.16 Operation Timing For Receiving One Byte (MST = 1)

18.5 Usage Notes

18.5.1 Limitations from Underflow or Overflow during DMA Operation

If an underflow or overflow occurs while the DMA is in operation, the module should be restarted. The transmit and receive buffers in the SSI consists of 32-bit registers that share the L and R channels. Therefore, data to be transmitted and received at the L channel may sometimes be transmitted and received at the R channel if an underflow or overflow occurs, for example, under the following condition: the control register (SSICR) has a 32-bit setting for both data word length (DWL2 to DWL0) and system word length (SWL2 to SWL0).

If an error occurrence is confirmed with two types of error interrupts (underflow, overflow) or the corresponding error status flag (the bits UIRQ, OIRQ in SSISR), write 0 to the EN and DMEN bit in SSICR to disable DMA transfer requests in this module, thus stopping the operation. (In this case, the direct memory access controller setting should also be stopped.) After this, write 0 to the error status flag bit to clear the error status, set the direct memory access controller again and restart the transfer.

Offset	Description
6'b000000	Initial Offset = 1 st Basic Cycle (initial value)
6'b000001	Initial Offset = 2 nd Basic Cycles
6'b000010	Initial Offset = 3 rd Basic Cycles
6'b000011	Initial Offset = 4 th Basic Cycles
6'b000100	Initial Offset = 5 th Basic Cycles
6'b111110	Initial Offset = 63 rd Basic Cycles
6'b111111	Initial Offset = 64 th Basic Cycles

The following relation must be maintained:

Cycle_Count_Maximum + 1 >= Repeat_Factor > Offset

Cycle_Count_Maximum = $2^{CMAX} - 1$

Repeat_Factor = $2^{\text{rep_factor}}$

19.4.4 Message Receive Sequence

The diagram below shows the message receive sequence.

Figure 19.24 Message receive sequence

20.7.4 Processing of Analog Input Pins

To prevent damage from voltage surges at the analog input pins (AN0 to AN7), connect an input protection circuit like the one shown in figure 20.8. The circuit shown also includes a CR filter to suppress noise. This circuit is shown as an example; the circuit constants should be selected according to actual application conditions.

Figure 20.9 shows an equivalent circuit diagram of the analog input ports and table 20.7 lists the analog input pin specifications.

Figure 20.8 Example of Analog Input Protection Circuit

Bit	Bit Name	Initial Value	R/W	Description
6 to 0	BUFNMB[6:0]	H'00	R/W	Buffer Number
				These bits specify the buffer number for the corresponding pipe (from H'04 to H'7F).
				These bits can be set for the user system when PIPE1 to PIPE5 are selected.
				BUFNMB0 to BUFNMB3 are used exclusively for the DCP. BUFNMB4 and BUFNMB5 are allocated to PIPE6 and PIPE7.
				• PIPE1 to PIPE5: A value from H'06 to H'7F should be set. When PIPE7 is not used, a value from H'05 to H'7F can be set. When PIPE6 and PIPE7 are not used, a value from H'04 to H'7F can be set.
				• PIPE6: Writing to this bit is invalid. These bits are always read as 4.
				• PIPE7: Writing to this bit is invalid. These bits are always read as 5.

23.5.3 Timing for the Clearing of Interrupt Sources

The interrupt source flags should be cleared in the interrupt exception service routine. After clearing the interrupt source flag, a certain amount of time is required until the interrupt source sent to the CPU is actually cancelled. To ensure that an interrupt request that should have been cleared is not inadvertently accepted again, read the interrupt source flag three times after it has been cleared, and then execute an RTE instruction.

Bit	Bit Name	Initial Value	R/W	Description
5, 4	PF13MD[1:0]	00	R/W	PF13 Mode
				Select the function of the PF13/NAF5/LCD_DATA13 pin.
				00: PF13 I/O (port)
				01: NAF5 I/O (FLCTL)
				10: LCD_DATA13 output (LCDC)
				11: Setting prohibited
3, 2	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
1, 0	PF12MD[1:0]	00	R/W	PF12 Mode
				Select the function of the PF12/NAF4/LCD_DATA12 pin.
				00: PF12 I/O (port)
				01: NAF4 I/O (FLCTL)
				10: LCD_DATA12 output (LCDC)
				11: Setting prohibited

25.3 Switching Pin Function of Port A

In port A, the analog input pins of A/D converter and the analog output pins of D/A converter are multiplexed. Pin function is automatically changed by the settings of the A/D control/status register in A/D converter and D/A control register in D/A converter. (See section 20, A/D Converter (ADC), and section 21, D/A Converter (DAC).)

DACR Setting Value	ADCSR S Value	Setting	Pin Function		
[DAE, DAOE0, DAE1]	CH[2:0]	MDS[2]	PA6/AN6/DA0	PA7/AN7/DA1	Remarks
(x, 0, 0)	110	х	AN6	PA7	
	111	0	PA6	AN7	
		1	AN6	AN7	
(0, 1, 0)	110	х	AN6/DA0	PA7	Setting prohibited
	111	0	DA0	AN7	
		1	AN6/DA0	AN7	Setting prohibited
(0, 0, 1)	110	х	AN6	DA1	
	111	0	PA6	AN7/DA1	Setting prohibited
		1	AN6	AN7/DA1	Setting prohibited
(x, 1, 1)/(1, 0, 1)/(1, 1, 0)	110	х	AN6/DA0	DA1	Setting prohibited
	111	0	DA0	AN7/DA1	Setting prohibited
		1	AN6/DA0	AN7/DA1	Setting prohibited

Tabla 25 0	Switching Pin	Function	of DA6/AN6/T	MA and	$\mathbf{D}\mathbf{A}7/\mathbf{A}\mathbf{N}7/\mathbf{D}\mathbf{A}1$
1 abie 23.7	Switching I m	r unction	UII AU/ANU/D	AU anu	IAMANIDAI

[Legend]

x: Don't care

Note: Settings marked "setting prohibited" are not allowed because they would result in simultaneous selection of the A/D and D/A conversion functions for the PA6 or PA7 pin.

28.2.14 Retention On-Chip RAM Trimming Register (DSRTR)

DSRTR is an 8-bit readable/writable register used to trim the standby current for the on-chip RAM for data retention in deep standby mode. Only byte access is valid.

To retain data on the on-chip RAM for data retention in deep standby mode, be sure to write H'09 to this register before making a transition to deep standby mode.

This register is initialized after the assertion of the $\overline{\text{RES}}$ pin or exit from deep standby mode.

Note: When writing to this register, see section 28.4, Usage Notes.

Bit:	7	6	5	4	3	2	1	0		
	-		TRMD[6:0]							
Initial value:	0	0	0	0	0	0	0	0		
R/W:	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
6 to 0	TRMD[6:0]	All 0	R/W	Retention On-Chip RAM Trimming Data
				These bits trim the standby current for the on-chip RAM for data retention in deep standby mode.

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
INTC	IPR08								
	IPR09								
	IPR10								
	IPR11								
	IPR12								
	IPR13								
	IPR14								
	IPR15								
	IPR16								
	IPR17								
UBC	BAR_0	BA31	BA30	BA29	BA28	BA27	BA26	BA25	BA24
		BA23	BA22	BA21	BA20	BA19	BA18	BA17	BA16
		BA15	BA14	BA13	BA12	BA11	BA10	BA9	BA8
		BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0
	BAMR_0	BAM31	BAM30	BAM29	BAM28	BAM27	BAM26	BAM25	BAM24
		BAM23	BAM22	BAM21	BAM20	BAM19	BAM18	BAM17	BAM16
		BAM15	BAM14	BAM13	BAM12	BAM11	BAM10	BAM9	BAM8
		BAM7	BAM6	BAM5	BAM4	BAM3	BAM2	BAM1	BAM0
	BBR_0	—	—	UBID	DBE	—	—	CP[1]	CP[0]
		CD[1]	CD[0]	ID[1]	ID[0]	RW[1]	RW[0]	SZ[1]	SZ[0]

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
RCAN-TL1	MBIMR0_0	MBIMR0[15]	MBIMR0[14]	MBIMR0[13]	MBIMR0[12]	MBIMR0[11]	MBIMR0[10]	MBIMR0[9]	MBIMR0[8]
		MBIMR0[7]	MBIMR0[6]	MBIMR0[5]	MBIMR0[4]	MBIMR0[3]	MBIMR0[2]	MBIMR0[1]	MBIMR0[0]
	UMSR1_0	UMSR1[15]	UMSR1[14]	UMSR1[13]	UMSR1[12]	UMSR1[11]	UMSR1[10]	UMSR1[9]	UMSR1[8]
		UMSR1[7]	UMSR1[6]	UMSR1[5]	UMSR1[4]	UMSR1[3]	UMSR1[2]	UMSR1[1]	UMSR1[0]
	UMSR0_0	UMSR0[15]	UMSR0[14]	UMSR0[13]	UMSR0[12]	UMSR0[11]	UMSR0[10]	UMSR0[9]	UMSR0[8]
		UMSR0[7]	UMSR0[6]	UMSR0[5]	UMSR0[4]	UMSR0[3]	UMSR0[2]	UMSR0[1]	UMSR0[0]
	TTCR0_0	TCR15	TCR14	TCR13	TCR12	TCR11	TCR10	—	_
			TCR6	TPSC5	TPSC4	TPSC3	TPSC2	TPSC1	TPSC0
	CMAX_TEW_0		_	_	—	—	CMAX[2]	CMAX[1]	CMAX[0]
			_	_	_	TEW[3]	TEW[2]	TEW[1]	TEW[0]
	RFTROFF_0	RFTROFF[7]	RFTROFF[6]	RFTROFF[5]	RFTROFF[4]	RFTROFF[3]	RFTROFF[2]	RFTROFF[1]	RFTROFF[0]
			_	_	—	—	—	—	_
	TSR_0		—	_	—	—	—	—	_
			_	_	TSR4	TSR3	TSR2	TSR1	TSR0
	CCR_0	_	—	—	—	—	—	_	—
		_	—	CCR[5]	CCR[4]	CCR[3]	CCR[2]	CCR[1]	CCR[0]
	TCNTR_0	TCNTR[15]	TCNTR[14]	TCNTR[13]	TCNTR[12]	TCNTR[11]	TCNTR[10]	TCNTR[9]	TCNTR[8]
		TCNTR[7]	TCNTR[6]	TCNTR[5]	TCNTR[4]	TCNTR[3]	TCNTR[2]	TCNTR[1]	TCNTR[0]
	CYCTR_0	CYCTR[15]	CYCTR[14]	CYCTR[13]	CYCTR[12]	CYCTR[11]	CYCTR[10]	CYCTR[9]	CYCTR[8]
		CYCTR[7]	CYCTR[6]	CYCTR[5]	CYCTR[4]	CYCTR[3]	CYCTR[2]	CYCTR[1]	CYCTR[0]
	RFMK_0	RFMK[15]	RFMK[14]	RFMK[13]	RFMK[12]	RFMK[11]	RFMK[10]	RFMK[9]	RFMK[8]
		RFMK[7]	RFMK[6]	RFMK[5]	RFMK[4]	RFMK[3]	RFMK[2]	RFMK[1]	RFMK[0]
	TCMR0_0	TCMR0[15]	TCMR0[14]	TCMR0[13]	TCMR0[12]	TCMR0[11]	TCMR0[10]	TCMR0[9]	TCMR0[8]
		TCMR0[7]	TCMR0[6]	TCMR0[5]	TCMR0[4]	TCMR0[3]	TCMR0[2]	TCMR0[1]	TCMR0[0]
	TCMR1_0	TCMR1[15]	TCMR1[14]	TCMR1[13]	TCMR1[12]	TCMR1[11]	TCMR1[10]	TCMR1[9]	TCMR1[8]
		TCMR1[7]	TCMR1[6]	TCMR1[5]	TCMR1[4]	TCMR1[3]	TCMR1[2]	TCMR1[1]	TCMR1[0]
	TCMR2_0	TCMR2[15]	TCMR2[14]	TCMR2[13]	TCMR2[12]	TCMR2[11]	TCMR2[10]	TCMR2[9]	TCMR2[8]
		TCMR2[7]	TCMR2[6]	TCMR2[5]	TCMR2[4]	TCMR2[3]	TCMR2[2]	TCMR2[1]	TCMR2[0]
	TTTSEL_0	_	TTTSEL[14]	TTTSEL[13]	TTTSEL[12]	TTTSEL[11]	TTTSEL[10]	TTTSEL[9]	TTTSEL[8]
		—	—	—	—	—	—	—	_