Intel - EP4CE40F23A7N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2475
Number of Logic Elements/Cells	39600
Total RAM Bits	1161216
Number of I/O	328
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce40f23a7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} <i>(3)</i>	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT V	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{ccio} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
V _{CCI0} (3), (4)	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} <i>(3)</i>	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	1.0	1.03	V
VI	Input voltage	—	-0.5	—	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
		For commercial use	0	—	85	°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
IJ		For extended temperature	-40	_	125	°C
		For automotive use	-40		125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs		50 ms	
		Fast POR (6)	50 µs		3 ms	

Parameter							V _{ccio}	(V)						
	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	—	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2)⁽¹⁾

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

		Resistance		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
	2.5	±30	±40	%
Series OCT without calibration	1.8	±40	±50	%
	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

		Calibration Accuracy				
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit		
	3.0	±10	±10	%		
Series OCT with	2.5	±10	±10	%		
calibration at device power-up	1.8	±10	±10	%		
	1.5	±10	±10	%		
	1.2	±10	±10	%		

Example 1–1 shows how to calculate the change of 50- Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 1–1. Impedance Change

$$\begin{split} \Delta R_V &= (3.15-3) \times 1000 \times -0.026 = -3.83 \\ \Delta R_T &= (85-25) \times 0.262 = 15.72 \\ \text{Because } \Delta R_V \text{ is negative,} \\ MF_V &= 1 \ / \ (3.83/100 + 1) = 0.963 \\ \text{Because } \Delta R_T \text{ is positive,} \\ MF_T &= 15.72/100 + 1 = 1.157 \\ MF &= 0.963 \times 1.157 = 1.114 \\ R_{\text{final}} &= 50 \times 1.114 = 55.71 \ \Omega \end{split}$$

Pin Capacitance

Table 1–11 lists the pin capacitance for Cyclone IV devices.

Symbol	Parameter	Typical – Quad Flat Pack (QFP)	Typical – Quad Flat No Leads (QFN)	Typical – Ball-Grid Array (BGA)	Unit
C _{IOTB}	Input capacitance on top and bottom I/O pins	7	7	6	pF
C _{IOLR}	Input capacitance on right I/O pins	7	7	5	pF
C_{LVDSLR}	Input capacitance on right I/O pins with dedicated LVDS output	8	8	7	pF
C _{VREFLR}	Input capacitance on right dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	21	21	21	pF
C _{VREFTB}	Input capacitance on top and bottom dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	23 <i>(3)</i>	23	23	pF
C _{CLKTB}	Input capacitance on top and bottom dedicated clock input pins	7	7	6	pF
C _{CLKLR}	Input capacitance on right dedicated clock input pins	6	6	5	pF

Notes to Table 1-11:

(1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.

(2) When you use the vref pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} because of higher pin capacitance.

(3) C_{VREFTB} for the EP4CE22 device is 30 pF.

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 1–12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices.

Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
	Value of the I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
R	before and during configuration, as	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ
R_pu	programmable pull-up resistor option	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
		$V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3)	19	143	351	kΩ
	Value of the I/O nin null down register	$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
		$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4)	6	22	36	kΩ
R_pd		$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4)	6	25	43	kΩ
		$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (4)	7	35	71	kΩ
		$V_{CCIO} = 1.5 V \pm 5\%$ (4)	8	50	112	kΩ

Notes to Table 1–12:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- $\begin{array}{ll} \text{(3)} & \text{R}_{_{PU}} = (\text{V}_{\text{CCI0}} \text{V}_{\text{I}})/\text{I}_{\text{R}_{_{PU}}} \\ & \text{Minimum condition: } -40^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} + 5\%, \ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 5\% 50 \ \text{mV}; \\ & \text{Typical condition: } 25^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}}, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = 10^{\circ}\text{C}; \ \text{W}_{\text{CO}} = 10^{\circ}\text{C}; \ \text{W$
- $\begin{array}{ll} (4) & R_{_PD} = V_I/I_{R_PD} \\ & \text{Minimum condition:} -40^{\circ}\text{C}; \ V_{CCIO} = V_{CC} + 5\%, \ V_I = 50 \ \text{mV}; \\ & \text{Typical condition:} \ 25^{\circ}\text{C}; \ V_{CCIO} = V_{CC}, \ V_I = V_{CC} 5\%; \\ & \text{Maximum condition:} \ 100^{\circ}\text{C}; \ V_{CCIO} = V_{CC} 5\%, \ V_I = V_{CC} 5\%; \ \text{in which } V_I \ \text{refers to the input voltage at the I/O pin.} \end{array}$

Hot-Socketing

Table 1–13 lists the hot-socketing specifications for Cyclone IV devices.

Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices

Symbol	Symbol Parameter	
I _{IOPIN(DC)}	DC current per I/O pin	300 μA
I _{IOPIN(AC)}	AC current per I/O pin	8 mA <i>(1)</i>
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-13:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, |IIOPIN| = C dv/dt, in which C is the I/O pin capacitance and dv/dt is the slew rate.

During hot-socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
V _{SCHMITT} Hysteresis for Schmitt trigg		V _{CCI0} = 3.3	200	mV
	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
	input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard		V _{ccio} (V		V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) (4)	(mA) (4)
3.3-V LVTTL <i>(3)</i>	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465		0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	$V_{CC10} - 0.2$	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

I/O		V _{ccio} (V))		V _{REF} (V)			V _{TT} (V) ⁽²⁾	
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9 0.969		V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 x V _{CCI0} (3) 0.47 x V _{CCI0} (4)	$\begin{array}{c} 0.5 \mbox{ x } V_{\rm CC10} \ \ {}^{(3)} \\ 0.5 \mbox{ x } V_{\rm CC10} \ \ {}^{(4)} \end{array}$	$\begin{array}{l} 0.52 \times V_{\rm CCI0} \ {}^{(3)} \\ 0.53 \times V_{\rm CCI0} \ {}^{(4)} \end{array}$	_	0.5 x V _{CCIO}	_

Notes to Table 1–16:

(1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.

(2) $~V_{TT}$ of the transmitting device must track V_{REF} of the receiving device.

(3) Value shown refers to DC input reference voltage, $V_{\text{REF(DC)}}.$

(4) Value shown refers to AC input reference voltage, $V_{\text{REF(AC)}}$.

Table 1-17.	Single-Ended SSTL and HST	L I/O Standards Signal S	Specifications for C	yclone IV Devices
-------------	---------------------------	--------------------------	----------------------	-------------------

I/O	V _{IL(}	_(DC) (V)	VIII	_{I(DC)} (V)	V _{IL(}	_{AC)} (V)	VIH	_(AC) (V)	V _{OL} (V)	V _{oh} (V)	I _{OL}	I _{oh}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I		V _{REF} – 0.18	V _{REF} + 0.18	_		V _{REF} – 0.35	V _{REF} + 0.35	—	V _{ττ} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	—	_	V _{REF} – 0.35	V _{REF} + 0.35	—	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} – 0.125	V _{REF} + 0.125	—	_	V _{REF} – 0.25	V _{REF} + 0.25	—	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	—	0.28	V _{CCI0} – 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCI0} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCI0} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCI0} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

1/0 Ober devid		V _{CCIO} (V)		V _{ID} ((mV)		V _{ICM} (V) <i>(2)</i>			_D (mV)	(3)	V _{0S} (V) ⁽³⁾		
I/O Standard	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80						
LVDS (Column I/Os)	2.375	2.5	2.625	100	_	0.55	$0.55 \begin{array}{ c c c c c c c c c c c c c c c c c c c$		247	_	600	1.125	1.25	1.375
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1.05	D _{MAX} > 700 Mbps	1.55						
BLVDS (Row I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_	_	_			_
BLVDS (Column I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_		_	_	_	
mini-LVDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4
mini-LVDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_		_	_	300	_	600	1.0	1.2	1.4
RSDS® (Row I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
RSDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
PPDS (Row I/Os) <i>(</i> 5)	2.375	2.5	2.625	—	_				100	200	600	0.5	1.2	1.4
PPDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625						100	200	600	0.5	1.2	1.4

Table 1-20.	Differential I/O Standard S	pecifications for C	yclone IV Devices ⁽¹⁾	(Part 2 of 2)
-------------	-----------------------------	---------------------	----------------------------------	---------------

Notes to Table 1-20:

(1) For an explanation of terms used in Table 1–20, refer to "Glossary" on page 1–37.

(2) $~V_{IN}$ range: 0 V $\leq V_{IN} \leq$ 1.85 V.

 $(3) \quad R_L \text{ range: } 90 \leq \ R_L \leq \ 110 \ \Omega \, .$

(4) There are no fixed $V_{\rm IN},\,V_{\rm OD},\, and\,V_{\rm OS}$ specifications for BLVDS. They depend on the system topology.

(5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.

(6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus[®] II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

To For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

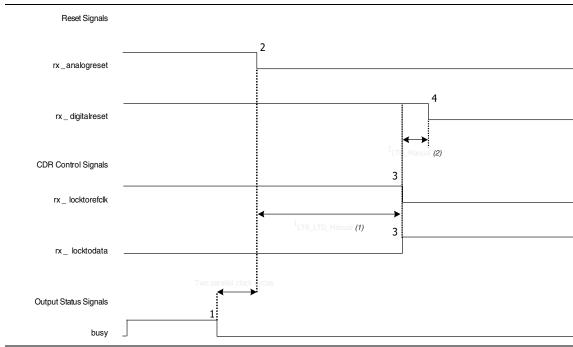
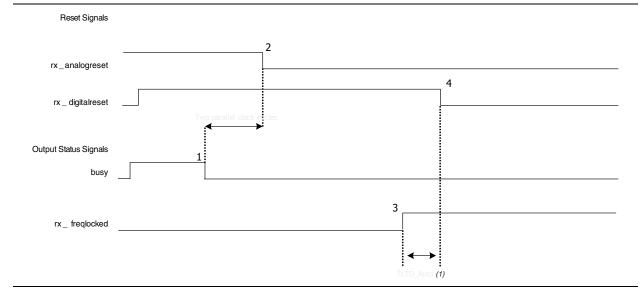
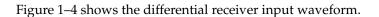




Figure 1–2. Lock Time Parameters for Manual Mode

Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1–3. Lock Time Parameters for Automatic Mode

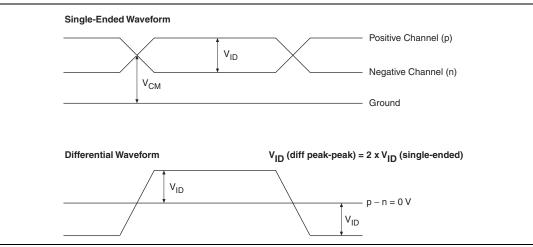


Figure 1–5 shows the transmitter output waveform.

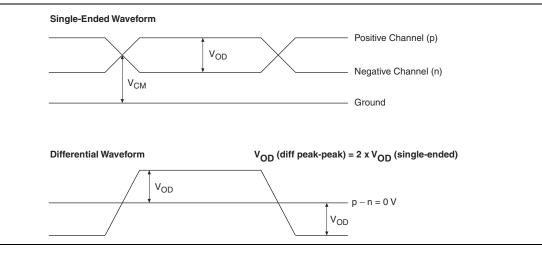


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{0D} Setting, Tx Term = 100 Ω

Sumbol	V _{op} Setting (mV)									
Symbol	1	2	3	4 (1)	5	6				
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200				

Note to Table 1-22:

(1) This setting is required for compliance with the PCIe protocol.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Symbol/	0		C6			C7, 17	7	C8			Ilnit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Transmit Jitter Gene	ration ⁽³⁾	-		<u>.</u>	-		<u>.</u>			<u>.</u>	
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾	•						•	•		•
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	6	> 0.6			> 0.6			UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾	•						•			•
Deterministic jitter	Pattern = CRPAT			0.14			0.14			0.14	UI
(peak-to-peak)	Falleni = UNFAI			0.14		_	0.14	_	_	0.14	01
Total jitter (peak-to-peak)	Pattern = CRPAT	—		0.279	_		0.279	_		0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4		> 0.4			> 0.4			UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66		> 0.66			> 0.66			UI	

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Notes to Table 1-23:

(1) Dedicated refclk pins were used to drive the input reference clocks.

(2) The jitter numbers specified are valid for the stated conditions only.

(3) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

 Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Device	Device Performance										
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	Unit		
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz		

Device				Perfor	mance				
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L (1)	A7	– Unit
EP4CE55	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE75	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE115	_	437.5	402	362	265	437.5	362	—	MHz
EP4CGX15	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX22	500	437.5	402	_	—	437.5	_		MHz
EP4CGX30	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX50	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX75	500	437.5	402	_	—	437.5	_		MHz
EP4CGX110	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX150	500	437.5	402			437.5			MHz

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Note to Table 1-24:

(1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (–40°C to 100°C), the extended industrial junction temperature range (–40°C to 125°C), and the automotive junction temperature range (–40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

 Table 1–25. PLL Specifications for Cyclone IV Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (–8L speed grade)	5		362	MHz
	Input clock frequency (–9L speed grade)	5	_	265	MHz
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600		1300	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
t _{injitter_CCJ} (5)	Input clock cycle-to-cycle jitter $F_{REF} \ge 100 \text{ MHz}$	_		0.15	UI
-	F _{REF} < 100 MHz	—	_	±750	ps
f _{OUT_EXT} (external clock output) ⁽³⁾	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	—		472.5	MHz
	PLL output frequency (-7 speed grade)		_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	—		402.5	MHz
	PLL output frequency (-8L speed grade)	—		362	MHz
	PLL output frequency (-9L speed grade)	—		265	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	1	ms

Symbol	Parameter	Min	Тур	Max	Unit
t _{dlock}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
t _{outjitter_period_dedclk} (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	—	30	mUI
t _{outjitter_ccj_dedclk} (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
t _{outjitter_period_10} (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{outjitter_ccj_io} <i>(6)</i>	Regular I/O cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_		ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{scanclk}	scanclk frequency		—	100	MHz
t _{casc_outjitter_period_dedclk}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} < 100 \text{ MHz}$)	_		42.5	mUI

Table 1-25.	PLL Specifications	s for Cyclone IV Devices ^{(1),}	⁽²⁾ (Part 2 of 2)
-------------	--------------------	--	------------------------------

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{\text{CCD_PLL}}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{C0} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{C0} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VC0} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.

(8) The cascaded PLLs specification is applicable only with the following conditions:

- $\blacksquare \quad Upstream \ PLL {----}0.59 \ MHz \leq Upstream \ PLL \ bandwidth < 1 \ MHz$
- Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Embedded Multiplier Specifications

Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mode	Resources Used	Performance					Unit
	Number of Multipliers	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
9 × 9-bit multiplier	1	340	300	260	240	175	MHz
18 × 18-bit multiplier	1	287	250	200	185	135	MHz

Memory Block Specifications

Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

Memory		Resources Used		Performance					
	Mode	LEs	M9K Memory	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
M9K Block	FIFO 256 × 36	47	1	315	274	238	200	157	MHz
	Single-port 256 × 36	0	1	315	274	238	200	157	MHz
	Simple dual-port 256 × 36 CLK	0	1	315	274	238	200	157	MHz
	True dual port 512 × 18 single CLK	0	1	315	274	238	200	157	MHz

Configuration and JTAG Specifications

Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Programming Mode	V _{CCINT} Voltage Level (V)	DCLK f _{max}	Unit
Passive Serial (PS)	1.0 <i>(3</i>)	66	MHz
	1.2	133	MHz
Fast Passive Parallel (FPP) (2)	1.0 <i>(3)</i>	66	MHz
	1.2 (4)	100	MHz

Notes to Table 1-28:

- (1) For more information about PS and FPP configuration timing parameters, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- (2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 only.
- (3) V_{CCINT} = 1.0 V is only supported for Cyclone IV E 1.0 V core voltage devices.
- (4) Cyclone IV E devices support 1.2 V V_{CCINT}. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK f_{MAX} for EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.

Table 1–29 lists the active configuration mode specifications for Cyclone IV devices.

Programming Mode	DCLK Range	Typical DCLK	Unit
Active Parallel (AP) ⁽¹⁾	20 to 40	33	MHz
Active Serial (AS)	20 to 40	33	MHz

Table 1–29. Active Configuration Mode Specifications for Cyclone IV Devices

Note to Table 1-29:

(1) AP configuration mode is only supported for Cyclone IV E devices.

Table 1-30 lists the JTAG timing parameters and values for Cyclone IV devices.

Table 1–30. JTAG Timing Parameters for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	—	ns
t _{JCH}	TCK clock high time	19	_	ns
t _{JCL}	TCK clock low time	19	_	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	1	_	ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	_	ns
t _{JPH}	JTAG port hold time	10	_	ns
t _{JPC0}	JTAG port clock to output ^{(2), (3)}	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output ^{(2), (3)}		15	ns
t _{JPXZ}	JTAG port valid output to high impedance ^{(2), (3)}		15	ns
t _{JSSU}	Capture register setup time	5	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{JSC0}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Notes to Table 1-30:

(1) For more information about JTAG waveforms, refer to "JTAG Waveform" in "Glossary" on page 1–37.

- (2) The specification is shown for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 16 ns.
- (3) For EP4CGX22, EP4CGX30 (F324 and smaller package), EP4CGX110, and EP4CGX150 devices, the output time specification for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins is 16 ns. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 18 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/Os using the SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speeds. I/Os using general-purpose I/O standards such as 3.3-, 3.0-, 2.5-, 1.8-, or 1.5-LVTTL/LVCMOS are capable of a typical 200 MHz interfacing frequency with a 10 pF load.

• For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to *Section III: System Performance Specifications* of the *External Memory Interface Handbook*.

Table 1–37 lists the memory output clock jitter specifications for Cyclone IV devices.

Table 1–37. Memory Output Clock Jitter Specifications for Cyclone IV Devices (1), (2)

Parameter	Symbol	Min	Max	Unit
Clock period jitter	t _{JIT(per)}	-125	125	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	-200	200	ps
Duty cycle jitter	t _{JIT(duty)}	-150	150	ps

Notes to Table 1-37:

(1) Memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2 standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock (GCLK) network.

Duty Cycle Distortion Specifications

Table 1–38 lists the worst case duty cycle distortion for Cyclone IV devices.

Table 1–38. Duty Cycle Distortion on Cyclone IV Devices I/O Pins (1), (2), (3)

Symbol	C6 C7, I		, 17 C8, 18L, A7		C9L		Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Notes to Table 1-38:

(1) The duty cycle distortion specification applies to clock outputs from the PLLs, global clock tree, and IOE driving the dedicated and general purpose I/O pins.

(2) Cyclone IV devices meet the specified duty cycle distortion at the maximum output toggle rate for each combination of I/O standard and current strength.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

OCT Calibration Timing Specification

Table 1–39 lists the duration of calibration for series OCT with calibration at device power-up for Cyclone IV devices.

Table 1–39. Timing Specification for Series OCT with Calibration at Device Power-Up for Cyclone IV Devices $^{(1)}$

Symbol	Description	Maximum	Units	
t _{octcal}	Duration of series OCT with calibration at device power-up	20	μs	

Note to Table 1-39:

(1) OCT calibration takes place after device configuration and before entering user mode.

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

	Parameter Paths Affected	Of I	Min Offset	Max Offset						
Parameter				Fast Corner		Slow Corner				Unit
				C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number of Settings	Min Offset	Max Offset						
Parameter	Paths Affected			Fast Corner		Slow Corner				Unit
				C6	17	C6	C 7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

Notes to Table 1-45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software

I/O Timing

Use the following methods to determine I/O timing:

- the Excel-based I/O Timing
- the Quartus II timing analyzer

The Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get a timing budget estimation as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Excel-based I/O Timing spreadsheet is downloadable from Cyclone IV Devices Literature website.

Glossary

Table 1–46 lists the glossary for this chapter.

Letter	Term	Definitions						
Α	—	_						
В	—							
C	—	—						
D	—	_						
E	—	—						
F	f _{HSCLK}	High-speed I/O block: High-speed receiver/transmitter input and output clock frequency.						
G	GCLK	Input pin directly to Global Clock network.						
u	GCLK PLL	Input pin to Global Clock network through the PLL.						
Н	HSIODR	High-speed I/O block: Maximum/minimum LVDS data transfer rate (HSIODR = 1/TUI).						
I	Input Waveforms for the SSTL Differential I/O Standard	Vswing Vswing V _{IH} V _{REF} V _{IL}						

Table 1-46. Glossary (Part 1 of 5)

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions							
	R _L	Receiver differential input discrete resistor (external to Cyclone IV devices).							
R	Receiver Input Waveform	Receiver input waveform for LVDS and LVPECL differential standards: Single-Ended Waveform V_{ID} Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V_{ID} V_{ID} V_{ID} V_{ID}							
	Receiver input skew margin (RSKM)	High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.							
S	Single-ended voltage- referenced I/O Standard	VCCIO VOH VIH(DC) VIH(DC) VIH(DC) VIL(AC) Vol Vol							
	SW (Sampling Window)	High-speed I/O block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.							

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage.
	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.
	V _{IL (AC)}	Low-level AC input voltage.
	V _{IL (DC)}	Low-level DC input voltage.
	V _{IN}	DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{0D} = V_{0H} - V_{0L}$.
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.
	V _{os}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.
W	—	_
X	—	—
Y	—	_
Z	—	_