

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	6839
Number of Logic Elements/Cells	109424
Total RAM Bits	5621760
Number of I/O	393
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx110df27c8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express® (PCIe®) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V _{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V _{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	°C
T _J	Operating junction temperature	-40	125	°C

Note to Table 1-1:

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to -2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1-2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.

⁽¹⁾ Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT 19	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{CCIO} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (5% (5)	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	_	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	_	0.97	1.0	1.03	V
V _I	Input voltage	_	-0.5	_	3.6	V
V_0	Output voltage	_	0	_	V _{CCIO}	V
		For commercial use	0	_	85	°C
т	Operating junction temperature	For industrial use	-40	_	100	°C
T_J	Operating junction temperature	For extended temperature	-40	_	125	°C
		For automotive use	-40	_	125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (5)	50 μs	_	50 ms	_
		Fast POR (6)	50 μs	_	3 ms	_

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enable	_	_	_	10	mA

Notes to Table 1-3:

- (1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades.
- (2) V_{CCIO} for all I/O banks must be powered up during device operation. All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (3) V_{CC} must rise monotonically.
- (4) V_{CCIO} powers all input buffers.
- (5) The POR time for Standard POR ranges between 50 and 200 ms. Each individual power supply must reach the recommended operating range within 50 ms.
- (6) The POR time for Fast POR ranges between 3 and 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.

Table 1-4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Core voltage, PCIe hard IP block, and transceiver PCS power supply	_	1.16	1.2	1.24	V
V _{CCA} (1), (3)	PLL analog power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL} (2)	PLL digital power supply	_	1.16	1.2	1.24	V
	I/O banks power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	I/O banks power supply for 3.0-V operation	_	2.85	3	3.15	V
V _{CCIO} (3), (4)	I/O banks power supply for 2.5-V operation	_	2.375	2.5	2.625	V
V _{CCIO} (3), (4)	I/O banks power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	I/O banks power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	I/O banks power supply for 1.2-V operation	_	1.14	1.2	1.26	V
	Differential clock input pins power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	Differential clock input pins power supply for 3.0-V operation	_	2.85	3	3.15	V
V _{CC_CLKIN}	Differential clock input pins power supply for 2.5-V operation	_	2.375	2.5	2.625	V
(3), (5), (6)	Differential clock input pins power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	Differential clock input pins power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	Differential clock input pins power supply for 1.2-V operation	_	1.14	1.2	1.26	V
V_{CCH_GXB}	Transceiver output buffer power supply	_	2.375	2.5	2.625	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
V _I	DC input voltage	_	-0.5		3.6	V
V ₀	DC output voltage	_	0	_	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0		85	°C
T _J	operating junction temperature	For industrial use	-40	_	100	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (7)	50 μs	_	50 ms	_
		Fast POR (8)	50 μs	_	3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	_	ı	10	mA

Notes to Table 1-4:

- (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (2) You must connect V_{CCD PLL} to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCIO} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCIO} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCIO} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCIO} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $V_{\text{CC_CLKIN}}$ to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input.
- (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1-5. ESD for Cyclone IV Devices GPIOs and HSSI I/Os

Symbol	Parameter	Passing Voltage	Unit
V	ESD voltage using the HBM (GPIOs) (1)	± 2000	V
VESDHBM	ESD using the HBM (HSSI I/Os) (2)	± 1000	V
M	ESD using the CDM (GPIOs)	± 500	V
VESDCDM	ESD using the CDM (HSSI I/Os) (2)	± 250	V

Notes to Table 1-5:

- (1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V.
- (2) This value is applicable only to Cyclone IV GX devices.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1-6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_I = 0 V \text{ to } V_{CCIOMAX}$		-10	_	10	μΑ
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 \text{ V to } V_{\text{CCIOMAX}}$		-10	_	10	μΑ

Notes to Table 1-6:

- This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).
- (2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2) (1)

							V _{CCIO}	(V)						
Parameter	Condition	1.2		1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μА
Bus hold low, overdrive current	0 V < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μА
Bus hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μА

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported $V_{\rm CCIO}$ range for Schmitt trigger inputs in Cyclone IV devices.

Table 1–14. Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
V _{SCHMITT}		$V_{CCIO} = 3.3$	200	mV
	Hysteresis for Schmitt trigger	V _{CCIO} = 2.5	200	mV
	input	V _{CCIO} = 1.8	140	mV
		V _{CCIO} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

I/O Ctondovd	V _{CCIO} (V)		V	V _{IL} (V) V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}		
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) <i>(4)</i>	(mA) (4)
3.3-V LVTTL (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15	_	0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5

Notes to Table 1-15:

- (1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1-15, refer to "Glossary" on page 1-37.
- (2) AC load CL = 10 pF
- (3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.
- (4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

Table 1–16. Single-Ended SSTL and HSTL I/O Reference Voltage Specifications for Cyclone IV Devices (1)

1/0	,	V _{CCIO} (V)		V _{REF} (V)			V _{TT} (V) ⁽²⁾	r) <i>(2)</i>		
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04		
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04		
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95		
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79		
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 x V _{CCIO} (3) 0.47 x V _{CCIO} (4)	0.5 x V _{CCIO} (3) 0.5 x V _{CCIO} (4)	0.52 x V _{CCIO} (3) 0.53 x V _{CCIO} (4)	_	0.5 x V _{CCIO}	_		

Notes to Table 1-16:

- (1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.
- (2) V_{TT} of the transmitting device must track V_{REF} of the receiving device.
- (3) Value shown refers to DC input reference voltage, $V_{REF(DC)}$.
- (4) Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

Table 1-17. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Cyclone IV Devices

I/O	V _{IL(}	_{DC)} (V)	VIH	_{I(DC)} (V)	V _{IL(}	_(AC) (V)	V _{IH}	(AC) (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{ττ} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I		V _{REF} – 0.125	V _{REF} + 0.125	_		V _{REF} – 0.25	V _{REF} + 0.25	_	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	_	0.28	V _{CCIO} - 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus® II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 2 of 4)

Symbol/	Oanditions		C6			C7, I7			C8		11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Receiver			•				•			<u> </u>	
Supported I/O Standards	1.4 V PCML, 1.5 V PCML, 2.5 V PCML, LVPECL, LVDS										
Data rate (F324 and smaller package) (15)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package) (15)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
Absolute V _{MAX} for a receiver pin (3)	_	_	_	1.6	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	_	_	_	1.5	_	_	1.5	_	_	1.5	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Peak-to-peak differential input voltage V _{ID} (diff p-p)	V _{ICM} = 0.82 V setting, Data Rate = 600 Mbps to 3.125 Gbps	0.1	_	2.7	0.1	_	2.7	0.1	_	2.7	V
V _{ICM}	V _{ICM} = 0.82 V setting	_	820 ± 10%	_	_	820 ± 10%	_	_	820 ± 10%	_	mV
Differential on-chip	100–Ω setting	_	100	_	_	100	_	_	100	_	Ω
termination resistors	150– Ω setting	_	150	_	_	150	_	_	150	_	Ω
Differential and common mode return loss	PIPE, Serial Rapid I/O SR, SATA, CPRI LV, SDI, XAUI					Compliant	i				_
Programmable ppm detector ⁽⁴⁾	_				± 62.5	, 100, 125 250, 300	5, 200,				ppm
Clock data recovery (CDR) ppm tolerance (without spread-spectrum clocking enabled)	_		_	±300 (5), ±350 (6), (7)		_	±300 (5), ±350 (6), (7)	_	_	±300 (5), ±350 (6), (7)	ppm
CDR ppm tolerance (with synchronous spread-spectrum clocking enabled) (8)	_	_	_	350 to -5350 (7), (9)	_	_	350 to -5350 (7), (9)	_	_	350 to -5350 (7), (9)	ppm
Run length	_		80	_	_	80	_		80		UI
	No Equalization	_	_	1.5	_	_	1.5	_	_	1.5	dB
Programmable	Medium Low	_	_	4.5	_	_	4.5		_	4.5	dB
equalization	Medium High	_	_	5.5	_	_	5.5		_	5.5	dB
	High	_	_	7	_	_	7	_		7	dB

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–2. Lock Time Parameters for Manual Mode

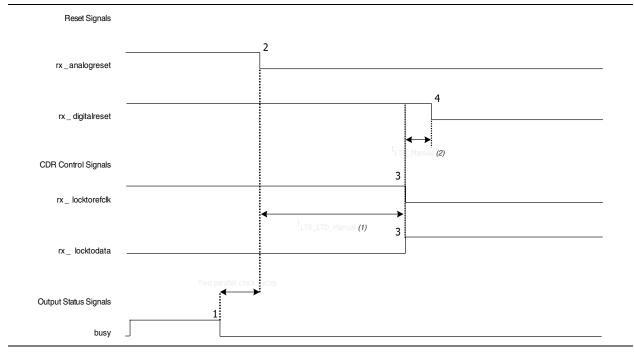


Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1-3. Lock Time Parameters for Automatic Mode

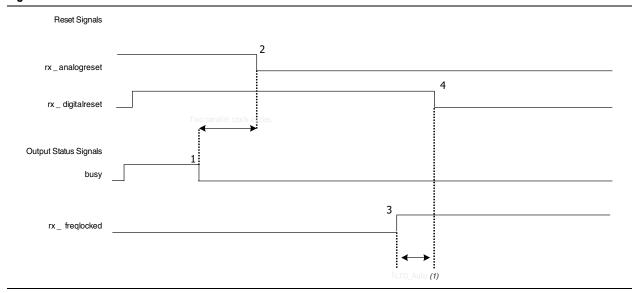


Figure 1–4 shows the differential receiver input waveform.

Figure 1-4. Receiver Input Waveform

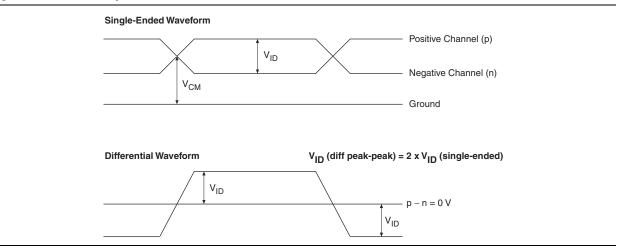


Figure 1–5 shows the transmitter output waveform.

Figure 1-5. Transmitter Output Waveform

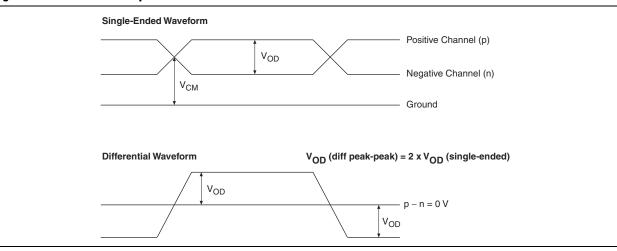


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{OD} Setting, Tx Term = 100 Ω

Cumbal	V _{OD} Setting (mV)												
Symbol	1	2	3	4 (1)	5	6							
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200							

Note to Table 1-22:

(1) This setting is required for compliance with the PCle protocol.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
toutjitter_period_dedclk (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_ccj_dedclk (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_period_io (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
toutjitter_ccj_io <i>(6)</i>	Regular I/O cycle-to-cycle jitter F _{OUT} ≥ 100 MHz	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_	_	ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
t _{CASC_OUTJITTER_PERIOD_DEDCLK}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} < 100 MHz)	_	_	42.5	mUI

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{CCD\ PLL}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{CO} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{CO} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.
- $\begin{tabular}{ll} (8) & The cascaded PLLs specification is applicable only with the following conditions: \end{tabular}$
 - Upstream PLL—0.59 MHz \leq Upstream PLL bandwidth < 1 MHz
 - Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Embedded Multiplier Specifications

Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mode	Resources Used		Performance										
Mode	Number of Multipliers	C6	C7, I7, A7	C8	C8L, I8L	C9L	Unit						
9 × 9-bit multiplier	1	340	300	260	240	175	MHz						
18 × 18-bit multiplier	1	287	250	200	185	135	MHz						

Memory Block Specifications

Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

Table 1-27. Memory Block Performance Specifications for Cyclone IV Devices

		Resou	rces Used	Performance							
Memory	Mode	LEs	M9K Memory	C6	C7, I7, A7	C8	C8L, I8L	C9L	Unit		
	FIFO 256 × 36	47	1	315	274	238	200	157	MHz		
M9K Block	Single-port 256 × 36	0	1	315	274	238	200	157	MHz		
INISK DIOCK	Simple dual-port 256 × 36 CLK	0	1	315	274	238	200	157	MHz		
	True dual port 512 × 18 single CLK	0	1	315	274	238	200	157	MHz		

Configuration and JTAG Specifications

Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Table 1–28. Passive Configuration Mode Specifications for Cyclone IV Devices (1)

Programming Mode	V _{CCINT} Voltage Level (V)	DCLK f _{max}	Unit
Passive Serial (PS)	1.0 <i>(3)</i>	66	MHz
rassive serial (rs)	1.2	133	MHz
Fast Passive Parallel (FPP) (2)	1.0 ⁽³⁾	66	MHz
Tast rassive ratallel (FFF) 1-7	1.2 (4)	100	MHz

Notes to Table 1-28:

- (1) For more information about PS and FPP configuration timing parameters, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- (2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 only.
- (3) $V_{CCINT} = 1.0 \text{ V}$ is only supported for Cyclone IV E 1.0 V core voltage devices.
- (4) Cyclone IV E devices support 1.2 V V_{CCINT}. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK f_{MAX} for EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.

For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to Section III: System Performance Specifications of the External Memory Interfaces Handbook.

Actual achievable frequency depends on design- and system-specific factors. Perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

Table 1–31 through Table 1–36 list the high-speed I/O timing for Cyclone IV devices. For definitions of high-speed timing specifications, refer to "Glossary" on page 1–37.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 1 of 2)

			C6			C7, I	7		C8, A	7		C8L, I	BL		C9L		
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	180	5	_	155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
	×8	5		180	5		155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
f _{HSCLK} (input clock	×7	5		180	5	_	155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
frequency)	×4	5	_	180	5	_	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
1 37	×2	5	_	180	5		155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
	×1	5		360	5	_	311	5	_	311	5		311	5	_	265	MHz
	×10	100	_	360	100		311	100	_	311	100		311	100	_	265	Mbps
	×8	80	_	360	80		311	80	_	311	80		311	80	_	265	Mbps
Device operation in	×7	70	_	360	70	_	311	70		311	70	_	311	70	_	265	Mbps
Mbps	×4	40	_	360	40		311	40	_	311	40		311	40	_	265	Mbps
'	×2	20	_	360	20		311	20	_	311	20		311	20	_	265	Mbps
	×1	10	_	360	10	_	311	10		311	10	_	311	10	_	265	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45		55	45	_	55	%
Transmitter channel-to- channel skew (TCCS)	_	_	_	200	_	_	200	_	_	200	_	_	200	_	_	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	500	_	_	550	_	_	600	_	_	700	ps
t _{RISE}	$20 - 80\%$, $C_{LOAD} = 5 pF$	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	1		500	_	_	500	ı	_	500		ps

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 2 of 2)

Symbol	Modes	C6				C7, I	7	C8, A7			C8L, I8L				Unit		
Syllibul	Mones	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
t _{LOCK} (3)	_	_		1	_	_	1	_		1	_	_	1	_		1	ms

Notes to Table 1-31:

- (1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.
- (2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks.

 Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Ob.al	Madaa		C6			C7, 17	'		C8, A7	7	(C8L, 18	BL		C9L		11!4
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	85	5		85	5		85	5		85	5	_	72.5	MHz
	×8	5	_	85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
f _{HSCLK} (input clock	×7	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
frequency)	×4	5	_	85	5	_	85	5		85	5		85	5	_	72.5	MHz
	×2	5		85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5		170	5	_	145	MHz
	×10	100	_	170	100	_	170	100	_	170	100	_	170	100		145	Mbps
	×8	80	_	170	80	_	170	80	_	170	80	_	170	80	_	145	Mbps
Device operation in	×7	70	_	170	70	_	170	70	_	170	70		170	70	_	145	Mbps
Mbps	×4	40	_	170	40		170	40	_	170	40	_	170	40	_	145	Mbps
	×2	20	1	170	20	_	170	20		170	20		170	20		145	Mbps
	×1	10	-	170	10		170	10		170	10		170	10	_	145	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45	_	55	45	_	55	%
TCCS	_	_	1	200	_	_	200	_		200	_		200			200	ps
Output jitter (peak to peak)	_	_		500	_	_	500	_		550	_	_	600	_		700	ps
	20 – 80%,																
t _{RISE}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
	20 – 80%,																
t _{FALL}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_		500	_	ps

Table 1–34. True LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (3	ue LVDS Transmitter Timing Specifications	for Cyclone IV Devices (1), (3)
--	---	---------------------------------

Cumbal	Madaa	C	6	C7	, I7	C8,	, A7	C8L	, I8L	C	9L	llmit
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	420	5	370	5	320	5	320	5	250	MHz
	×8	5	420	5	370	5	320	5	320	5	250	MHz
f _{HSCLK} (input	×7	5	420	5	370	5	320	5	320	5	250	MHz
clock frequency)	×4	5	420	5	370	5	320	5	320	5	250	MHz
, ,,,	×2	5	420	5	370	5	320	5	320	5	250	MHz
	×1	5	420	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	840	100	740	100	640	100	640	100	500	Mbps
	×8	80	840	80	740	80	640	80	640	80	500	Mbps
HSIODR	×7	70	840	70	740	70	640	70	640	70	500	Mbps
nolubh	×4	40	840	40	740	40	640	40	640	40	500	Mbps
	×2	20	840	20	740	20	640	20	640	20	500	Mbps
	×1	10	420	10	402.5	10	402.5	10	362	10	265	Mbps
t _{DUTY}	_	45	55	45	55	45	55	45	55	45	55	%
TCCS	_	_	200	_	200	_	200	_	200	_	200	ps
Output jitter (peak to peak)	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	_	_	1	_	1	_	1	_	1	_	1	ms

Notes to Table 1-34:

- (1) Cyclone IV E—true LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Cyclone IV GX—true LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6.
- (2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Cumbal	Modes	C6		C7, I7		C8, A7		C8L, I8L		C9L		llmit
Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	320	5	320	5	275	5	275	5	250	MHz
	×8	5	320	5	320	5	275	5	275	5	250	MHz
f _{HSCLK} (input clock	×7	5	320	5	320	5	275	5	275	5	250	MHz
frequency)	×4	5	320	5	320	5	275	5	275	5	250	MHz
, ,,	×2	5	320	5	320	5	275	5	275	5	250	MHz
	×1	5	402.5	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	640	100	640	100	550	100	550	100	500	Mbps
	×8	80	640	80	640	80	550	80	550	80	500	Mbps
HSIODR	×7	70	640	70	640	70	550	70	550	70	500	Mbps
ПЗЮЫТ	×4	40	640	40	640	40	550	40	550	40	500	Mbps
	×2	20	640	20	640	20	550	20	550	20	500	Mbps
	×1	10	402.5	10	402.5	10	402.5	10	362	10	265	Mbps

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

Table 1–44. IOE Programmable Delay on Column Pins for Cyclone IV GX Devices (1), (2)

		Number		Max Offset						
Parameter	Paths Affected	of	Min Offset	Fast (Corner	Slow Corner				Unit
		Settings		C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1-45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

		Number	Min	Max Offset						
Parameter	Paths Affected	of		Fast Corner		Slow Corner				Unit
		Settings		C6	17	C6	C 7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns

Notes to Table 1-45:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software

I/O Timing

Use the following methods to determine I/O timing:

- the Excel-based I/O Timing
- the Quartus II timing analyzer

The Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get a timing budget estimation as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Excel-based I/O Timing spreadsheet is downloadable from Cyclone IV Devices Literature website.

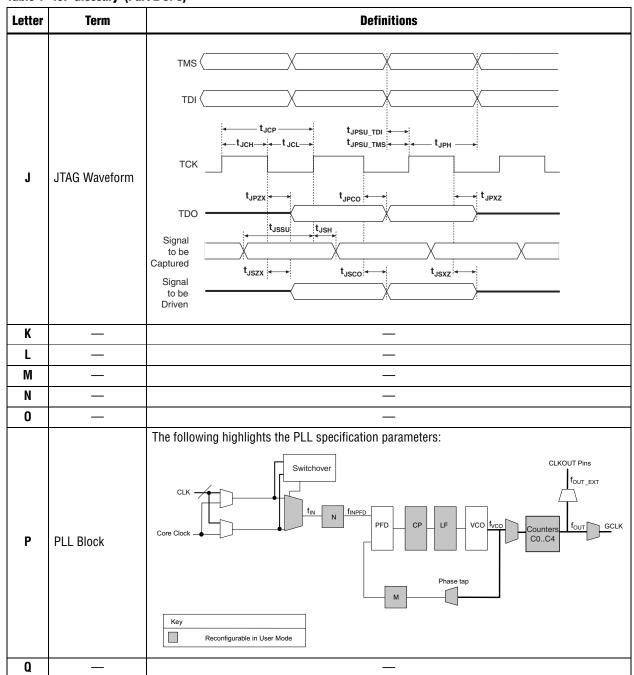

Glossary

Table 1–46 lists the glossary for this chapter.

Table 1-46. Glossary (Part 1 of 5)

Letter	Term	Definitions								
Α	_	_								
В	_	_								
С	_	_								
D	_	_								
E	_	-								
F	f _{HSCLK}	High-speed I/O block: High-speed receiver/transmitter input and output clock frequency.								
G	GCLK	Input pin directly to Global Clock network.								
u	GCLK PLL	Input pin to Global Clock network through the PLL.								
Н	HSIODR	High-speed I/O block: Maximum/minimum LVDS data transfer rate (HSIODR = 1/TUI).								
ı	Input Waveforms for the SSTL Differential I/O Standard	V _{IH} V _{REF} V _{IL}								

Table 1-46. Glossary (Part 2 of 5)

