
E·XFL

Intel - EP4CGX110DF27C8N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	6839
Number of Logic Elements/Cells	109424
Total RAM Bits	5621760
Number of I/O	393
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx110df27c8n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3and Table 1–4list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Dévices(Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Ma	x Un
V (3)	Supply voltage for internal logic, 1.2-V operation	—	1.15	1.2	1.25	V
V _{CCINT} ⁽³⁾	Supply voltage for internal logic, 1.0-V operation	—	0.97	1.0	1.03	V
	Supply voltage for output buffers 3.3-V operation	·,	3.135	3.3	3.465	V
	Supply voltage for output buffers 3.0-V operation	·,	2.85	3	3.15	V
V _{CCIO} ^{(3), (4)}	Supply voltage for output buffers 2.5-V operation	·,	2.375	2.5	2.625	V
VCCIO ^V	Supply voltage for output buffers 1.8-V operation	·,	1.71	1.8	1.89	V
	Supply voltage for output buffers 1.5-V operation	·,	1.425	1.5	1.575	V
	Supply voltage for output buffers 1.2-V operation	·,	1.14	1.2	1.26	V
V _{CCA} ⁽³⁾	Supply (analog) voltage for PLL regulator	—	2.375	2.5	2.625	V
V _{CCD_PLL} ⁽³⁾	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	1.0	1.03	V
VI	Input voltage	—	-0.5	_	3.6	V
Vo	Output voltage	—	0		ckio	V
		For commercial use	0		85	°C
TJ	Operating junction temperature	For industrial use	-40	_	100	°C
		For extended temperature	-40) _	- 12	5 °(
		For automotive use	-40	_	125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs	_	50 ms	_
		Fast POR ⁶⁾	50 µs	_	3 ms	

Symbol	Parameter	Conditions	Min	Тур) Ma	x Uni
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	—	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
VI	DC input voltage	—	-0.5	_	3.6	V
Vo	DC output voltage	—	0	_	င၆၊၀	V
Tj	Operating junction tomocrature	For commercial use	0	—	85	°C
	Operating junction temperature	For industrial use	-40	_	100	°C
t _{RAMP}	Power supply ramp time	Standard poweon reset (POR) ⁽⁷⁾	50 µs	_	50 ms	—
		Fast POR ⁸⁾	50 µs	—	3 ms	—
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	—	_	10	mA

Table 1-4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 2 of 2)

Notes toTable 1-4

- (1) All VCCApins must be powered to 2.5 V (even when PLLs are no) taused bust be powered up approximate down at the same time.
- (2) You must connect VD PLL VCCINT through a decoupling capitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCIO} for all I/O banks must be powered up during device operation. Configurations pins are powered up full Banks 3, 8, and 9 where I/O Banks 3 and 9 only support for 1.5, 1.8, 2.5, 3.0, and 3.3 V. For pressive parallel (FPP)ndinguration mode, the VIO Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $\partial_{C_{CLKIN}}$ 0 2.5 V if you us@LKIN as a high-speed serial interface (HSBSU) or as aDIFFCLK input.
- (6) TheCLKIN pins in I/O Banks 3B and 8B can suppingle-ended I/O standard when the pinguaged to clock left PLIs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200_{IM} (Cloof I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and & maxV& and CLO f I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1-5.	ESD for Cyclone IV Devices GPIOs and HSSI I/Os
------------	--

Symbol	Parameter	Passing Voltage	Unit
V _{ESDHBM}	ESD voltage using the HBM (GPIØs)	± 2000	V
	ESD using the HBM (HSSI I/0%)	± 1000	V
V _{ESDCDM}	ESD using the CDM (GPIOs)	± 500	V
	ESD using the CDM (HSSI I/0%)	± 250	V

Notes toTable 1-5

(1) The passing voltage for EP4CGX30 row I/Os is ±1000V.

(2) This value is applicable yoth Cyclone IV GX devices.

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10lists the change percentage of the OCT resistance with voltage and temperature.

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1–1. Final OCT Resistante^{(2), (3), (4), (5), (6)}

$$\label{eq:RV} \begin{split} & ^{\prime}R_V = (V_2 - V_1) \times 1000 \times dR/dV - --- \frac{(7)}{2} \\ & ^{\prime}R_T = (T_2 - T_1) \times dR/dT - --- \frac{(8)}{2} \\ & For ~^{\prime}R_x < 0; ~ MF_x = 1/~(|^{\prime}R_x|/100 + 1) - --- \frac{(9)}{2} \\ & For ~^{\prime}R_x > 0; ~ MF_x = ~^{\prime}R_x/100 + 1 - --- \frac{(10)}{2} \\ & MF = MF_7 \times MF_7 - --- \frac{(11)}{2} \\ & R_{final} = R_{nitial} \times MF - --- \frac{(12)}{2} \end{split}$$

Notes toEquation 1-1

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript refers to both and T.
- (7) $'R_V$ is a variation of resistance with voltage.
- (8) $'R_T$ is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistantbetemperature after calibration at device power
- (10) dR/dV is the change percentage of rescience taken to voltage after ideal attain at device power.

(11) V₂ is final voltage.

(12) V_1 is the initial voltage.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS TCK, nSTATUS nCONFIG, nCE, CONF_DONE and DCLKpins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

Table 1–14. Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V) Minimum	Unit
Vschmitt		V _{CCIO} = 3.3	200	mV
	Hysteresis for Schmitt trigger	V _{CCIO} = 2.5	200	mV
	input	V _{CCIO} = 1.8	140	mV
		V _{CCIO} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V $_{IH}$ and V $_{IL}$), output voltage (V $_{OH}$ and V $_{OL}$), and current drive characteristics (I $_{OH}$ and I $_{OL}$), for various I/O standards supported by Cyclone IV devices. Table 1–15through Table 1–20provide the I/O standard specifications for Cyclone IV devices.

I/O Standard	V _{ccid} (V)		$V_{L}(V)$		Y _H (V)		V _{6L} (V)	ν _{6L} (V)	bL	I _{OH}	
I/O Standard	Min Typ	Max	Min	Max	Min	Max	Max	Min	(mA) (4)) (mA) (4)	
3.3-V LVTTL ⁽³⁾	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	
3.3-V LVCMO\$ ³⁾	3.135	3.3	3.465	—	0.8	1.7	3.6	0.2	c∂⁄o− 0.2	2	-2
3.0-V LVTTL ⁽³⁾	2.85	3.0	3.15	-0.3	0.8	1.7	c∛₀+ 0.3	0.45	2.4	4	-4
3.0-V LVCMO\$ ³⁾	2.85	3.0	3.15	-0.3	0.8	1.7	c∛₀+ 0.3	0.2	V _{CIO} − 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	_c ∦ _O + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	3 <mark>0.35 х</mark> V _{CCIO}	0.65 x V _{CCIO}	2.25	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	5 —0.	3 ^{0.35 х} V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	3 <mark>0.35 х</mark> V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15	5 —	0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x ∛ _{CIO}	0.9 х У _{сю}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	5 —	0.35 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x ∛ _{CIO}	0.9 x У _{сю}	1.5	-0.5

Table 1-15. SingleEnded I/O Standard Specifications for Cyclone IV Devide

Notes toTable 1–15

(1) For voltagereferenced receiver input waveformed explanation of terms used Tarble 1-15 refer to "Glossary" on page 1-37

(2) AC load CL = 10 pF

(3) For more information about interfageCyclone IV devices th 3.3/3.0/2.5/ LVTTL/LVCMOS I/O standards, refeNte47: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems

(4) To meet theoLand bHspecifications, you must set thearrent strength settings according. For example, to meet theoLand bHspecifications, you must set thearrent strength settings according. For example, to meet theoLand bHspecifications in the handbook.